
gDLS*: Generalized Pose-and-Scale Estimation Given Scale and Gravity Priors

Victor Fragoso

Microsoft

victor.fragoso@microsoft.com

Joseph DeGol

Microsoft

joseph.degol@microsoft.com

Gang Hua1

Wormpex AI

ganghua@gmail.com

Abstract

Many real-world applications in augmented reality (AR),

3D mapping, and robotics require both fast and accurate es-

timation of camera poses and scales from multiple images

captured by multiple cameras or a single moving camera.

Achieving high speed and maintaining high accuracy in a

pose-and-scale estimator are often conflicting goals. To si-

multaneously achieve both, we exploit a priori knowledge

about the solution space. We present gDLS*, a generalized-

camera-model pose-and-scale estimator that utilizes rota-

tion and scale priors. gDLS* allows an application to flexi-

bly weigh the contribution of each prior, which is important

since priors often come from noisy sensors. Compared to

state-of-the-art generalized-pose-and-scale estimators (e.g.

gDLS), our experiments on both synthetic and real data

consistently demonstrate that gDLS* accelerates the esti-

mation process and improves scale and pose accuracy.

1. Introduction

Estimating the pose and scale from multiple images

taken from multiple cameras or multiple images from one

moving camera (e.g., a SLAM [6, 18, 19, 34, 46] trajectory)

is an essential step in many augmented reality (AR) [32, 39,

41, 49, 47], 3D mapping [3, 11, 31, 38, 42, 44], and robotics

applications [15, 20, 21, 30, 50, 54]. Consider hologram

sharing services (e.g., Azure Spatial Anchors [1]) as an

example. These services have a reference map and need

to localize query images accurately (so that holograms are

positioned correctly) and quickly (to maintain a nice user

experience). However, as Figure 1 shows, current meth-

ods leave room for improvement in terms of both accuracy

and processing time. In this work, we propose gDLS*, a

multi-camera pose-and-scale estimator that exploits scale

and gravity priors to improve accuracy and speed. Despite

using additional information, gDLS* computes its param-

eters with linear complexity in the number of points and

multiple optimal solutions in a single shot, avoiding itera-

tive optimization procedures.

1 This work was done while at Microsoft.
2 josephdegol.com/pages/GDLSStar_CVPR20.html

Figure 1. Estimating the pose and scale accurately and quickly is

essential in many applications in AR, 3D mapping, and robotics.

We introduce gDLS*, a pose-and-scale estimator that exploits

scale and/or gravity priors to improve accuracy and speed. Com-

pared to state-of-the-art estimators (e.g., gDLS+++ [44] and

gP+s [48]), gDLS* achieves more accurate estimates in less time

when registering a set of cameras to an existing 3D reconstruc-

tion. The right image above shows an existing 3D reconstruc-

tion (gray) with aligned cameras and points for gDLS* (green),

gDLS+++ (red), and gP+s (orange). The left image shows a

zoomed view of the positions of the aligned cameras. The white

points are the expected camera positions and the green/red/orange

points are the estimate positions for each method. The cyan line

between indicates a match, where longer lines indicate more error.

Using single camera pose estimators (e.g., [2, 7, 16, 23,

26, 29, 33, 53]) to develop a multi-camera pose-and-scale

estimator is cumbersome, and their estimates tend to be in-

accurate [22, 43]. Instead, many multi-camera pose-and-

scale estimators [22, 43, 44] use the generalized camera

model [12, 37] to elegantly treat the collection of cameras as

one generalized camera, yielding accuracy improvements.

Despite their improvements, these estimators often produce

erroneous results due to noisy input data and numerical in-

stabilities in their underlying polynomial solvers.

Given the need of accurate pose and scale estimates by

many applications in AR, 3D mapping, and robotics, some

algorithms [41, 42, 52] exploit inertial measurements (e.g.,

gravity directions). Most of these approaches assume that

the gravity or down directions are reliable, and include

this extra knowledge as part of their mathematical deriva-

tion to simplify the problem. However, the gravity direc-

tions can still be noisy due to the nature of these sensors

12210

and can affect the accuracy of the estimates. In contrast,

gDLS* adopts a generalized-camera model with regular-

izers that encode scale and rotation priors (e.g., gravity di-

rection). These regularizers allow a user to independently

control the contribution of each individual prior, which is

beneficial to reduce the effect of noise present in each prior.

We show using synthetic data that gDLS* is numer-

ically stable and resilient to noise. We demonstrate this

by (1) varying pixel noise and sample size and show-

ing that gDLS* estimates transformations with errors that

are no worse than current estimators; and (2) varying the

noise in the scale and gravity priors and showing that

gDLS* maintains accuracy and speed. We then use real

data (i.e. [10, 40]) to evaluate gDLS* when registering a set

of cameras to an existing 3D reconstruction. Our extensive

experiments show that gDLS* is significantly faster and

slightly more accurate than current pose-and-scale estima-

tors (i.e., [22, 43, 44, 48]). Moreover, the experiments show

that a rotation prior based on gravity directions improves ro-

tation and translation estimates while achieving significant

speed-ups. On the other hand, a scale prior mainly improves

scale estimates while modestly enhancing translation esti-

mates and speed.

In summary, the contributions of this work are (1)

gDLS*, a novel and generalized formulation of gDLS [43]

that includes scale and gravity priors that computes its pa-

rameters with an O(n) complexity; (2) a novel evaluation

protocol for pose-and-scale estimators that reports rotation,

translation, and scale errors; and (3) extensive experimen-

tal results showing that gDLS* consistently improves pose

accuracy in less time.

2. Related Work

Estimating the position and orientation of a camera is

crucial for many applications because they need to accu-

rately register computer-generated content into the real-

world, localize an agent (e.g., a visually impaired person)

within an environment, and autonomously navigate (e.g.,

self-driving cars). While these applications use camera

pose estimators to operate, most of the estimators have fo-

cused on localizing single cameras. Although these esti-

mators [2, 8, 23, 25, 26, 29, 51, 53] have achieved im-

pressive performance and accuracy, many applications [21]

have started to adopt multi-camera systems. This is because

a multi-camera system can provide additional information

that allows an application to estimate its pose more accu-

rately. For this reason, this section reviews existing work

on multi-camera pose and pose-and-scale estimators.

2.1. MultiCamera Pose Estimators

Chen and Chang [4] and Nister and Stewenius [35] pro-

posed gP3P, a minimal estimator which requires three 2D-

3D correspondences to estimate the pose of a multi-camera

Table 1. gDLS* compares favorably to existing state-of-the-art

pose-and-scale estimators because it maintains all the properties of

other estimators while also being the only estimator that enables

the use of gravity and scale priors.

gP+s gDLS gDLS+++ UPnP Ours

Reference [48] [43] [44] [22] -

Year 2014 2014 2016 2014 2019

Generalized Camera X X X X X

Geometric Optimality X X X X X

Linear Complexity X X X X

Multiple Solutions X X X X X

Similarity Transformation X X X X

Singularity-Free Rotation X X X X

Gravity Prior X

Scale Prior X

system. gP3P computes up to eight solutions by finding the

intersections of a circle and a ruled quartic surface. Lee et

al. [14] also introduced a minimal estimator that utilizes

Plücker lines to estimate the depth of each point. Subse-

quently, it estimates the position of each point w.r.t. to the

frame of reference of the multi-camera system. Then it es-

timates the absolute pose of the multi-camera system.

Unlike previous minimal solvers, Kneip et al. [22] in-

troduced UPnP, an efficient minimal and non-minimal pose

estimator derived from a least-squares reprojection-error-

based cost function. Inspired by DLS [16], UPnP reformu-

lates the cost function as one depending only on a unit-norm

quaternion. UPnP finds the optimal rotation by solving a

polynomial system that encodes the vanishing of the cost

gradient at the optimal unit-norm quaternion via a Gröbner-

basis solver [24, 28].

2.2. PoseandScale Estimators

Different from multi-camera pose estimators, pose-and-

scale estimators compute the pose of a multi-camera system

and a scale value; this value scales the positions of the cam-

eras in order to align a 3D representation into the frame of

reference of the multi-camera system more accurately.

Ventura et al. [48] proposed gP+s, a minimal pose-and-

scale estimator that requires four 2D-3D correspondences

and a Gröbner basis polynomial solver [24, 28]. However,

gP+s can also work with more than four points. Kukelova et

al. [27] introduced another minimal pose-and-scale estima-

tor that avoids using a Gröbner basis polynomial solver,

leading to impressive speed-ups but a decrease in accuracy.

Unlike previous estimators, Sweeney et al. [43] pre-

sented gDLS, an estimator derived from a least-squares

reprojection-error cost function. gDLS derives a cost func-

tion that depends only on a rotation matrix. Inspired

by DLS [16], gDLS solves a polynomial system that en-

codes the vanishing of the cost gradient at the optimal

Cayley-Gibbs-Rodrigues angle-axis vector using the DLS

polynomial solver (a Macaulay solver). Unfortunately, its

Macaulay solver can be slow since it requires obtaining the

2211

eigenvectors of a 27 × 27 action matrix. To alleviate this

issue, Sweeney et al. [44] introduced gDLS+++, a gDLS-

based estimator using a unit-norm quaternion. Thanks to

the rotation representation of gDLS+++, it can use the effi-

cient UPnP polynomial solver.

Different from previous methods, gDLS* is one of the

first estimators to incorporate scale and rotation priors. As

we show in Section 4, these priors improve both speed and

accuracy. Moreover, gDLS* maintains many of the de-

sirable properties of current solvers: (1) uses a general-

ized camera model which elegantly simplifies the formu-

lation; (2) computes multiple optimal solutions in a sin-

gle shot, avoiding iterative optimization procedures; (3)

scales linearly when building its parameters; and (4) uses

a singularity-free rotation representation. See Table 1 for a

brief comparison of estimator properties.

3. Pose-and-Scale Estimation using Priors

The goal of gDLS* is to provide hints about the

scale and rotation parameters of the similarity transfor-

mation using a generalized pose-and-scale estimator (e.g.,

gDLS [43]). Thanks to the prevalence of inertial sensors

in mobile devices, these priors are readily available. For

instance, a rotation prior can be obtained from the gravity

direction using measurements from inertial sensors, and a

scale prior can be obtained from the IMU [36], GPS, or

known landmark sizes [5].

One of the design considerations of gDLS* is the abil-

ity to control the contribution of each of the priors inde-

pendently. This allows the user to either disable or enable

each of the priors. When enabling the priors, gDLS* al-

lows a user to set a weight for each prior to control their

confidence. In Section 4, we test a range of weights, but

we plan to explore in future work how to set these weights

automatically using the variance of the noise of the sensors.

Because gDLS* is based on the pose-and-scale formula-

tions of gDLS [43, 44], we first describe the pose-and-scale

formulation and then present our modifications that enable

the use of scale and rotation priors.

3.1. gDLS A PoseandScale Estimator Review

Given n 2D-3D correspondences, gDLS computes the

scale and pose of a non-central camera by minimizing the

following least-squares cost function:

J(R, t, s,α) =

n
∑

i=1

‖αiri − (Rpi + t− sci) ‖
2, (1)

where ri is a unit-vector indicating the direction from the

position of the camera ci to a 3D point pi; αi is the depth

of the point pi with respect to the camera position ci; α is a

vector holding the depths; R ∈ SO(3) is a rotation matrix;

t ∈ R
3 is a translation vector; and s ∈ R is the scale; see

Fig. 2 for a visual representation of Eq. (1).

Figure 2. Estimating the pose of a multi-camera system Q requires

the estimation of R and t, while the scale s adjusts the camera po-

sitions ci so that W and Q use the same metric scale. gDLS* can

use the gravity directions g to impose a rotation prior and a scale-

prior s0 to place the cameras at the right scale.

The pose-and-scale formulation shown in Eq. (1) accu-

mulates the errors between the transformed i-th 3D point

(Rpi + t− sci) and the same point described with respect

to the camera αiri. The rotation R, the translation t, and

sci transform a 3D point from a world coordinate system to

the coordinate system of a generalized camera.

To find the minimizer (R⋆, t⋆, s⋆,α⋆), gDLS [43] first

rewrites J(R, t, s,α) as a function that only depends on

the rotation matrix. As Hesch and Roumeliotis [16] and

Sweeney et al. [43, 44] demonstrated, the translation t,

scale s, and depth αi can be written as a linear function

of the rotation matrix R. Thus, it is possible to re-write the

pose-and-scale least-squares cost formulation as follows:

J(R) =
n
∑

i=1

‖αi(R)ri − (Rpi + t(R)− s(R)ci) ‖
2

= vec(R)⊺Mvec(R),

(2)

where vec(R) is a vectorized form of the rotation matrix,

and M is a square matrix capturing the constraints from the

input 2D-3D correspondences; the dimensions of M depend

on the vectorization and representation of vec(R).
Given the cost function J(R), gDLS finds the optimal

rotation R⋆ by solving a polynomial system representing

the constraint that the gradient ∇qJ(R
⋆) = 0 is null with

respect to the rotation parameters q, and rotation-parameter

constraints (e.g., ensuring a unit-norm quaternion).

3.2. Incorporating Priors via Regularizers

In order to impose scale and rotation priors to Eq. (1),

gDLS* uses regularizers. Adding these regularizers leads

to the following least-squares cost function:

J ′ = J(R, t, s,α) + λs (s0 − s)
2
+ λg‖gQ ×RgW‖2,

(3)

where s0 is the scale prior; gQ and gW are the gravity di-

rections of the multi-camera setting and world, respectively;

the symbol × represents the cross-product operator; and λs

and λg are weights controlling the contribution of the scale

2212

and rotation priors, respectively. These weights (i.e., λs and

λg) must be greater than or equal to zero.

The scale regularizer λs (s0 − s)
2

imposes a penalty by

deviating from the scale prior s0. On the other hand, the

rotation prior λg‖gQ × RgW‖2 imposes a misalignment

penalty between the transformed world gravity direction

RgW and the query gravity direction gQ.

As discussed earlier, the first step to solve for pose and

scale is to re-write the cost J ′ as a function that only de-

pends on the rotation matrix. To do so, it is mathematically

convenient to define

x =
[

α1 . . . αn s t⊺
]⊺

. (4)

The gradient evaluated at the optimal x⋆ must satisfy the

following constraint: ∇xJ
′
∣

∣

x=x⋆ = 0. From this con-

straint, we obtain the following relationship:

x = (A⊺A+ P)
−1

A⊺Wb+ (A⊺A+ P)
−1

Px0

=

U

S

V

Wb+ λssol
(5)

where

A =

r1 c1 −I

. . .
...

...

rn cn −I

,b =

p1

...

pn

P =

0n×n

λs

03×3

 ,W =

R

. . .

R

,

(6)

and x0 =
[

0⊺n s0 0⊺3
]⊺

. Inspired by gDLS [43] and

DLS [16], we partition (A⊺A+ P)
−1

A⊺ into three matri-

ces U, S, and V such that the depth, scale, and translation

parameters are functions of U, S, and V, respectively. These

matrices and the vector l can be computed in closed form

by exploiting the sparse structure of the matrices A and P ;

see the supplemental material for the full derivation.

Eq. (5) provides a linear relationship between the depth,

scale, and translation and the rotation matrix. Consequently,

these parameters are computed as a function of the rotation

matrix as follows:

αi(R) = u
⊺

i Wb+ λssoli

s(R) = SWb+ λssoln+1

t(R) = VWb+ λssolt,

(7)

where u
⊺

i is the i-th row of matrix U , lj is the j-th entry

of the vector l, and lt corresponds to the last three entries

of the vector l. Note that we can obtain the exact same

relationships for depth, scale, and translation obtained by

Sweeney et al. for gDLS [43, 44] when λs = 0.

In order to re-write the regularized least-squares cost

function (i.e., Eq. (3)) as clearly as possible, we define

ei = αi(R)ri − (Rpi + t(R)− s(R)ci)

= ηi + ki

ηi = u
⊺

i Wbri −Rpi − VWb+ SWbci

ki = λss0 (lir− lt + ln+1ci) .

(8)

The residual ei is divided into two terms: ηi, the resid-

ual part considering the unconstrained terms; and ki the

residual part considering the scale-prior-related terms. Note

again that when λs = 0, ki becomes null and ei becomes

the residual corresponding to gDLS [43, 44].

Using the definitions from Eq. (8), and the scale, depth,

and translation relationships shown in Eq. (7), we can now

re-write the regularized least-squares cost function shown

in Eq. (3) as follows:

J ′ = J ′
gDLS + J ′

s + J ′
g

= vec(R)⊺Mvec(R) + 2d⊺vec(R) + k
(9)

where

J ′
gDLS =

n
∑

i=1

e
⊺

i ei =
n
∑

i=1

η
⊺

i ηi + 2k⊺

i ηi + k
⊺

i ki

= vec(R)⊺MgDLSvec(R) + 2d⊺

gDLSvec(R) + kgDLS

J ′
s = λs (s0 − S(R))

2

= vec(R)⊺Msvec(R) + 2d⊺

svec(R) + ks

J ′
g = λg‖gQ ×RgW‖2 = vec(R)⊺Mgvec(R)

M = MgDLS +Ms +Mg

d = dgDLS + ds

k = kgDLS + ks.

(10)

The parameters of Eq. (9) (i.e., MgDLS, Ms, Mg , dgDLS, ds,

kgDLS, and ks) can be computed in closed form and in O(n)
time; see the supplemental material for the closed form so-

lutions of these parameters.

An important observation is that Eq. (9) generalizes the

unconstrained quadratic function of gDLS shown in Eq. (1).

When both priors are disabled, i.e., λg = λs = 0, then

J ′(R) = J(R). Also, note that the weights λg and λs allow

the user to control the contribution of each of the priors in-

dependently. This gives gDLS* great flexibility since it can

be adapted to many scenarios. For instance, these weights

can be adjusted so that gDLS* reflects the confidence on

certain priors, reduces the effect of noise present in the pri-

ors, and fully disables one prior but enables another.

3.3. Solving for Rotation

Given that the prior-based pose-and-scale cost function

(i.e., Eq. (3)) depends only on the rotation matrix, the next

2213

0 5 10

Pixel Noise Std. Dev.

10 -1

10 0

10 1

R
o

ta
tio

n
 E

rr
o

r
[d

e
g

re
e

s]

0 5 10

Pixel Noise Std. Dev.

10 -1

10 0

10 1

T
ra

n
sl

a
tio

n
 E

rr
o

r
[m

]

0 5 10

Pixel Noise Std. Dev.

10 -3

10 -2

10 -1

S
ca

le
 E

rr
o

r

gDLS

gDLS+++

gP+s

s-gDLS*

g-gDLS*

sg-gDLS*

0 500 1000

Number of Correspondences

10 -2

10 -1

10 0

R
o

ta
tio

n
 E

rr
o

r
[d

e
g

re
e

s]

0 500 1000

Number of Correspondences

10 -2

10 -1

10 0

T
ra

n
sl

a
tio

n
 E

rr
o

r
[m

]

0 500 1000

Number of Correspondences

10 -4

10 -3

10 -2

S
ca

le
 E

rr
o

r

gDLS

gDLS+++

gP+s

s-gDLS*

g-gDLS*

sg-gDLS*

(a) Robustness to pixel noise with minimal samples (b) Accuracy as a function of sample size

Figure 3. Rotation, translation, and scale errors as a function of (a) pixel noise when estimating pose and scale using a minimal sample of

correspondences, and (b) sample size. s-gDLS*, g-gDLS*, and sg-gDLS* produce comparable errors to that of gDLS [43, 44]. On the

other hand, gP+s [48] produces the highest errors.

step is to find R such that it minimizes Eq. (9). To achieve

this, gDLS* represents the rotation matrix R using a quater-

nion q =
[

q1 q2 q3 q4
]⊺

. To compute all the minimizers of

Eq. (9), gDLS* follows [16, 22, 43, 44] and builds a poly-

nomial system that encodes the first-order optimality condi-

tions and the unit-norm-quaternion constraint, i.e.,

{

∂J ′

∂qj
= 0, ∀j = 1, . . . , 4

qj (q
⊺q− 1) = 0, ∀j = 1, . . . , 4

. (11)

The polynomial system shown in Eq. (11) encodes the unit-

norm-quaternion constraint with

∂ (q⊺q− 1)
2

∂qj
= qj (q

⊺q− 1) = 0, ∀j. (12)

Eq. (12) yields efficient elimination templates and small ac-

tion matrices, which delivers efficient polynomial solvers as

Kneip et al. [22] shows. In fact, gDLS* adopts the efficient

polynomial solver of Kneip et al. [22] as we leverage their

rotation representation

vec(R) =
[

q21 q22 q23 q24 q1q2 q1q3 q1q4 q2q3 q2q4 q3q4
]⊺

.

(13)

Given this representation, the dimensions of the parame-

ters of the regularized least-squares cost function shown in

Eq. (9) become M ∈ R
10×10, d ∈ R

10, and k ∈ R.

Because gDLS* uses the solver of Kneip et al. [22], it

efficiently computes eight rotations. After computing these

solutions, gDLS* discards quaternions with complex num-

bers, and then recovers the depth, scale, and translation us-

ing Eq. (7). Finally, gDLS* uses the computed similarity

transformations to discard solutions that map the input 3D

points behind the camera.

Our gDLS* derivation can be generalized. Impos-

ing scale and translation priors via the regularizers is gen-

eral enough to be adopted by least-squares-based estimators

(e.g., DLS [16] and UPnP [22]). This is because the regu-

larizers are quadratic functions that can be added without

much effort into their derivations.

(a) Noisy Scale Priors

(b) Noisy Gravity Priors

Rotation Error Translation Error Scale Error

Rotation Error Translation Error Scale Error

(c) Timings Given Noisy Priors

Figure 4. (a) gDLS*’s accuracy slowly degrades as the noise in-

creases in the scale prior. (b) gDLS*’s accuracy is barely affected

by noise in the gravity prior. (c) Time is not affected when using

noisy scale (left) and gravity (right) priors. The orange line shows

the best timing of gDLS+++ [44], the second fastest estimator in

our experiments.

4. Experiments

This section presents experiments that use (i) synthetic

data to demonstrate the numerical stability and robustness

of gDLS* and (ii) real data to show the performance of

gDLS* in registering a SLAM trajectory to a pre-computed

point cloud. We test three gDLS* configurations: scale-

only-regularized (s-gDLS*), gravity-only-regularized (g-

gDLS*), and scale-gravity-regularized (sg-gDLS*). For all

experiments except the ablation study, λs and λg are fixed

to 1. We compare to several state-of-the-art pose-and-scale

estimators: gP+s [48], gDLS [43], gDLS+++ [44], and

UPnP [22]. All implementations are integrated into Theia-

SfM [45]. For all experiments, we use one machine with

two 2.10 GHz Intel Xeon CPUs and 32 GB of RAM.

Datasets. For the SLAM trajectory registration, the ex-

periments use two publicly available SLAM datasets: the

TUM RGBD dataset [40] and the KITTI dataset [10]. These

2214

Table 2. Estimation times in seconds for gP+s [48], gDLS [43], gDLS+++ [44], UPnP [22], s-gDLS* (s column), g-gDLS* (g column), and

sg-gDLS* (sg column) for rigid (s0 = 1) and similarity (s0 = 2.5) transformations. The top six rows show results for the TUM dataset,

and the last six rows show results for the KITTI dataset. A gravity prior tends to deliver fast estimates, while a scale prior modestly slows

down the estimation. On the other hand, scale and gravity priors tend to be modestly faster than gDLS+++.

Rigid Transformation [s0 = 1] Similarity Transformation [s0 = 2.5]

[48] [43] [44] [22] s g sg [48] [43] [44] s g sg

Fr1 Desk 10.77 15.38 5.79 9.60 8.11 3.39 5.80 10.54 15.38 5.79 8.12 3.82 6.89

Fr1 Room 8.86 12.23 4.51 5.52 6.66 2.85 4.70 8.55 11.98 4.61 7.96 3.24 5.40

Fr2 LargeNoLoop 5.63 8.10 2.76 2.23 2.52 2.01 2.10 6.46 8.25 2.82 2.49 2.40 2.39

Fr1 Desk2 4.99 7.72 2.96 4.20 3.89 1.67 3.65 5.04 7.47 2.59 3.99 1.86 3.38

Fr2 Pioneer SLAM 21.06 27.77 10.82 8.27 12.08 6.48 8.08 17.10 25.42 9.34 11.84 7.41 9.70

Fr2 Pioneer SLAM 2 3.39 3.49 1.93 0.88 1.17 1.02 1.40 3.16 3.66 1.96 1.17 1.09 0.99

Drive 1
(

10−2 [sec]
)

1.66 2.32 0.93 1.17 0.90 0.58 0.90 1.31 1.79 1.19 1.0 0.61 0.87

Drive 9 0.32 0.49 0.23 0.14 0.34 0.23 0.28 0.35 0.48 0.22 0.50 0.22 0.26

Drive 19 0.51 0.29 0.80 0.27 0.29 0.26 0.29 0.57 0.90 0.39 0.29 0.26 0.29

Drive 22 0.12 0.22 0.12 0.07 0.12 0.06 0.11 0.12 0.19 0.07 0.11 0.06 0.12

Drive 23
(

10−2 [sec]
)

3.40 4.72 2.14 2.18 2.19 1.45 2.04 3.25 4.71 2.07 2.34 1.55 1.94

Drive 29 1.15 1.95 0.76 1.19 1.13 0.77 1.11 1.16 1.96 0.75 1.14 0.74 1.12

datasets provide per-frame accelerometer estimates, which

we use to compute one gravity direction for each SLAM

trajectory. Specifically, we low pass filter and smooth the

accelerations (because the gravity acceleration is constant

within the high frequency noise) to get an estimate of the

gravity vector for each image. Then, we take the mean of

all these estimates to get a final gravity vector estimate. The

final result is one gravity vector for each trajectory.

Error Metrics. All the experiments report rotation,

translation, and scale errors. The rotation error is the an-

gular distance [13, 17] between the expected and the esti-

mated rotation matrix. The translation error is the L2 norm

between the expected and the estimated translation. Lastly,

the scale error is the absolute difference between the ex-

pected and the estimated scale values.

4.1. Robustness to Noisy Synthetic Data

This experiment consists of three parts: (1) measur-

ing robustness to pixel noise with minimal samples (i.e.,

four 2D-3D correspondences); (2) measuring accuracy as

a function of the size of a non-minimal sample (i.e., more

than four 2D-3D correspondences); and (3) testing how

noise in scale and gravity priors effects solution accuracy

and run time. For all experiments, we execute 1, 000 tri-

als using 10 randomly positioned cameras within the cube

[−10, 10] × [−10, 10] × [−10, 10], and 300 random 3D

points in the cube [−5, 5]× [−5, 5]× [10, 20]. For each trial,

we transform the 3D points by the inverse of a randomly

generated ground truth similarity transformation (i.e., a ran-

dom unit vector direction and random rotation angle be-

tween 0◦ and 360◦, random translation between 0 and 5 in

(x, y, z), and random scale between 0 and 5).

gDLS* is robust to pixel noise with minimal sam-

ples. We generate random minimal samples with zero-mean

Gaussian noise added to the pixel positions. We vary the

noise standard deviation between 0 and 10 and measure

Figure 5. Evaluation Protocol: (1) Reconstruct a scene using

Theia-SfM; (2) Split the reconstruction into Query (Q) and Refer-

ence (W) parts; (3) Transform Q using a similarity transform S;

and (4) Estimate similarity transform S
⋆ aligning Q and W .

the rotation, translation, and scale errors. The results of

this experiment can be seen in Fig. 3(a). We observe that

s-gDLS*, g-gDLS*, and sg-gDLS* perform similarly to

gDLS [43] and gDLS+++ [44] when comparing their rota-

tion and translation errors. Also, we see that the rotation

and translation errors produced by gP+s [48] are the high-

est. All methods produce similar scale errors.

Accuracy of gDLS* improves with non-minimal sam-

ples. For this experiment, we vary the size of the sam-

ple from 5 to 1000 2D-3D correspondences and fix the

standard deviation to 0.5 for the zero-mean Gaussian pixel

noise. Fig. 3(b) shows that s-gDLS*, g-gDLS*, and sg-

gDLS* produce comparable rotation, translation, and scale

errors to that of gDLS and gDLS+++. On the other hand,

gP+s produced the largest errors.

gDLS* is numerically stable. From Fig. 3, we

conclude that s-gDLS* (green), g-gDLS* (red), sg-

gDLS* (cyan) are numerically stable because the errors are

similar to that of gDLS+++.

gDLS* is robust to noise in scale and gravity priors.

For this experiment, we gradually increase the noise in the

scale and gravity priors. In Fig. 4(a), we see that noise in

the scale prior slowly increases the rotation, translation, and

2215

Table 3. Rotation, translation, and scale errors of gP+s [48], gDLS [43], gDLS+++ [44], UPnP [22], and gDLS* using a unit scale (i.e.,

s0 = 1) and gravity priors. The first six rows show results for the TUM dataset, and the last six rows show results for the KITTI dataset.

The smallest errors are shown in bold. We observe that gDLS* and UPnP perform equivalently when comparing rotation and translation

errors. However, gDLS* produces the lowest errors among the pose-and-scale estimators (i.e., gP+s, gDLS, and gDLS+++).

Rigid Transformation [s0 = 1]

Rerror [deg] (10−1) terror (10−2) serror (10−3)

[48] [43] [44] [22] Ours [48] [43] [44] [22] Ours [48] [43] [44] Ours

Fr1 Desk 2.78 2.58 2.72 1.89 1.57 2.02 1.92 1.91 1.36 1.19 1.46 1.33 1.29 0.68

Fr1 Room 2.05 1.95 1.99 1.05 0.98 1.09 1.05 1.09 0.55 0.52 1.48 1.40 1.39 0.32

Fr2 LargeNoLoop 1.90 1.61 1.62 1.35 1.32 6.77 5.77 6.01 4.70 4.45 4.04 4.15 4.39 1.39

Fr1 Desk2 2.34 2.13 2.26 1.63 1.25 2.03 1.85 1.90 1.38 1.06 1.35 1.15 1.26 0.49

Fr2 Pioneer SLAM 1.50 1.51 1.47 0.76 0.87 1.29 1.18 1.19 0.59 0.70 2.77 2.73 2.67 0.87

Fr2 Pioneer SLAM 2 1.63 1.49 1.51 0.97 1.08 1.93 1.77 1.80 1.22 1.34 6.81 7.48 7.44 0.88

Drive 1 0.44 0.40 0.42 0.34 0.33 0.27 0.25 0.24 0.17 0.16 0.72 0.66 0.61 0.02

Drive 9 1.15 1.10 1.15 0.64 1.13 0.43 0.40 0.44 0.13 0.20 6.27 5.79 6.14 0.05

Drive 19 3.42 3.57 3.30 2.48 3.04 0.83 0.85 0.80 0.63 0.73 4.99 5.64 5.54 0.01

Drive 22 0.66 0.62 0.66 0.31 0.63 0.28 0.27 0.30 0.16 0.27 1.90 1.70 1.67 0.94

Drive 23 0.74 0.58 0.62 0.84 0.56 0.19 0.18 0.19 0.12 0.09 1.28 1.16 1.28 0.03

Drive 29 1.00 1.06 1.06 0.56 0.82 0.34 0.35 0.35 0.21 0.26 1.60 3.39 1.73 0.75

Table 4. Rotation, translation, and scale errors of gP+s [48], gDLS [43], gDLS+++ [44], and gDLS* using a scale prior of s0 = 2.5 and

gravity priors. The first six rows show results for the TUM dataset, and the last six rows show results for the KITTI dataset. The smallest

errors are shown in bold. We see that gDLS* produces the smallest errors in almost every case.

Similarity Transformation [s0 = 2.5]

Rerror [deg] (10−1) terror (10−2) serror

(

10−3
)

[48] [43] [44] Ours [48] [43] [44] Ours [48] [43] [44] Ours

Fr1 Desk 2.77 2.59 2.72 2.23 5.50 5.21 5.22 4.55 3.59 3.27 3.23 1.56

Fr1 Room 2.02 1.99 1.99 1.29 2.79 2.78 2.79 1.71 3.74 3.41 3.48 0.91

Fr2 LargeNoLoop 1.90 1.57 1.62 1.49 13.9 12.3 12.8 10.1 10.7 10.8 11.0 3.66

Fr1 Desk2 2.29 2.13 2.26 1.77 4.37 4.14 4.32 3.28 3.22 2.88 3.14 1.37

Fr2 Pioneer SLAM 1.43 1.48 1.47 1.17 3.67 3.44 3.50 2.42 6.98 6.81 6.68 1.65

Fr2 Pioneer SLAM 2 1.84 1.49 1.51 1.27 5.23 4.49 4.58 3.69 15.8 18.7 18.6 2.42

Drive 1 0.43 0.40 0.42 0.33 0.47 0.44 0.43 0.28 1.73 1.62 1.54 0.05

Drive 9 1.17 1.09 1.15 1.13 1.11 1.06 1.16 0.50 15.7 14.4 15.3 0.12

Drive 19 3.60 3.27 3.57 3.09 2.13 1.91 2.06 1.80 14.6 14.0 14.1 0.04

Drive 22 0.64 0.62 0.66 0.62 0.77 0.75 0.82 0.75 4.40 4.27 4.19 2.34

Drive 23 0.75 0.59 0.62 0.57 0.58 0.51 0.56 0.24 3.13 2.87 3.20 0.14

Drive 29 1.00 1.09 1.06 0.82 0.80 0.89 0.88 0.65 3.81 4.46 4.33 1.86

scale errors. Conversely, in Fig. 4(b), noise in the gravity

prior has little effect on the final accuracy. Lastly, Fig. 4(c)

shows that noise has a minimal effect on the solution time.

4.2. SLAM Trajectory Registration

The goal of this experiment is to measure the accuracy

of an estimated similarity transformation which registers a

SLAM trajectory (a collection of images from a moving

camera) to a pre-computed 3D reconstruction. This exper-

iment uses both scale and gravity priors for gDLS*. Part

of this experiment considers a unit-scale similarity transfor-

mation, which makes it equivalent to a rigid transformation.

In the latter case, the experiment also includes UPnP [22],

a state-of-the-art multi-camera pose estimator that only es-

timates a rigid transformation (i.e., no scale estimation).

For each dataset and method combination, we run 100
trials. Each estimator is wrapped in RANSAC [9] to esti-

mate the transformations and the same parameters are used

for all of the scale-and-pose experiments. RANSAC labels

correspondences with more than 4 pixels of reprojection er-

ror as outliers. Because we use RANSAC, all methods tend

to converge to accurate solutions (Tables 3 and 4); however,

the speed of convergence can differ significantly (Table 2).

While there exist datasets and clear methods to evalu-

ate visual-based localization or SfM reconstructions (e.g.,

[5, 38]), there is not a well established methodology to eval-

uate pose-and-scale estimators. Previous evaluation proce-

dures (e.g., [43, 44]) mostly show camera position errors,

but discard orientation and scale errors. To evaluate the reg-

istration of a SLAM trajectory, we propose a novel evalu-

ation procedure as illustrated in Fig. 5: (1) reconstruct the

trajectory using Theia-SfM; (2) remove a subset of images

with their corresponding 3D points and tracks to create a

new query set (the remaining images, points, and tracks are

2216

1 2 3

s
/

g
 Parameter Value

0.05

0.1

0.15

0.2

0.25

R
ot

at
io

n
E

rr
or

 [d
eg

]

1 2 3

s
/

g
 Parameter Value

10 -3

S
ca

le
 E

rr
or

3 1 2 3

s
/

g
 Parameter Value

0.005

0.01

0.015

0.02

T
ra

ns
la

tio
n

E
rr

or
 [m

]

(a) KITTI

1 2 3

s
/

g
 Parameter Value

0.16

0.18

0.2

R
ot

at
io

n
E

rr
or

 [d
eg

]

3 1 2 3

s
/

g
 Parameter Value

0.04

0.045

0.05

0.055

0.06

T
ra

ns
la

tio
n

E
rr

or
 [m

]

1 2 3

s
/

g
 Parameter Value

2

4

6

8

S
ca

le
 E

rr
or

10 -3

(b) TUM

Best Baseline s-gDLS* g-gDLS* sg-gDLS*

Figure 6. Average rotation, translation, and scale errors of the best baseline (best performing baseline for a given metric) and gDLS* as a

function of λs and λg on (a) KITTI and (b) TUM datasets. A gravity prior (g-gDLS*) tends to reduce rotation and translation errors and

modestly improves scale errors. A scale prior (s-gDLS*) tends to improve scale accuracy and modestly reduces translation errors. The

combination of scale and gravity priors (sg-gDLS*) tends to reduce translation and scale errors and improves rotation estimates (see (b)).

the reference reconstruction); (3) apply a similarity trans-

formation to describe the reconstruction in a different frame

of reference with a different scale; and (4) estimate the sim-

ilarity transformation. To compute the input 2D-3D corre-

spondences, the evaluation procedure matches the features

from the query images to the features of the reference re-

construction and geometrically verifies them. From these

matches and reconstruction, the procedure builds the 2D-

3D correspondences by first computing the rays pointing to

the corresponding 3D points using the camera positions.

The gravity prior significantly improves speed. Ta-

ble 2 shows the average estimation times for both rigid

(s0 = 1) and similarity (s0 = 2.5) transformations. We

observe that both priors help the estimators find the solu-

tion much faster than many baselines (see sg columns). In

particular, a gravity only prior (see g columns) can speed

up gDLS* significantly while producing good estimates

(see Sec. 4.3). On the other hand, a scale only prior (see

s columns) can modestly accelerate gDLS*.

Incorporating scale and rotation priors consistently

improves accuracy. Tables 3 and 4 present the average ro-

tation, translation, and scale errors of 100 trials, each es-

timating rigid and similarity transformations, respectively.

Both Tables show six TUM trajectories at the top and six

KITTI trajectories at the bottom. The scale priors s0 are

shown at the top of both Tables. Note that UPnP does not

estimate scales, so it is not included in similarity transfor-

mation sections. Table 3 shows that gDLS* and UPnP pro-

duce the most accurate rotation and translation estimates,

and that gDLS* produces the most accurate scale estimates.

Table 4 shows that gDLS* tends to produce the most accu-

rate rotation and translation estimates, and that gDLS* pro-

duces the most accurate scale estimates.

4.3. Ablation Study

This study aims to show the impact on the estimator ac-

curacy of the weights λs and λg as they vary. We use the

same TUM and KITTI datasets and RANSAC configuration

as in previous experiments. We vary the weights from 0.25
to 3 using increments of 0.25 and run 100 trials for each

weight. To summarize the results, we average the rotation,

translation, and scale errors.

The priors improve accuracy and speed when used

individually or together. Fig. 6 shows the results of this

study. We see that on average a gravity prior (g-gDLS*)

significantly improves rotation and translation errors, while

modestly improving scale errors. On the other hand, a scale

prior (s-gDLS*) on average significantly improves the scale

errors, while modestly improving translation errors. Finally,

both gravity and scale priors improve translation and scale

errors and can help the estimator improve rotation errors.

From these results, we can conclude that accurate priors

can greatly improve accuracy estimates (thereby also im-

proving speed). However, we know from Fig. 4 that noisy

priors can also degrade accuracy. Thus, for future work, we

will explore how to automatically set λs and λg based on

the noise of the priors to maximize accuracy and speed.

5. Conclusion

This work presents gDLS*, a novel pose-and-scale es-

timator that exploits scale and/or gravity priors to improve

accuracy and speed. gDLS* is based on a least-squares

re-projection error cost function which facilitates the use of

regularizers that impose prior knowledge about the solution

space. This gDLS* derivation is general because these reg-

ularizers are quadratic functions that can easily be added to

other least-squares-based estimators. Experiments on both

synthetic and real data show that gDLS* improves speed

and accuracy of the pose-and-scale estimates given suffi-

ciently accurate priors. The gravity prior is particularly ef-

fective, but the scale prior also improves the translation and

scale estimates. These findings make gDLS* an excellent

estimator for many applications where inertial sensors are

available such as AR, 3D mapping, and robotics.

Acknowledgment

Gang Hua was supported in part by the National Key

R&D Program of China Grant 2018AAA0101400 and

NSFC Grant 61629301.

2217

References

[1] Azure spatial anchors. https://azure.microsoft.com/en-

us/services/spatial-anchors/. 1

[2] Martin Bujnak, Zuzana Kukelova, and Tomas Pajdla. A gen-

eral solution to the p4p problem for camera with unknown

focal length. In Proc. of the IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), 2008. 1, 2

[3] Federico Camposeco, Andrea Cohen, Marc Pollefeys, and

Torsten Sattler. Hybrid camera pose estimation. In Proc. of

the IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), 2018. 1

[4] Chu-Song Chen and Wen-Yan Chang. Pose estimation for

generalized imaging device via solving non-perspective n

point problem. In Proc. of the IEEE International Confer-

ence on Robotics and Automation (ICRA), 2002. 2

[5] Joseph DeGol, Timothy Bretl, and Derek Hoiem. Improved

structure from motion using fiducial marker matching. In

Proc. of the European Conf. on Computer Vision (ECCV),

2018. 3, 7

[6] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-

slam: Large-scale direct monocular slam. In Proc. of the

European Conference on Computer Vision (ECCV), 2014. 1

[7] Luis Ferraz, Xavier Binefa, and Francesc Moreno-Noguer.

Very fast solution to the pnp problem with algebraic outlier

rejection. In Proc. of the IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), 2014. 1

[8] Luis Ferraz, Xavier Binefa, and Francesc Moreno-Noguer.

Very fast solution to the pnp problem with algebraic outlier

rejection. In Proc. of the IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), 2014. 2

[9] Martin A Fischler and Robert C Bolles. Random sample

consensus: a paradigm for model fitting with applications to

image analysis and automated cartography. Communications

of the ACM, 24(6):381–395, 1981. 7

[10] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel

Urtasun. Vision meets robotics: The kitti dataset. Intl. Jour-

nal of Robotics Research (IJRR), 2013. 2, 5

[11] Marcel Geppert, Peidong Liu, Zhaopeng Cui, Marc Polle-

feys, and Torsten Sattler. Efficient 2d-3d matching

for multi-camera visual localization. ArXiV preprint

arXiv:1809.06445, 2018. 1

[12] M. D. Grossberg and S. K. Nayar. A general imaging model

and a method for finding its parameters. In Proc. of the IEEE

Intl. Conf. on Computer Vision (ICCV), 2001. 1

[13] Richard Hartley, Jochen Trumpf, Yuchao Dai, and Hongdong

Li. Rotation averaging. Intl. Journal of Computer Vision

(IJCV), 103(3):267–305, 2013. 6

[14] Gim Hee Lee, Bo Li, Marc Pollefeys, and Friedrich Fraun-

dorfer. Minimal solutions for pose estimation of a multi-

camera system. In Robotics Research: The 16th Intl. Sympo-

sium ISRR, pages 521–538. Springer, 2016. 2

[15] Lionel Heng, Benjamin Choi, Zhaopeng Cui, Marcel Gep-

pert, Sixing Hu, Benson Kuan, Peidong Liu, Rang Nguyen,

Ye Chuan Yeo, Andreas Geiger, et al. Project autovi-

sion: Localization and 3d scene perception for an au-

tonomous vehicle with a multi-camera system. ArXiV

preprint arXiv:1809.05477, 2018. 1

[16] Joel A Hesch and Stergios I Roumeliotis. A direct least-

squares (DLS) method for PnP. In Proc. of the IEEE Intl.

Conf. on Computer Vision (ICCV), 2011. 1, 2, 3, 4, 5

[17] Du Q Huynh. Metrics for 3d rotations: Comparison and

analysis. Journal of Mathematical Imaging and Vision,

35(2):155–164, 2009. 6

[18] Eagle S Jones and Stefano Soatto. Visual-inertial navigation,

mapping and localization: A scalable real-time causal ap-

proach. The Intl. Journal of Robotics Research, 30(4):407–

430, 2011. 1

[19] Georg Klein and David Murray. Parallel tracking and map-

ping on a camera phone. In Proc. of the IEEE Intl. Sympo-

sium on Mixed and Augmented Reality (ISMAR), 2009. 1

[20] Laurent Kneip, Margarita Chli, and Roland Y Siegwart. Ro-

bust real-time visual odometry with a single camera and an

imu. In Proc. of the British Machine Vision Conference

(BMVC), 2011. 1

[21] Laurent Kneip, Paul Furgale, and Roland Siegwart. Using

multi-camera systems in robotics: Efficient solutions to the

npnp problem. In Proc. of the IEEE Intl. Conf. on Robotics

and Automation (ICRA), 2013. 1, 2

[22] Laurent Kneip, Hongdong Li, and Yongduek Seo. Upnp:

An optimal o(n) solution to the absolute pose problem with

universal applicability. In Proc. of the European Conf. on

Computer Vision (ECCV), 2014. 1, 2, 5, 6, 7

[23] Laurent Kneip, Davide Scaramuzza, and Roland Siegwart.

A novel parametrization of the perspective-three-point prob-

lem for a direct computation of absolute camera position and

orientation. In Proc. of the IEEE Conf. Computer Vision and

Pattern Recognition (CVPR), 2011. 1, 2

[24] Zuzana Kukelova, Martin Bujnak, and Tomas Pajdla. Auto-

matic generator of minimal problem solvers. In Proc. of the

European Conf. on Computer Vision (ECCV), 2008. 2

[25] Zuzana Kukelova, Martin Bujnak, and Tomas Pajdla.

Closed-form solutions to minimal absolute pose problems

with known vertical direction. In Proc. of the Asian Conf.

on Computer Vision (ACCV), 2010. 2

[26] Zuzana Kukelova, Martin Bujnak, and Tomas Pajdla. Real-

time solution to the absolute pose problem with unknown

radial distortion and focal length. In Proc. of the IEEE Intl.

Conf. on Computer Vision (ICCV), 2013. 1, 2

[27] Zuzana Kukelova, Jan Heller, and Andrew Fitzgibbon. Effi-

cient intersection of three quadrics and applications in com-

puter vision. In Proc. of the IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), 2016. 2

[28] Viktor Larsson, Magnus Oskarsson, Kalle Astrom, Alge

Wallis, Zuzana Kukelova, and Tomas Pajdla. Beyond grob-

ner bases: Basis selection for minimal solvers. In Proc. of

the IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), 2018. 2

[29] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua.

Epnp: An accurate o(n) solution to the pnp problem. Intl.

Journal of Computer Vision (IJCV), 81(2):155, 2009. 1, 2

[30] Jesse Levinson, Michael Montemerlo, and Sebastian Thrun.

Map-based precision vehicle localization in urban environ-

ments. In Robotics: Science and Systems, 2007. 1

[31] Yi Ma, Stefano Soatto, Jana Kosecka, and S Shankar Sastry.

An invitation to 3-d vision: from images to geometric models,

volume 26. Springer Science & Business Media, 2012. 1

2218

[32] Pierre Martin, Eric Marchand, Pascal Houlier, and Isabelle

Marchal. Mapping and re-localization for mobile augmented

reality. In Proc. of the IEEE Intl. Conf. on Image Processing

(ICIP), 2014. 1

[33] P. Miraldo and H. Araujo. A simple and robust solution to

the minimal general pose estimation. In Proc. of the IEEE In-

ternational Conference on Robotics and Automation (ICRA),

2014. 1

[34] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-

source slam system for monocular, stereo, and rgb-d cam-

eras. IEEE Transactions on Robotics, 33(5):1255–1262,

2017. 1

[35] David Nistér and Henrik Stewénius. A minimal solution to

the generalised 3-point pose problem. Journal of Mathemat-

ical Imaging and Vision, 27(1):67–79, 2007. 2

[36] Gabriel Nützi, Stephan Weiss, Davide Scaramuzza, and

Roland Siegwart. Fusion of imu and vision for absolute

scale estimation in monocular slam. Journal of Intelligent

& Robotic Systems, 2011. 3

[37] Robert Pless. Using many cameras as one. In Proc. of

the IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), 2003. 1

[38] Torsten Sattler, Will Maddern, Carl Toft, Akihiko Torii,

Lars Hammarstrand, Erik Stenborg, Daniel Safari, Masatoshi

Okutomi, Marc Pollefeys, Josef Sivic, et al. Benchmark-

ing 6dof outdoor visual localization in changing conditions.

In Proc. of the IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2018. 1, 7

[39] Dieter Schmalstieg and Tobias Hollerer. Augmented reality:

principles and practice. Addison-Wesley Professional, 2016.

1

[40] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-

mers. A benchmark for the evaluation of rgb-d slam sys-

tems. In Proc. of the Intl. Conf. on Intelligent Robot Systems

(IROS), 2012. 2, 5

[41] Chris Sweeney, John Flynn, Benjamin Nuernberger,

Matthew Turk, and Tobias Höllerer. Efficient computation of

absolute pose for gravity-aware augmented reality. In Proc.

of the IEEE Intl. Symposium on Mixed and Augmented Real-

ity (ISMAR), 2015. 1

[42] Chris Sweeney, John Flynn, and Matthew Turk. Solving for

relative pose with a partially known rotation is a quadratic

eigenvalue problem. In Proc. of the Intl. Conf. on 3D Vision

(3DV), 2014. 1

[43] Chris Sweeney, Victor Fragoso, Tobias Höllerer, and

Matthew Turk. gDLS: A scalable solution to the general-

ized pose and scale problem. In Proc. of the European Conf.

on Computer Vision (ECCV), 2014. 1, 2, 3, 4, 5, 6, 7

[44] Chris Sweeney, Victor Fragoso, Tobias Höllerer, and

Matthew Turk. Large scale sfm with the distributed camera

model. In Proc. of the IEEE Intl. Conf. on 3D Vision (3DV),

2016. 1, 2, 3, 4, 5, 6, 7

[45] Christopher Sweeney, Tobias Hollerer, and Matthew Turk.

Theia: A fast and scalable structure-from-motion library. In

Proc. of the ACM Intl. Conf. on Multimedia, 2015. 5

[46] K. Tsotsos, A. Chiuso, and S. Soatto. Robust inference for

visual-inertial sensor fusion. In Proc. of the Intl. Conference

on Robotics and Automation (ICRA). 2015. 1

[47] Jonathan Ventura, Clemens Arth, Gerhard Reitmayr, and Di-

eter Schmalstieg. Global localization from monocular slam

on a mobile phone. IEEE Transactions on Visualization and

Computer Graphics, 20(4):531–539, 2014. 1

[48] Jonathan Ventura, Clemens Arth, Gerhard Reitmayr, and Di-

eter Schmalstieg. A minimal solution to the generalized

pose-and-scale problem. In Proc. of the IEEE Conf. on Com-

puter Vision and Pattern Recognition (CVPR), 2014. 1, 2, 5,

6, 7

[49] Jonathan Ventura and Tobias Höllerer. Wide-area scene

mapping for mobile visual tracking. In Proc. of the IEEE

Intl. Symposium on Mixed and Augmented Reality (ISMAR),

2012. 1

[50] Stephan Weiss, Markus W Achtelik, Simon Lynen,

Michael C Achtelik, Laurent Kneip, Margarita Chli, and

Roland Siegwart. Monocular vision for long-term micro

aerial vehicle state estimation: A compendium. Journal of

Field Robotics, 30(5):803–831, 2013. 1

[51] Changchang Wu. P3. 5p: Pose estimation with unknown

focal length. In Proc. of the IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), 2015. 2

[52] Bernhard Zeisl, Torsten Sattler, and Marc Pollefeys. Cam-

era pose voting for large-scale image-based localization. In

Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV),

2015. 1

[53] Yinqiang Zheng, Yubin Kuang, Shigeki Sugimoto, Kalle As-

trom, and Masatoshi Okutomi. Revisiting the pnp problem:

A fast, general and optimal solution. In Proc. of the IEEE

Intl. Conf. on Computer Vision (ICCV), 2013. 1, 2

[54] Julius Ziegler, Henning Lategahn, Markus Schreiber,

Christoph G Keller, Carsten Knöppel, Jochen Hipp, Martin

Haueis, and Christoph Stiller. Video based localization for

bertha. In Proc. of the IEEE Intelligent Vehicles Symposium,

2014. 1

2219

