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Abstract

Nowadays, driven by the increasing concern on diet and

health, food computing has attracted enormous attention

from both industry and research community. One of the

most popular research topics in this domain is Food Re-

trieval, due to its profound influence on health-oriented ap-

plications. In this paper, we focus on the task of cross-modal

retrieval between food images and cooking recipes. We

present Modality-Consistent Embedding Network (MCEN)

that learns modality-invariant representations by projecting

images and texts to the same embedding space. To capture

the latent alignments between modalities, we incorporate

stochastic latent variables to explicitly exploit the interac-

tions between textual and visual features. Importantly, our

method learns the cross-modal alignments during training

but computes embeddings of different modalities indepen-

dently at inference time for the sake of efficiency. Exten-

sive experimental results clearly demonstrate that the pro-

posed MCEN outperforms all existing approaches on the

benchmark Recipe1M dataset and requires less computa-

tional cost.

1. Introduction

Food is the paramount necessity of human life. As the

saying goes, we are what we eat, food not only provides

energy for life activities, but also plays a significant role

in affecting human identity, social formation, history, and

culture inheritance [19]. In our daily life, food is intri-

cately linked to people’s convention, lifestyle, health and

social activities. Nowadays, with the development of Inter-

net and mobile applications, sharing recipes and food im-

ages on social platforms has become a widespread trend

[43]. Due to the massive amounts of data resource online,
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Figure 1. A comparison between prior work (a) and the pro-

posed MCEN (b). We learn modality-consistent embeddings by

capturing the interactions between images and recipes via latent

variables. The dotted lines represents that the joint information is

only used during training. At inference time, the embeddings are

computed independently.

food computing has become a popular field, inciting numer-

ous machine learning tasks such as ingredient recognition

[38, 23], food image retrieval [54] and recipe recommenda-

tion [53, 49]. Among the research topics, Image-to-Recipe

learning (im2recipe) is one of the most important problems

due to its profound influence on health-oriented applica-

tions [40]. For instance, food-health analysis applications

are required to predict detailed nutrition contents and calo-

rie information from food images, and a recipe-retrieval

system is a necessary solution on this scenario.

Im2recipe is a challenging task since it involves highly

variant foods images and expatiatory textual recipes. A typ-

ical recipe consists of a list of ingredients and cooking in-

structions which may not directly align with the appearance

of the corresponding food image. Typically, recent efforts

have formulated im2recipe as a cross-modal retrieval prob-

lem [48, 37, 6, 62], to align matching recipe-image pairs in a

shared latent space with retrieval learning approaches. Con-

cretely, prior work builds two independent networks to en-

code textual recipes (ingredients and cooking instructions)
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and food images into embeddings respectively. And the re-

trieval loss object is learned to gather matching pairs and

differentiate dissimilar items. Though existing methods are

expressive and powerful, there remain two major concerns.

1) Current systems encode images and texts with two differ-

ent networks independently. However, such independence

brings barriers between modalities, resulting in obstacles to

discover latent semantic alignments across modalities. Con-

sequently, such approaches thus could suffer from polyse-

mous instances [51]. 2) The recipe representations are ob-

tained based on fixed pre-trained skip-thought vectors [28],

leading to highly diversities between textual and image fea-

ture spaces.

To alleviate such limitations, we strive to take a step

towards capturing joint information of different modali-

ties and injecting the cross-modal alignments into the em-

bedding learning processes on both sides. We introduce

Modality-Consistent Embedding Network (MCEN) which

learns joint cross-modal representations for textual recipes

and dish images. The major idea is to exploit the inter-

actions between visual and textual features explicitly and

share the cross-modal information to the embedding spaces

of both modalities with stochastic latent variable models.

The stochastic variable is leveraged to capture the latent cor-

relations between modalities during training, while the em-

beddings can still be calculated independently at test time

for high efficiency and flexibility. Moreover, The random-

ness introduced by latent variables is also beneficial for han-

dling polysemous instances where one recipe corresponds

with multiple images.

In a nutshell, the main contribution of this work is

threefold:

• We propose a novel cross-modal retrieval framework

to obtain modality-consistent embeddings by explicitly

capturing the correlations between recipes and food

images with latent variables.

• We exploit the latent alignments during training with

cross-modal attention mechanism and replace it with

prior condition at inference time for efficiency.

• We propose a task-specific encoder for textual recipes

based on hierarchical attentions, which cannot only

adapt to the interaction with images, but also simplify

and accelerate the training and inference procedure.

We conduct experiments on the challenging benchmark

Recipe1M [48] and the results demonstrate that our model

significantly outperforms all state-of-the-art approaches on

the cross-modal recipe retrieval problem and requires less

computational overhead.

2. Related Work

Computational Cooking. Food and cooking are essen-

tial parts of human life, which are closely relevant to health

[53], social activities, bromatology, dietary therapy and

culture [19], etc., profoundly affecting the quality of life.

Therefore, research involving cooking recipes has drawn

considerable attention. Food and cooking provide rich at-

tributes on multiple channels, including both visual con-

tent (e.g., dish pictures) and texts (e.g., dish descriptions

and cooking instructions). Current literature leverages the

attributes in various ways. Typically, recent examples in

computer visions are food classification and recognition

[7, 34, 31, 61, 23], and retrieval of captions [14, 9], in-

gredients [8, 9] or recipe instructions [6, 48, 41, 42] ac-

cording to dish images, while researchers from natural lan-

guage processing community usually focus on such applica-

tions as recipe recommendation [53, 49], aligning instruc-

tions with video and speech [35], recipe texts generation

from flow graph [44], workflow generation from recipe texts

[58], cooking action tracking [4], recipe representation [36],

checklist recipe generation [24] and recipe-based question

answering [57, 36]. Moreover, there is also some work

using machine learning approaches to connect health with

food attributes, such as prediction of nutrient [29] or energy

[39], and healthy recipe recommendation [13, 53, 60]. All

these efforts contribute to the prosperity of food computa-

tion and understanding, bridging the gap between machine

learning applications and people’s daily life.

Recent introductions of large-scale food-related datasets

have further accelerated the research improvements on food

understanding. Considering the application purpose, the

datasets can be categorized into two groups: food recog-

nition [3, 38] and cross-modal recipe retrieval [48, 37, 41,

42, 7, 48]. We focus on recipe retrieval task in this paper,

aiming at retrieval relevant cooking recipes with respect to

the image query and vise versa. Typically, the datasets for

retrieval generally incorporate both food images and other

information such as ingredients, structured cooking instruc-

tions and flavor attributes. Among the datasets, Recipe1M

[48] is the most well curated large-scale dataset with pre-

processed English textual information and we evaluate the

effectiveness of our method on it in this paper.

Text-Image Retrieval. Our work is related to current ap-

proaches on multi-modal retrieval task, where the key prob-

lem is to measure the similarity between a text and an im-

age. The major challenge of this issue lies in the modality-

gap, which means that the feature spaces of different modal-

ities largely diverse from each other. Text-image retrieval

is at meeting point between computer vision and natural

language communities, attracting research attentions over

decades [32]. Traditional approaches formulate this issue

as either a language modeling task [27] or a correlation

maximization problems [46, 18] using canonical correla-

tion analysis (CCA) [21]. Recently, many efforts have been

made to build end-to-end retrieval systems leveraging deep
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learning methods [52, 1, 16, 59, 45]. Another avenue is to

improve the triplet loss with hard negative mining [50], such

as [17, 55, 15].

Despite of the progress, the above approaches encode

different modalities into independent feature spaces, suffer-

ing from modality gap between heterogenetic contents. To

address this issue, recent works incorporate attention mech-

anism to capture the latent alignment relationships between

words and different image regions [22, 30, 33, 56]. Though

expressive, these methods require massive computational

overhead during inference since the cross-modal attention

scores between a query and each item in the reference set

need to be calculated, limiting the scalability to large-scale

retrieval scenario. In this paper, we leverage latent vari-

ables to incorporate cross-modal attention mechanism into

retrieval tasks during training but maintain independent cal-

culations for different modalities respectively at inference

time.

Image-to-recipe is a newly proposed task and is formu-

lated as a cross-modal learning task by recent efforts [8, 48],

to retrieve the relevant recipes based on image queries. Fol-

lowing these settings, several inspiring methods have been

introduced to improve the retrieval performance by using

such techniques as additional textual feature [9], semantic

information [6] and adversarial learning [62, 54].

3. Modality-Consistent Embedding Network

3.1. Overview

In this section we introduce the methodology of the pro-

posed Modality-Consistent Embedding Network (MCEN).

Problem Formulation. The aim of the proposed frame-

work is to measure the similarity between food images and

the relevant textual recipes. Formally, denote {vi, ri}Ni=1

as a set of N image-recipe pairs where an image vi ∈ V

and a recipe ri ∈ R. The notations V and R denote the

visual and recipe spaces. It should be noted that one recipe

corresponding to multiple images is allowed. A recipe ri

consists of a set of ingredients Xing,i and a list of cook-

ing instructions Xins,i. An image vi contains the appear-

ance of a completed dish. Importantly, the ingredients

and cooking instructions of a recipe may not directly align

with the appearance of the matching image, which brings

additional heterogeneity challenge compared to traditional

cross-modal retrieval tasks.

Considering the information gap between modalities, we

set our target to learn the mapping functions from observed

data to the embedding distributions as V → Ev and R →
Er, where Ev ∈ R

d and Er ∈ R
d denote the distributions

of d-dimensional image embedding and recipe embedding

respectively, so that a picture is closer to the corresponding

recipe than any other image in the latent space.

Architecture. The architecture of MCEN is illustrated

in Figure 2. The system consists of three major mod-

ules: a recipe encoder, an image encoder and an embedding

learning component for modality-consistent space model-

ing. Through the training flow, the visual feature is ex-

tracted by feeding the food picture vi to the CNN-based

image encoder. Meanwhile, the high-level representations

of instructions and ingredients are obtained by hierarchical

attention-based RNN encoders. Then these representations

are then fed to cross-modal attention components to exploit

the interactions between images and texts. The cross-modal

correlations are then leveraged to estimate the posterior dis-

tributions of embeddings with neural variational inference

[26, 47]. With this method, we can discriminate training and

inference process so as to reduce cross-modal computation

at prediction time. To keep modality consistency, we align

the distributions of latent representations by minimizing the

KL-divergence of priors of different modalities. Finally, the

latent representations sampled from the posterior distribu-

tions are passed to feed-forward layers to obtain the final

embeddings of images and recipes respectively. The entire

model is trained end-to-end with retrieval learning object.

The major novelty of MCEN comes from the incorpora-

tion of cross-modal correlation modeling with latent vari-

ables. MCEN captures the latent alignment relationships

between images and texts during training while at infer-

ence time we do not require cross-modal attention since the

posterior distribution is replaced by the prior during test.

Though there exists prior work that focuses on modeling

correlations between modalities [30, 33], these approaches

come with high computation overhead since the alignment

score between a query and each reference instance needs

computing as many times as the size of reference set [51].

Conversely, MCEN obtains embeddings of different modal-

ities independently during inference, which significantly re-

duces the computational overhead. Moreover, almost all

prior methods require fixed pre-trained instruction vectors

for recipes while parameters for image encoding are up-

dated with respect to the retrieval object. The isomerism in

training process leads to a diversity between feature spaces

of images and recipes. In this work, the architecture of

MCEN recipe encoder is quite different from prior systems

and can be trained end-to-end from scratch.

3.2. Image Encoder

Given a food picture v, the image encoder is respon-

sible to extract the abstract features of the input. Differ-

ent from previous methods, we use the output of the last

residual block (res5c) of ResNet-50 [20] which consists of

7 × 7 = 49 columns of 2048 dimensional convolutional

outputs, denoted by Hv = (hv
1,h

v
2, · · · ,h

v
49, ). To obtain

the representation for the image hidden states, we propose

to use an attention layer, which estimates the importance of

each hidden vector. Since a dish image may contain multi-
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Figure 2. The architecture and training flow of MCEN. The red dotted lines denote that the cross-modal attention components only work

during training and are omitted at testing time. The system is comprised of three major components: a recipe encoder, an image encoder,

and a modality-consistent embedding component. The interaction between images and texts is captured with latent variables and shared by

both latent spaces.

ple objects that are not relevant to the recipe (i.e., forks and

flowers), the aim of attention model is to force the encoder

to focus more on regions that may contribute to the retrieval

object.

Formally, the image representation sv is calculated with

the weighted summation of convolutional states as:

sv =

49∑

i=1

αv
i h

v
i , (1)

where αv
i is the attention score at position i, representing

the importance of this region, calculated by:

αv
i = softmax(v⊤

v tanh(Wvqv +Uvh
v
i )), (2)

where Wv , Uv and vv are trainable matrices and vector. qv

is the attention query vector. Here, it is a trainable vector

initialized from scratch. For sake of writing convenience,

we call such attention layer as Attention Pooling and the

input annotations (Hv) as Attention Context.

3.3. Recipe Encoder

In the recipe branch, ingredients and instructions are en-

coded separately with similar networks. Since the ingre-

dients or instructions of a recipe usually comprise multi-

ple sentences, we use a hierarchical attention-based model

to extract textual features. Each instruction/ingredient is

first fed to a word-level bi-directional recurrent neural net-

work (bi-RNN) with gated recurrent unit (GRU) [10] and

the final word-level representations are calculated with at-

tention pooling mechanism (Equation 1-2) where the RNN

hidden states are used as the attention contexts. Denote

Hins = (hins
1 · · ·hins

m ) and Hing = (hing
1 · · ·hing

n ) as

the feature sequences of instructions and ingredients re-

spectively, where m and n are the numbers of instructions

and ingredients of a recipe, and each element hins
t /hing

is the abstract representation of an instruction/ingredient.

To model the correlations between instructions and ingre-

dients, we employ the attention-based RNN decoder [2],

which takes Hins as the sequential input and Hing as the

contexts respectively. The output of the RNN decoder is

denoted as Hc = (hc
1, · · · ,h

c
m) which contains the joint

information of both instructions and ingredients. Then, Hc,

Hins and Hing are fed to independent sentence-level bi-

RNNs and attention pooling layers to obtain the sentence-

level representations, denoted as sc, sins, and sing respec-

tively. The final feature representation of the recipe is ob-

tained by concatenating the three sentence representations

as:

sr = [sc⊤, sins
⊤
, sing

⊤
]⊤. (3)

3.4. Modality­Consistent Embedding

It is challenging to align feature representations of mul-

tiple modalities when the features are extracted with inde-

pendent networks. To alleviate this issue, we incorporate

latent variables to capture the interactions between modali-

ties. This method converts the embedding computation into

a generative process. Taking the image side for instance, the
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probability to generate a specific embedding ev for a given

image v is modeled as:

p(ev|v) = p(ev|zv,v)p(zv|v), (4)

where the latent vector zv is assumed to capture the corre-

lations between v and the corresponding recipe r. The pos-

terior of zv should hence be conditioned on both the recipe

r and image v, denoted as p(zv|v, r). The prior of latent

variables is usually formulated as a standard Gaussian dis-

tribution, which may reduce the effectiveness in generation

[11]. Here we propose to estimate the prior distribution with

a neural network model that jointly learns the prior knowl-

edge and excavates cross-modal alignments based on sin-

gle modality, denoted as p(zv|v). To simplify the genera-

tive process, both prior and posterior distributions for latent

variables are assumed to be Gaussian distributions. Con-

cretely, the generative story is as follows. We sample a la-

tent variable zv from the prior Gaussian distribution as:

zv|v ∼ N (µv, diag(σ
2
v)) (5)

µv = Wv
µs

v + bv
µ (6)

σv = softplus(Wv
σs

v + bv
σ), (7)

where Wv
µ, Wv

σ and bv
µ, bv

σ are weight matrices and bias.

Conditioned on the latent variable zv , we generate the final

image embedding as:

ev = fv(z
v), (8)

where fv is a mapping function implemented as a one-layer

neural network with tanh activation.

Estimation of Equation 4 can be challenging since the

distributions are intractable. We leverage neural variational

inference [26, 47] to optimize the evidence lowerbound

(ELBO) as:

Eq(zv|v,r)(log p(e
v|zv,v))−DKL(q(z

v|v, r)‖p(zv|v)),
(9)

where DKL(·) is the Kullback-Leibler divergence and

q(zv|v, r) is the approximate posterior, estimated as:

zv|v, r ∼ N (µ∗
v, diag(σ

∗
v
2)) (10)

µ
∗
v = Wv∗

µ sv∗ + bv∗
µ (11)

σ
∗
v = softplus(Wv∗

σ sv∗ + bv∗
σ ), (12)

where Wv∗
µ , Wv∗

σ and bv∗
µ , bv∗

σ are trainable matrices and

bias, which are independent from the prior model. The

cross-modal representation sv∗ is obtained with an atten-

tion pooling layer which takes the recipe representation sr

as the query vector and image region features Hv as the at-

tention contexts. The lowerbound of the likelihood can be

optimized by minimizing the triplet loss, formalized as:

Lv
ret = [s(eva, e

i
n)− s(eva, e

i
p) +m]+ (13)

where s(·) expresses the cosine similarity between two vec-

tors, and m is the margin of error. Subscripts p, n and a re-

fer to positive, negative and anchor of a triplet respectively.

Cases are similar on the recipe side and the distinction

lies in the calculation of cross-modal representation sr∗ for

posterior approximation q(zr|v, r). Here, we obtain sr∗

with the similar manner to sr (Equation 3) but replace the

original trainable query vector with the image feature si.

Formally, the final retrieval learning object is defined as:

Lret + αLKL, (14)

where Lret is the summation of the triplet losses for image-

to-recipe and recipe-to-image retrieval, and α is a trade-off

hyper-parameter. LKL is the summation of the KL diver-

gences on both sides:

LKL = DKL(q(z
v|v, r)‖p(zv|v))+

DKL(q(z
r|v, r)‖p(zr|r)).

(15)

Moreover, as discussed, we aim to align the distributions

of both modalities. For this end, we simply push the prior

embedding distributions of both modalities together by min-

imizing the following KL-divergence:

Lcos = DKL(p(z
v|v)‖p(zr|r)). (16)

3.5. Cross­Modal Reconstruction

Recent work [62, 54] has proved the effectiveness of re-

construction loss on cross-modal recipe retrieval, since it

encourages the embedding of one modality covers the cor-

responding information of the other modality. However,

such an approach introduces additional network parameters

to reconstruct the original images and recipes, which are too

cumbersome for training a retrieval system. In this work

we propose a much conciser method for cross-modal recon-

struction. Instead of recovering the entire information of

the original inputs, we only reconstruct the latent represen-

tations with the learned embeddings as:

sr
′

= fv
r (e

v), (17)

sv
′

= fv
v (e

r), (18)

where fv
r and fv

v are mapping functions, implemented as

two-layer neural networks. The formal reconstruction loss

is formulated as:

Lrec = P (sr
′

, sr) + P (sv
′

, sv), (19)

where P (·) computes Pearson’s correlation coefficient.

3.6. Training and Inference

The overall training object of MCEN is formulated as:

L = Lret + αLKL + βLcos + γLrec, (20)
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where α, β and γ are hyper-parameters which balance

the preference of different components. The entire model

can be trained end-to-end with the reparameterization trick

[26, 47]. During inference, the latent variables are fixed to

the expectation of prior distribution to stabilize the retrieval

performance.

4. Experiments

4.1. Settings

Dataset. The experiments are conducted on Recipe1M

benchmark [48], a large-scale collection for recipe retrieval,

including cooking instructions along with food images. The

dataset consists of over 1M textual recipes and around 900K

images. We use the same preprocessed samples provided

by [48] and we finally obtain 238,399 matching pairs of

recipes and images for training, 51,119 pairs for validation

and 51,303 pairs for test respectively. Moreover, it should

be noted that we do not incorporate the additional semantic

labels used by prior work [48, 6, 62], such as food-classes

and labels of commonly used ingredients.

Metrics. We utilize the same metrics as the prior work

[48, 6, 62]. Concretely, we compute median rank (MedR)

and recall rate at top K (R@K) on sampled subsets in the

test partition to evaluate the retrieval performance. The

sampling process is repeated for 10 times and the mean

scores are reported. MedR measures the median retrieval

rank position of true positives over all test samples, and

the ranking position starts from 1. R@K refers to the per-

centage of queries for which matching instances are ranked

among the top K results.

Implementation. For the image encoder, ResNet-50

[20] pretrained on ImageNet [12] is used as the initializa-

tion weight. On the recipes side, the dimension of all hid-

den states is set to 300. Different from prior work, we do

not use pretrained word embeddings. The entire recipe en-

coder is trained from scratch and the trainable parameters

are initialized uniformly between [−0.02, 0.02].

The dimension of final embeddings and all hidden states

for neural inference is 1024. The margin of error m is 0.3

and the hyper-parameters α, β, γ are set to 0.1, 0.002 and

0.008 respectively. The norm of gradient is clipped to be

between [−5, 5]. We employ Adam solver [25] with β1 =
0.9, β2 = 0.999 and ǫ = 10−8 as the optimizer and the

corresponding initial learning rate is set to 10−4. The model

is trained end-to-end with batch-size 32.

To train the model efficiently, we utilize two training

strategies. First, as it is observed by other work [5], the loss

for sequence modeling suffers from KL-divergence vanish-

ing. To address this issue, we initialize α as 10−4 and

gradually increase it to 0.1 as the training progress runs.

Moreover, incorporating two independent stochastic vari-

ables can reduce the convergence speed. We therefore lever-

age a stage-wise strategy. Specifically, we fix the latent rep-

resentation on the image side zr as the mean of prior µ
r

and focus on training the recipe part. Then we alternatively

train the posterior parameters on the image side after sev-

eral epochs. Finally, early stopping strategy is applied and

the model with best R@1 score on validation set is selected

for testing.

Comparison. The proposed MCEN is compared against

several SOTA approaches:

• CCA [21], the Canonical Correlation Analysis method.

The results are from [48].

• JE [48], a method to learn the joint embedding space

of images and texts with pairwise cosine loss. This

method also incorporates the classification task as a

regularization.

• ATTEN [9], a hierarchical attention model for cross-

modal recipe retrieval. This approach also incorporates

title information to extract recipe features.

• AdaMine [6], a two-level retrieval approach which in-

jects the semantic information into the triplet object.

• R2GAN [62], a GAN-based method which learns

cross-modal retrieval and multi-modal generation si-

multaneously.

• ACME [54], the state-of-the-art method on cross-

modal recipe retrieval task, which improves modality

alignment using multiple GAN components. In our ex-

periments, we use the released pre-trained model and

report the results on our sampled test set.

4.2. Main Results

The main results on cross-modal retrieval task are listed

in Table 1. Generally, the proposed MCEN consistently out-

performs all baselines with obvious margin across all eval-

uation metrics and test sets. On the 1K set, MCEN achieves

2.0 median rank, which matches the SOTA results. In terms

of R@K, MCEN achieves promising performance, beating

all baselines including the to-date best approach ACME

across all metrics on both image-to-recipe and recipe-to-

image tasks.

On the 10K setting, the performances of all models de-

crease significantly since the retrieval task becomes much

harder. As the size of subset increases, the gap between

MCEN and previous methods becomes larger. Compared

with the SOTA ACME method, our model achieves almost

30% improvements on MedR metric over both im2recipe

and recipe2im tasks, indicating the robustness of MCEN.

4.3. Ablation Studies

To evaluate the contributions of different components,

we conduct ablation study on several variants of architec-

tures detailedly. We depict the variants of MCEN in Figure

3. MCEN-vanilla (Figure 3 (b)) is the simplest architecture
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Size Methods
Image-to-Recipe Recipe-to-Image

MedR R@1 R@5 R@10 MedR R@1 R@5 R@10

1K

Random 500 0.1 0.5 1.0 500 0.1 0.5 1.0

CCA [48] 15.7 14.0 32.0 43.0 24.8 9.0 24.0 35.0

JE [48] 5.2 24.0 51.0 65.0 5.1 25.0 52.0 65.0

ATTEN [9] 4.6 25.6 53.7 66.9 4.6 25.7 53.9 67.1

AdaMine [6] 2.0 39.8 69.0 77.4 2.0 40.2 68.1 78.7

R2GAN [62] 2.0 39.1 71.0 81.7 2.0 40.6 72.6 83.3

ACME [54] 2.0 44.3 72.9 81.7 2.0 45.4 73.4 82.0

MCEN (ours) 2.0±0.0 48.2±0.9 75.8±1.1 83.6±0.9 1.9±0.3 48.4±1.0 76.1±0.9 83.7±1.1

10K

JE [48] 41.9 - - - 39.2 - - -

ATTEN [9] 39.8 7.2 19.2 27.6 38.1 7.0 19.4 27.8

AdaMine [6] 13.2 14.9 35.3 45.2 12.2 14.8 34.6 46.1

R2GAN [62] 13.9 13.5 33.5 44.9 12.6 14.2 35.0 46.8

ACME [54] 10.0 18.1 39.9 50.8 9.2 20.1 41.5 51.9

MCEN (ours) 7.2±0.4 20.3±0.3 43.3±0.3 54.4 ±0.2 6.6±0.5 21.4±0.3 44.3±0.3 55.2±0.3

Table 1. Retrieval Results of baselines. The cross-modal retrieval performance is evaluated with MedR (lower is better) and R@K (higher

is better). It should be noted that we do not incorporate pretraining embeddings and additional food-class labels which are utilized by prior

approaches.

which does not incorporate any latent variables. The final

embeddings er and ev are obtained by:

er = gr(s
r), (21)

ev = gv(s
v), (22)

where sr and sr are the output of recipe encoder (Equa-

tion 3) and image encoder (Equation 1) respectively. The

mappings gr and gv are implemented as two-layer neural

networks with tanh activations. We also propose two vari-

ant models which leverage latent variables on either image

(Figure 3 (c)) or recipe side (Figure 3 (d)). Besides, the

performance of MCEN without reconstruction component

(Equation 17-18) is also reported. For all variants derived

from MCEN, the modality-consistency loss (Equation 15)

is removed.

The retrieval results of different variant models on 1K

subset are listed in Table 2. Not surprisingly, MCEN out-

performs all variants with all evaluation metrics. It can be

observed that the performance of MCEN-vanilla is similar

to ACME (Table 1), indicating the effectiveness of the pro-

posed architecture of the recipe encoder. Moreover, an in-

teresting finding is that MCEN-image outperforms MCEN-

recipe. A possible reason could be that, compared with rig-

marole instructions, the relative semantic weights of differ-

ent regions in an image are easier to be exploited.

4.4. Analysis

Parameters and Speed. We list the numbers of param-

eters and speeds of different systems in Table 3. We can

observe that although the inference network on either side
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(a) MCEN (b) MCEN-vanilla

(c) MCEN-image (d) MCEN-recipe

Figure 3. Variants of architectures derived from MCEN.

introduces about 10.4M parameters, the additional parame-

ters do not significantly decrease the training and test speed.

Compared with the current SOTA ACME [54], MCEN con-

tains about 30% less parameters and generates cross-modal

embeddings with almost double speed, proving the high ef-

ficiency of the proposed architecture. The major reason for

the gap between MCEN and ACME is that ACME requires

additional overhead for adversarial learning.

Effectiveness of Cross-modal Attention. To better un-

derstand what has been learned by the cross-modal attention
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Methods
Image-to-Recipe Recipe-to-Image

R@1 R@5 R@10 R@1 R@5 R@10

MCEN-vanilla 44.5 72.3 80.7 44.9 72.8 80.9

MCEN-recipe 45.8 73.1 81.3 46.1 73.3 81.5

MCEN-image 47.6 75.1 83.0 47.8 75.4 83.3

MCEN w/o reconstruction 46.4 75.4 83.1 47.8 75.7 83.3

MCEN 48.2 75.8 83.6 48.4 76.1 83.7

Table 2. Ablation Study. The models are evaluated in terms of R@K with 1K subset.

Methods #Para
Speed

Train Test

AdaMine [6] 46.3M 117.8 197.9

R2GAN [62] 89.9M 30.3 195.4

ACME [54] 98.6M 30.7 111.7

MCEN-vanilla 48.9M 57.6 194.9

MCEN-recipe 59.3M 45.0 189.1

MCEN-image 59.3M 45.2 188.7

MCEN 69.6M 42.7 185.8

Table 3. Statistics of parameters, training and testing speed

(pairs/second). All models are evaluated with the same settings

on a single Titan XP GPU with batch-size 32. This comparison

could be unfair since all the baselines require additional computa-

tional overhead for pre-training skip-thought vectors.

components, we visualize the intermediate results with at-

tention. As shown in Figure 4, the attention model learns to

focus more on the valid regions containing food and ignore

the background. Consequently, the final image embeddings

are more constrained and not likely to be affected by noises

(i.e. fork and tablecloth) or polysemous instances.

On the recipe side, as shown in Figure 5, the attention

model learns to focus on ingredients which can be inter-

preted based on visual connections with the food images.

Taking the first sub-picture in Figure 5 for instance, the at-

tention model attaches highest weights to the three ingredi-

ents: steak, ketchup and baguettes, which make up nearly

the entire dish. These observations demonstrate that the

proposed MCEN learns to capture the semantic alignment

relationships between images and recipes.

5. Conclusion and Future Work

In this paper, we propose a Modality-Consistent Em-

bedding Network, namely MCEN, for cross-modal recipe

retrieval. The proposed model focuses on modeling the

interactions between food images and textual recipes dur-

ing training with latent variables. Concretely, the la-

tent variables are modeled based on cross-modal attention

mechanisms during training while the embeddings of dif-

ferent modalities are still calculated independently during

Figure 4. Attention map of sampled images. The darker color,

the higher attention score.
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Figure 5. Visualization of ingredient attention. The model fo-

cuses on important ingredients with high attention scores.

inference. We conduct experiments on the challenging

Recipe1M dataset and the evaluation results with differ-

ent metrics demonstrate the efficiency and effectiveness of

MCEN. In the future, we are interested in incorporating pre-

trained language models into cross-modals analysis tasks.
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[6] Micael Carvalho, Rémi Cadène, David Picard, Laure Soulier,

Nicolas Thome, and Matthieu Cord. Cross-modal retrieval

in the cooking context: Learning semantic text-image em-

beddings. In The 41st International ACM SIGIR Conference

on Research & Development in Information Retrieval, pages

35–44. ACM, 2018.

[7] Jingjing Chen and Chong-Wah Ngo. Deep-based ingredi-

ent recognition for cooking recipe retrieval. In Proceedings

of the 2016 ACM on Multimedia Conference, pages 32–41.

ACM, 2016.

[8] Jing-jing Chen, Chong-Wah Ngo, and Tat-Seng Chua. Cross-

modal recipe retrieval with rich food attributes. In Pro-

ceedings of the 2017 ACM on Multimedia Conference, pages

1771–1779. ACM, 2017.

[9] Jing-Jing Chen, Chong-Wah Ngo, Fu-Li Feng, and Tat-Seng

Chua. Deep understanding of cooking procedure for cross-

modal recipe retrieval. In 2018 ACM Multimedia Conference

on Multimedia Conference, pages 1020–1028. ACM, 2018.

[10] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre,
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