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Abstract

Optical character recognition (OCR) systems perfor-

mance have improved significantly in the deep learning

era. This is especially true for handwritten text recogni-

tion (HTR), where each author has a unique style, unlike

printed text, where the variation is smaller by design. That

said, deep learning based HTR is limited, as in every other

task, by the number of training examples. Gathering data is

a challenging and costly task, and even more so, the label-

ing task that follows, of which we focus here. One possible

approach to reduce the burden of data annotation is semi-

supervised learning. Semi supervised methods use, in ad-

dition to labeled data, some unlabeled samples to improve

performance, compared to fully supervised ones. Conse-

quently, such methods may adapt to unseen images during

test time.

We present ScrabbleGAN, a semi-supervised approach

to synthesize handwritten text images that are versatile both

in style and lexicon. ScrabbleGAN relies on a novel gener-

ative model which can generate images of words with an

arbitrary length. We show how to operate our approach

in a semi-supervised manner, enjoying the aforementioned

benefits such as performance boost over state of the art su-

pervised HTR. Furthermore, our generator can manipulate

the resulting text style. This allows us to change, for in-

stance, whether the text is cursive, or how thin is the pen

stroke.

1. Introduction

Documentation of knowledge using handwriting is one

of the biggest achievements of mankind: the oldest writ-

ten records mark the transition from prehistory into history,

and indeed, most evidence of historic events can be found

in handwritten scripts and markings. Handwriting remained

the dominant way of documenting events and data well after

Gutenberg’s printing press in the mid-1400s. Both print-

ing and handwriting are becoming somewhat obsolete in
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Figure 1: The word “Supercalifragilisticexpialidocious”

(34 letters) from the movie “Mary Poppins” written in dif-

ferent styles using our network. Note that some of these

styles are cursive.

the digital era, when courtroom stenographers are being re-

placed by technology [4], further, most of the text we type

remains in digital form and never meets a paper.

Nevertheless, handwritten text still has many applica-

tions today, a huge of amount of handwritten text has ac-

cumulated over the years, ripe to be processed, and still

continues to be written today. Two prominent cases where

handwriting is still being used today are healthcare and fi-

nancial institutions. There is a growing need for those to

be extracted and made accessible, e.g. by modern search

engines. While modern OCRs seem to be mature enough

to handle printed text [18, 19], handwritten text recognition

(HTR) does not seem to be on par. We attribute this gap to

both the lack of versatile, annotated handwritten text, and

the difficulty to obtain it. In this work, we attempt to ad-

dress this gap by creating real-looking synthesized text, re-

ducing the need for annotations and enriching the variety of

training data in both style and lexicon.

Our contributions are threefold; First, we present a

novel fully convolutional handwritten text generation archi-

tecture, which allows for arbitrarily long outputs. This is in

contrast to the vast majority of text related solutions which
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Figure 2: Architecture overview for the case of generating the word “meet”. Right: Illustration of the entire ScrabbleGAN

architecture. Four character filters are concatenated ( fe is used twice), multiplied by the noise vector z and fed into the

generator G. The resulting image is fed into both the discriminator D and the recognizer R , respectively promoting style

and data fidelity. Left: A detailed illustration of the generator network G, showing how the concatenated filters are each

fed into a class-conditioned generator, where the resulting receptive fields thereof are overlapping. This overlap allows for

adjacent characters to interact, enabling cursive text, for example.

rely on recurrent neural networks (RNN). Our approach is

able to generate arbitrarily long words (e.g., see Figure 1) or

even complete sentences altogether. Another benefit of this

architecture is that it learns character embeddings without

the need for character level annotation. Our method’s name

was chosen as an analogy between the generation process to

the way words are created during the game of Scrabble, i.e.

by concatenating some letter-tokens together into a word.

Second, we show how to train this generator in a semi-

supervised regime, allowing adaptation to unlabeled data in

general, and specifically to the test time images. To the best

of our knowledge, this is the first use of unlabeled data to

train a handwritten text synthesis framework. Finally, we

provide empirical evidence that the training lexicon matters

no less than the richness of styles for HTR training. This

fact emphasizes the advantage of our method over ones that

only warp and manipulate the training images.

2. Previous Work

Handwriting text recognition can be seen as a specific

case of optical character recognition (OCR). This is a well

studied topic, in the in-depth survey [31], HTR approaches

are divided into online and offline methods, which differ by

the type of data they consume: Online methods have ac-

cess to the pen location as the text is being written, and

hence can disambiguate intersecting strokes. Offline meth-

ods, conversely, have access only to the final resulting text

image (i.e. rasterized), possibly also in the presence of some

background noise or clutter. Clearly, online methods have

a strict advantage over their offline counterparts in terms

of data quality, but require additional equipment (such as a

touchscreen) to capture pen stroke data. Hence, online data

is harder to create in large quantities, especially in a natural

setting. Furthermore, these methods are unsuitable for his-

toric manuscripts and markings which are entirely offline.

For this reason, we chose to focus on offline methods and

leave online methods out of the scope for this manuscript.

Modern HTR methods harness the recent advancements

in deep networks, achieving top performance on most,

if not all, modern benchmarks. Many of these methods

are inspired by the convolutional recurrent neural network

(CRNN) architecture, used originally for scene text recog-

nition by Shi et al. [35]. Poznanski et al. [32] used a CNN

to estimate the n-grams profile of an image and match it to

the profile of an existing word from a dictionary. PHOCNet

by Sudholt et al. [36] extended the latter by employing a

pyramidal histogram of characters (PHOC), which was used

mainly for word spotting. Suerias et al. [37] used an ar-

chitecture inspired by sequence to sequence [38], in which

they use an attention decoder rather than using the CRNN
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outputs directly. Dutta et al. [10] compiled several recent

advances in text recognition into a powerful architecture,

reminiscent of modern networks for scene text recognition,

as the ones presented recently by Baek et al. [3].

Handwriting text generation (HTG) is a relatively new

field, brought forth by Graves [12], who introduced a

method to synthesize online data based on a recurrent net.

A modern extension of [12] was presented by Ji et al. [22],

who followed the GAN paradigm [11] by adding a discrim-

inator. DeepWriting [1] introduced better control over the

style generation of [12] by disentangling it from the content.

Haines et al. [15] proposed a method to generate hand-

writing based on a specific author, but requires a time con-

suming character-level annotation process for each new data

sample.

While all previous HTG methods demonstrate visually

pleasing results, none were used to augment HTR training

data, as opposed to the ones we discuss next.

Data augmentation using generative models. Genera-

tive models (and specifically GANs) are used to synthesize

realistic data samples based on real examples. One possi-

ble use for these newly generated images is adding them to

the original training set, essentially augmenting the set in a

bootstrap manner. A recent example for this is the low-shot

learning method by Wang et al. [39], who incorporate this

process into the task loss in an end-to-end manner.

For the case at hand, we look at methods that use HTG

or similar approaches to learn augmentation of the hand-

written examples. One straightforward example of this is a

method proposed by Bhunia et al. [5], who trains a GAN

to warp the training set using a parametric function. Unlike

ours, this approach cannot generate words outside a given

lexicon, which is a crucial property as we show below (see

Table 3). Krishanan el al. [26] proposed a method to har-

ness synthetic data for word spotting, while not relying on

a specific source of synthetic data (e.g. can use data made

by our method).

Alonso et al. [2] presented a new HTG model reminis-

cent of the work in [39], which in turn inspired our ap-

proach. The network presented in [2] uses LSTM to embed

the input word into a fixed length representation which can

be fed into a BigGAN [6] architecture. As opposed to our

approach, which allows for variable word and image length,

this generator is only able to output images of a fixed width

across all word lengths. Another large benefit of using a

fully convolutional generator is removing the need to learn

an embedding of the entire word using a recurrent network,

we instead can learn the embeddings for each character di-

rectly without the need for character level annotation.

Another recent approach by Ingle et al. [20] uses an on-

line generator similar to [12], followed by rendering. This

approach is coupled with some synthetic generation of noise

or other nuisance factors. Since this method relies on an

online data generator, it cannot adapt to the versatility nor

typical noise of an unseen offline dataset, which we claim is

the common use case.

Classic augmentation is mentioned here mainly for com-

pleteness, including some methods that use less intricate

ways to synthesize training examples, such as using hand-

writing fonts as proposed by [27]. Most of HTR methods

mentioned above use some kind of randomized parametric

spatial distortion to enlarge the visual variability of the data.

Puigcerver [33] pushed this notion even further, and pro-

moted that simpler one dimensional recurrent layers might

be sufficient, if provided with data distortions.

3. Method

Our approach follows the GAN paradigm [11], where in

addition to the discriminator D, the resulting image is also

evaluated by a text recognition network R. While D pro-

motes realistic looking handwriting styles, R encourages

the result to be readable and true to the input text. This part

of our architecture is similar to the one presented in [2], and

is illustrated in the right side of Figure 2. This architecture

minimizes a joint loss term ℓ from the two networks

ℓ= ℓD+λ · ℓR, (1)

where ℓD and ℓR are the loss terms of D and R, respec-

tively.

The main technical novelty of our method lies in the gen-

erator G, as we describe next in Section 3.1. Other modifi-

cations made to the discriminator D and the recognizer R
are covered in sections 3.2 and 3.3, respectively. We con-

clude by covering some optimization considerations on the

parameter λ in Section 3.4.

3.1. Fully convolutional generator

The main observation guiding our design is that hand-

writing is a local process, i.e. when writing each letter is

influenced only by its predecessor and successor. Evidence

for this observation can be seen in previous works like [12],

where the attention of the synthesizer is focused on the im-

mediate neighbors of the current letter. This phenomenon

is not trivial since the architecture in [12] uses a recurrent

network, which we argue enforces no such constraint on the

attention, but is rather ‘free’ to learn it.

Our generator is designed to mimic this process: rather

than generating the image out of an entire word representa-

tion, as done in [2], each character is generated individually,

using CNN’s property of overlapping receptive fields to ac-

count for the influence of nearby letters. In other words, our

generator can be seen as a concatenation of identical class
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conditional generators [30] for which each class is a char-

acter. Each of these generators produces a patch containing

its input character. Each convolutional-upsampling layer

widens the receptive field, as well as the overlap between

two neighboring characters. This overlap allows adjacent

characters to interact, and creates a smooth transition.

The generation process is illustrated on the left side of

Figure 2 for the word “meet”. For each character, a fil-

ter f⋆ is selected from a filter-bank F that is as large as

the alphabet, for example F = { fa, fb, . . . , fz} for lower-

case English. Four such filters are concatenated in Figure 2

( fe is used twice), and multiplied by a noise vector z, which

controls the text style. As can be seen, the region gener-

ated from each character filter f⋆ is of the same size, and

adjacent characters’ receptive field overlap. This provides

flexibility in the actual size and cursive type of the output

handwriting character. For example, the letter “m” takes up

most of the red patch, while the letters “e” and “t” take up

a smaller portion of their designated patches, and the latter

is the only non-cursive letter. Furthermore, learning the de-

pendencies between adjacent characters allows the network

to create different variations of the same character, depend-

ing on its neighboring characters. Such examples can be

seen in Figure 1 and Figure 3.

The style of each image is controlled by a noise vector z

given as input to the network. In order to generate the same

style for the entire word or sentence, this noise vector is kept

constant throughout the generation of all the characters in

the input.

3.2. Stylepromoting discriminator

In the GAN paradigm [11], the purpose of the discrim-

inator D is to tell apart synthetic images generated by G
from the real ones. In our proposed architecture, the role of

D is also to discriminate between such images based on the

handwriting output style.

The discriminator architecture has to account for the

varying length of the generated image, and therefore is de-

signed to be convolutional as well: The discriminator is es-

sentially a concatenation of separate “real/fake” classifiers

with overlapping receptive fields. Since we chose not to rely

on character level annotations, we cannot use class supervi-

sion for each of these classifiers, as opposed to class condi-

tional GANs such as [30, 6]. One benefit of this is that we

can now use unlabeled images to train D, even from other

unseen data corpus. A pooling layer aggregates scores from

all classifiers into the final discriminator output.

3.3. Localized text recognizer

While discriminator D promotes real-looking images,

the recognizer R promotes readable text, in essence dis-

criminating between gibberish and real text. Generated im-

ages are ‘penalized’ by comparing the recognized text in

the output ofR to the one that was given as input to G. Fol-

lowing [2], R is trained only on real, labeled, handwritten

samples.

Most recognition networks use a recurrent module, typi-

cally bidirectional LSTM [17], which reads the character in

the current image patch by utilizing information from previ-

ous and subsequent image patches. As shown by Sabir el al.

[34], the network learns an implicit language model which

helps it identify the correct character even if it is not writ-

ten clearly, by leveraging priors learned from other charac-

ters in the text. While this quality is usually desired in a

handwriting recognition model, in our case it may lead the

network to correctly read characters which were not written

clearly by the generator. Therefore, we opted not to use the

recurrent ‘head’ of the recognition network, which enables

this quality, and keep only the convolutional backbone. See

the supplementary material for a detailed analysis on this.

3.4. Optimization considerations

The generator network is optimized by the recognizer

loss ℓR and the adversarial loss ℓD . The gradients stemming

from each of these loss terms can vary greatly in magnitude.

Alonso et al. [2] proposed the following rule to balance the

two loss terms

∇IR← α

(

σ(∇ID)

σ(∇IR)
· [∇IR−µ(∇IR)]+µ(∇ID)

)

,

(2)

where σ(·) and µ(·) are respectively the empirical stan-

dard deviation and mean, ∇IR and ∇ID are respectively the

gradients of ℓR and ℓD w.r.t. the image. The parameter α

controls the relative importance of ℓR compared to ℓD . In

this paper, we chose to balance based only on the standard

deviation of the losses and not the average

∇IR← α

(

σ(∇ID)

σ(∇IR)
·∇IR

)

, (3)

in order to avoid changing the sign of the gradient ∇IR.

4. Results

4.1. Implementation details

Without loss of generality, the architecture is designed to

generate and process images with fixed height of 32 pixels,

in addition, the receptive field width of G is set to 16 pixels.

As mentioned in Section 3.1, the generator network G
has a filter bank F as large as the alphabet, for example,

F = { fa, fb, . . . , fz} for lowercase English. Each filter has a

size of 32×8192. To generate one n-character word, we se-

lect and concatenate n of these filters (including repetitions,

as with the letter ‘e’ in Figure 2), multiplying them with a

32 dimensional noise vector z1, resulting in an n×8192 ma-

trix. Next, the latter matrix is reshaped into a 512×4×4n
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Figure 3: Generating different styles. Each row in the figure is generated by the same noise vector and results in the same

handwriting style. The words generated in each column from left to right are: retrouvailles, écriture, les, étoile, feuilles,

soleil, péripatéticien and chaussettes

Figure 4: Results of the work by Alonso et al. [2] (left col-

umn) vs our results (right column) on the words: olibrius,

inventif, bonjour, ionique, malade, golf, ski, Dimanche,

réparer, famille, gorille, certes, des, le.

tensor, i.e. at this point, each character has a spatial size

of 4× 4. The latter tensor is fed into three residual blocks

which upsample the spatial resolution, create the aforemen-

tioned receptive field overlap, and lead to the final image

size of 32× 16n. Conditional Instance Normalization lay-

ers [9] are used to modulate the residual blocks using three

additional 32 dimensional noise vectors, z2,z3 and z4. Fi-

nally, a convolutional layer with a tanh activation is used to

output the final image.

The discriminator network D is inspired by BigGAN

[6]: 4 residual blocks followed by a linear layer with one

output. To cope with varying width image generation, D

is also fully convolutional, essentially working on horizon-

tally overlapping image patches. The final prediction is the

average of the patch predictions, which is fed into a GAN

hinge-loss [28].

The recognition network R is inspired by CRNN [35].

The convolutional part of the network contains six convolu-

tional layers and five pooling layers, all with ReLU activa-

tion. Finally, a linear layer is used to output class scores for

each window, which is compared to the ground truth anno-

tation using the connectionist temporal classification (CTC)

loss [13].

Our experiments are run on a machine with one V100

GPU and 16GB of RAM. For more details on the architec-

ture, the reader is referred to the supplemental materials.

4.2. Datasets and evaluation metrics

To evaluate our method, we use three standard bench-

marks: RIMES[14], IAM [29], and CVL [25]. The RIMES

dataset contains words from the French language, spanning

about 60k images written by 1300 different authors. The

IAM dataset contains about 100k images of words from the

English language. The dataset is divided into words written

by 657 different authors. The train, test and validation set

contain words written by mutually exclusive authors. The

CVL dataset consists of seven handwritten documents, out

of which we use only the six that are English. These doc-
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uments were written by about 310 participants, resulting in

about 83k word crops, divided into train and test sets.

All images were resized to a fixed height of 32 pixels

while maintaining the aspect ratio of the original image.

For the specific case of GAN training, and only when labels

were used (supervised case), we additionally scaled the im-

age horizontally to make each character approximately the

same width as the synthetic ones, i.e. 16 pixels per charac-

ter. This was done in order to challenge the discriminator by

making real samples more similar to the synthesized ones.

We evaluate our method We evaluate our method using

two common gold standard metrics. First, word error rate

(WER) is the number of misread words out of the number

of words in the test set. Second, normalized edit-distance

(NED) is measured by the edit-distance between the pre-

dicted and true word normalized by the true word length.

Whenever possible, we repeat the training session five times

and report the average and standard deviation thereof.

4.3. Comparison to Alonso el al. [2]

Since no implementation was provided, we focus on

qualitative comparison to [2] using images and metrics pre-

sented therein. Figure 4 contains results shown in [2] along-

side results of our method on the same words. As can be

seen in the figure, our network produces images that are

much clearer, especially for shorter words. More generally,

our results contain fewer artifacts, for example, the letter

‘m’ in the fifth row, the redundant letter ‘i’ in the sixth row

and the missing ‘s’ in the row before last.

Table 4 compares the two methods using standard met-

rics for GAN performance evaluation, namely Fréchet In-

ception Distance (FID) [16] and geometric-score (GS) [23].

Using a similar setting1 to the ones described in [2], our

method shows slightly better performance on both metrics.

Note, however, that since we do not have access to the data

from [2], both metrics for that method are copied from the

paper, and hence cannot be used to directly compare to our

results.

4.4. Generating different styles

We are able to generate different handwriting styles by

changing the noise vector z that is fed into ScrabbleGAN.

Figure 3 depicts examples of selected words generated in

different handwriting styles. Each row in the figure repre-

sent a different style, while each column contains a different

word to synthesize. As can be seen in the figure, our net-

work is able to generate both cursive and non-cursive text,

with either a bold or thin pen stroke. This image provides

a good example of character interaction: while all repeti-

tions of a character start with identical filters fi, each final

1We ran this experiment once, as opposed to [2] who presented the best

result over several runs

instantiation might be different depending on the adjacent

characters.

FID GS

Alonso el al. [2] 23.94 8.58×10−4

ScrabbleGAN 23.7823.7823.78 7.60×10−47.60×10−47.60×10−4

Table 1: Comparison of our method to Alonso et al.[2] us-

ing Fréchet Inception Distance and geometric-score met-

rics. Lower values are better.

Figure 5 shows interpolations between two different

styles on the IAM dataset. In each column we chose two

random noise vectors for the first and last row, and inter-

polated between them linearly to generate the noise vec-

tors for the images in between. The size of each letter, the

width of the pen strokes and the connections between the

letters change gradually between the two styles. The gray

background around the letters is a property of the original

IAM dataset and can be found in most of the images in the

dataset. As a result, the generator also learns to generate

variations of the background.

4.5. Boosting HTR performance

Our primary motivation to generate handwriting images

is to improve the performance of an HTR framework com-

pared to the “vanilla” supervised setting. For all experi-

ments in this section, we use the code provided by [3] as

our HTR framework, as it contains all the improvements

presented in [10] (for which no implementation was pro-

vided), as well as some other recent advances that achieve

state of the art performance on the scene text recognition

problem for printed text. We show that training the best ar-

chitecture in [3] on the handwritten data yields performance

close to state of the art on HTR, which should be challeng-

ing to improve upon. Specifically, our chosen HTR archi-

tecture is composed of a thin plate spline (TPS) transfor-

mation model, a ResNet backbone for extracting the visual

features, a bi-directional LSTM module for sequence mod-

eling, and an attention layer for the prediction. In all the

experiments, we used the validation set to choose the best

performing model, and report the performance thereof on

its associated test set.

Train set augmentation is arguably the most straight-

forward application of a generative model in this setting:

by simply appending generated images to the train set, we

strive to improve HTR performance in a bootstrap manner.

Table 2 shows WER and NED of the HTR network when

trained on various training data agumentations on the train-

ing data, for both RIMES and IAM datasets, where each

row adds versatility to the process w.r.t. its predecessor.

For each dataset, the first row shows results when using the
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Figure 5: Style interpolation. Each column contains an interpolation between two different styles of handwriting generated

by ScrabbleGAN. Note that the GAN captures the background noise typical to the IAM dataset [29].

original training data, which is the baseline for comparison.

Next, the second row shows performance when the data

is augmented with a random affine transformations. The

third row shows results using the original training data and

an additional 100k synthetic handwriting image generated

by ScrabbleGAN. The last row further fine-tunes the lat-

ter model using the original training data. As can be seen in

the table, using the ScrabbleGAN generated samples during

training leads to a significant improvement in performance

compared to using only off-the-shelf affine augmentations.

Set Aug GAN Refine WER[%] NED[%]

R
IM

E
S × × - 12.29±0.15 3.91±0.08

X × - 12.24±0.2 3.81±0.08

X 100k × 11.68±0.29 3.74±0.10

X 100k X 11.32±0.31 3.57±0.13

IA
M

× × - 25.10±0.49 13.82±0.35

X × - 24.73±0.53 13.98±0.93

X 100k × 23.98±0.4 13.57±0.24

X 100k X 23.61±0.36 13.42±0.27

Table 2: HTR experiments on RIMES and IAM. For each

dataset we report four results with gradually increasing ver-

satility to the dataset w.r.t. its predecessor. The second col-

umn (‘Aug’) indicates usage of random affine augmentation

in train time. The third column (‘GAN’) indicates whether

synthetic images were added to the original train set, and

how many. The fourth column (‘Refine’) indicates whether

another pass of fine tuning was performed using the original

data. See text for more details.

Domain adaptation, sometimes called transductive tra-

nsfer learning, is the process of applying a model on data

from a different distribution than the one it was trained on.

We test this task by transferring from IAM to CVL as they

both use the same alphabet and are somewhat visually sim-

ilar. One naive solution for this is training a model on the

IAM dataset, and testing its performance on the CVL test

set. This will be our baseline for comparison. Since Scrab-

bleGAN can be trained on unlabeled data, it can adapt to

the style of CVL images without using the ground truth. We

Train data Style Lex. WER[%] NED[%]

IAM (naive) N/A IAM 39.95±0.91 19.29±0.95

IAM+100K CVL IAM 40.24±0.51 19.49±0.76

IAM+100K IAM CVL 35.98±0.38 17.27±0.23

IAM+100K CVL CVL 29.75±0.67 14.52±0.5114.52±0.5114.52±0.51

CVL (oracle) N/A CVL 22.90±0.0722.90±0.0722.90±0.07 15.62±0.15

Table 3: Domain adaptation results from the IAM dataset

to the CVL dataset. First row is naive approach of using

a net trained on IAM. Next three rows show the effect of

100k synthetic images having either CVL style, CVL lexi-

con or both. The bottom row shows the oracle performance

of supervised training on the CVL train set, just for refer-

ence. No CVL labels were used to train HTR, except for the

oracle.

synthesize data according three different flavors: using ei-

ther CVL style, CVL lexicon, or both (as opposed to IAM).

Data generated from each of these three flavors is appended

to the IAM training set, as we find this helps stabilize HTR

training. Finally, we set a “regular” supervised training ses-

sion of CVL train set, to be used as an oracle, i.e. to get a

sense of how far we are from using the train labels.

Table 3 summarizes performance over the CVL test set

of all the aforementioned configurations, ranging from the

naive case, through the flavors of using data from Scrabble-

GAN, to the oracle. First, we wish to emphasize the 17%

WER gap between the naive approach and the oracle, show-

ing how hard it is for the selected HTR to generalize in this

case. Second, we observe that synthesizing images with

CVL style and IAM lexicon (second row) does not alter the

results compared to the naive approach. On the other hand,

synthesizing images with IAM style and CVL lexicon (third

row) boosts WER performance by about 5%. Finally, syn-

thesizing images with both CVL style and lexicon (fourth

row) yields another 5% boost in WER, with NED score that

is better than the oracle.

4.6. Gardient balancing ablation study

Several design considerations regarding parameter selec-

tion were made during the conception of ScrabbleGAN. We
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GB Type α WER[%] NED[%]

No GB - 12.64±0.20 4.18±0.11

[2] 1 12.83±0.28 4.21±0.06

Ours 0.1 12.28±0.49 3.95±0.26

Ours 1 11.68±0.2911.68±0.2911.68±0.29 3.74±0.103.74±0.103.74±0.10

Ours 10 12.03±0.27 3.80±0.04

Table 4: GB ablation study, comparing HTR performance

trained on different synthetic datasets. Each such set was

generated by a GAN with different GB scheme. See text for

details.

focus on two main factors: First, the effect of gradient bal-

ancing (GB) presented below, and second, the surprising ef-

fect of the architecture of the recognizer R which we leave

to the supplementary material.

Table 4 compares HTR results on the RIMES dataset us-

ing three different variations of gradient balancing during

training: First, we show results when no gradient balanc-

ing is used whatsoever. Second, we apply the gradient bal-

ancing scheme suggested in [2], which is shown in Eq. (2).

Finally, we show how our modified version performs for

different values of the parameter α , as described in Eq. (3).

For all the above options we repeat the experiment shown in

the third row of Table 2, and report WER and NED scores.

Clearly, the best results are achieved using samples synthe-

sized from a GAN trained using our gradient balancing ap-

proach with α = 1.

Figure 6 further illustrates the importance of balancing

between ℓR and ℓD and the effect of the parameter α . Each

column in the figure represents a different value starting

from training only with ℓR on the left, to training only with

ℓD on the right. The same input text, “ScrabbleGAN”, is

used in all of the images and the same noise vector is used

to generate each row. As expected, using only the recog-

nizer loss results in images which look noisy and do not

contain any readable text. On the other hand, using only

the adversarial loss results in real-looking handwriting im-

ages, but do not contain the desired text but rather gibberish.

A closer look at this column reveals that manipulating the

value of z changes the letter itself, rather than only the style.

From left to right, the three middle columns contain images

generated by a GAN trained with α values of 10, 1, and 0.1.

The higher the value of α is, the higher the weight of the

ℓR is. The results using α = 10 are all readable, but contain

much less variability in style. Conversely, using α = 0.1

yields larger variability in style at the expense of the text

readability, as some of the letters become unrecognizable.

The images depicted in Figure 6 provide another explana-

tion for the quantitative results shown in Table 4. Training

an HTR network with images generated by a GAN trained

with larger α deteriorates the results on diverse styles, while

training with images generated by a GAN trained with a

α = ∞ α = 10 α = 1 α = 0.1 α = 0

Figure 6: Comparison of different balancing levels between

ℓD and ℓR, the discriminator and recognizer loss terms, re-

spectively. Setting α’s value to ∞ or 0 means training only

with R or D, respectively. All examples are generation of

the word “ScrabbleGAN”, where each row was generated

with the same noise vector z.

smaller α value might lead to recognition mistakes caused

by training on unclear text images.

5. Conclusion and Future Work

We have presented a new architecture to generate offline

handwritten text images, which operates under the assump-

tion that writing characters is a local task. Our generator

architecture draws inspiration from the game “Scrabble”.

Similarly to the game, each word is constructed by assem-

bling the images generated by its characters. The generated

images are versatile in both stroke widths and general style.

Furthermore, the overlap between the receptive fields of the

different characters in the text enables the generation of cur-

sive as well as non-cursive handwriting. We showed that

the large variability of words and styles generated, can be

used to boost performance of a given HTR by enriching the

training set. Moreover, our approach allows the introduc-

tion of an unlabeled corpus, adapting to the style of the text

therein. We show that the ability to generate words from a

new lexicon is beneficial when coupled with the new style.

An interesting avenue for future research is to use a gen-

erative representation learning framework such as VAE [24]

or BiGAN [7, 8], which are more suitable for few shot learn-

ing cases like author adaptation. Additionally, disentangle-

ment approaches may allow finer control of text style, such

as cursive-ness or pen width.

In the future, we additionally plan to address the fact that

generated characters have the same receptive field width.

This is, of course, not the case for most scripts, as ‘i’ is usu-

ally narrower than ‘w’, for example. One possible remedy

for this is having a different width for each character filter

depending on its average width in the dataset. Another op-

tion is to apply STN [21] as one of the layers of G, in order

to generate a similar effect.

J. Norman Collie

4331



References

[1] Emre Aksan, Fabrizio Pece, and Otmar Hilliges. Deepwrit-

ing: Making digital ink editable via deep generative model-

ing. In Proceedings of the 2018 CHI Conference on Human

Factors in Computing Systems, pages 1–14, 2018. 3

[2] Eloi Alonso, Bastien Moysset, and Ronaldo Messina. Ad-

versarial generation of handwritten text images conditioned

on sequences. arXiv preprint arXiv:1903.00277, 2019. 3, 4,

5, 6, 8

[3] Jeonghun Baek, Geewook Kim, Junyeop Lee, Sungrae Park,

Dongyoon Han, Sangdoo Yun, Seong Joon Oh, and Hwal-

suk Lee. What is wrong with scene text recognition model

comparisons? dataset and model analysis, 2019. 3, 6

[4] BBC, Is stenography a dying art?, https://www.bbc.com-

/news/magazine-13035979, 2019-11-01. 1

[5] Ayan Kumar Bhunia, Abhirup Das, Perla Sai Raj Kishore,

Shuvozit Ghose, and Partha Pratim Roy. Handwriting recog-

nition in low-resource scripts using adversarial learning.

arXiv preprint arXiv:1811.01396, 2018. 3

[6] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale gan training for high fidelity natural image synthesis.

arXiv preprint arXiv:1809.11096, 2018. 3, 4, 5

[7] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Ad-
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