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Abstract

We present a novel representation for point clouds that

encapsulates the local characteristics of the underlying

structure. The key idea is to embed an implicit representa-

tion of the point cloud, namely the distance field, into neural

networks. One neural network is used to embed a portion

of the distance field around a point. The resulting network

weights are concatenated to be used as a representation of

the corresponding point cloud instance. To enable compar-

ison among the weights, Extreme Learning Machine (ELM)

is employed as the embedding network. Invariance to scale

and coordinate change can be achieved by introducing a

scale commutative activation layer to the ELM, and align-

ing the distance field into a canonical pose. Experimen-

tal results using our representation demonstrate that our

proposal is capable of similar or better classification and

segmentation performance compared to the state-of-the-art

point-based methods, while requiring less time for training.

1. Introduction

Analysis of unstructured point cloud data is one of the

central topics in computer vision, as 3-dimensional data of

various objects can now be easily captured through com-

mercial sensors. Point clouds play an important role in

key areas, such as autonomous driving and robotics, where

spatial information of the surrounding environment is criti-

cal [4, 31]. Point cloud data can also be interpreted as sets,

whose analysis is known to have various applications [48].

Unlike 2-dimensional images, 3-dimensional point

clouds are generally unordered, unstructured, and repre-

sented in an arbitrary coordinate system. Therefore, there

is no straightforward method to apply convolutional neu-

ral networks to point clouds, despite their recent success in

the analysis of 2D data. Many of the current methods at-

tempt to create a regular representation by converting point

clouds into voxel data or even rendered images. However, in

these cases, information of the original points is lost, mak-

ing such tasks as point-wise label assignment significantly

Implicit Representation Local Embedding via ELM Weights:

Shape Representation

Figure 1: Proposed representation. A specific type of a

neural network, Extreme Learning Machine, is responsible

for embedding a local portion of the implicit representation

around a point in the point cloud. The trainable weights β
from the ELMs, concatenated into a single matrix, are the

representation of the corresponding point cloud instance (in

this case: Stanford Bunny). The representation can be uti-

lized for tasks such as classification and segmentation.

more difficult. This fact necessitates a different approach to

producing a representation of 3D point clouds.

An ideal representation of point clouds should also be

robust to arbitrary changes of the origin location, orienta-

tion, and scale of the 3D coordinate system used to describe

point cloud data. Conventional methods for 3D point cloud

data analysis generally attempt to obtain such representa-

tion through data augmentation by applying various trans-

formations and adding perturbations to the training data.

We propose a novel representation of points clouds that

encapsulates the local information around points clouds,

and addresses such issues as robustness to coordinate sys-

tem change, scaling, and permutation. As shown in Fig. 1,

the key idea is to embed an implicit function of one

point cloud instance into multiple neural networks, whose

weights are used as the feature of the point cloud instance.

We firstly convert each point cloud into an implicit func-

tion, the distance field. We acquire the distance field of each

instance using a sphere of fixed sampling points, which we

call a sampling sphere. We place one sphere on top of each
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point in the point cloud to acquire the distance field.

We then embed the distance field within each sampling

sphere in a neural network to make the implicit representa-

tion invariant to sampling point permutation. One network

is responsible for representing the distance field within one

sampling sphere. The weights from all the networks are

concatenated into a matrix to be used as the representation

of the corresponding point cloud instance. We enable com-

parison among the network weights from each instance by

employing a specific type of neural network for embedding

distance fields: Extreme Learning Machine (ELM).

The representation, consisting of weights obtained from

local embedding networks, can be made invariant to coor-

dinate change and scaling by altering the network compo-

nents and aligning the distance fields. Scale invariance is

achieved by using ReLU activation layer in each ELM, and

coordinate invariance by using the canonical coordinates of

the sampling points, obtained through aligning the distance

field to the canonical space determined by the distribution

of the distance values unique to each instance.

The major contribution of the representation is that it

provides a simple method to capture local details. The ex-

periments demonstrate that our method can provide state-

of-the-art accuracy, in classification and segmentation, and

is robust against perturbations such as rotation and scaling.

Our representation required only simple neural networks to

conduct these tasks, leading to reduction in training time.

2. Related Work

With the advances in deep learning techniques and more

datasets [35, 2] starting to become available to the public,

analysis of point clouds has developed into an important

tasks in the field of computer vision. There are various top-

ics in which 3D information is utilized, including shape re-

trieval [39], correspondence [41] and registration [37].

Methods on point cloud data analysis mainly focus on

finding a representation that can be used to train neu-

ral networks to extract characteristic information regarding

point clouds. Current approaches can be categorized into 2
classes: Grid-based methods [47, 23, 42, 13, 8] and Point-

based methods [27, 15, 18, 20, 49]. Aside from the two

classes, there are also attempts to combine different repre-

sentations [28], and approaches [45, 1] that embed shapes

into a latent space using generative networks [10, 14].

Grid-based methods attempt to convert point clouds into

regular structures to allow convolution of local informa-

tion. Voxel-based methods [47, 23] convert point clouds

into voxel data. As the voxels are ordered and structured,

convolution can be conducted simply by applying 3D filters.

However, accuracy of these methods depend heavily on the

resolution of voxels. Despite the recent efforts to make

volumetric approach more efficient [30, 7, 16], these meth-

ods are known to be computationally demanding with larger

number of voxels. Image-based methods [36, 42, 13] con-

vert points clouds into 2D renderings and use 2D convolu-

tional neural networks to conduct various analyses. Image-

based methods are known to be highly successful at shape

classification task, as they utilize external pre-trained mod-

els, usually trained using various 2D image datasets. How-

ever, these methods cannot be applied to tasks such as seg-

mentation, where labels need to be assigned to individual

points. The grid-based representations are also covariant

to coordinate change, and require data from multiple view-

points. Some methods convert geometric data to 2D planar

data [34, 32]. These methods require the direction of grav-

ity, which is not necessarily available. Our representation

does not require such supervision, as we achieve rotational

invariance by projection to the canonical pose.

Point-based methods attempt to directly use the coordi-

nates of the points. PointNet [27] proposed to feed point

cloud data directly into a neural network. The method

avoids the issue of point permutation by applying a symmet-

ric function in higher dimensional space to obtain a global

feature. This proposal has led to a new trend of methods

directly operating on points [29, 20]. As PointNet produces

a global signature for the entire point cloud, recent methods

propose strategies to acquire local information from point

clouds. Various methods introduce structures, such as k-d

trees and graphs, to capture the local relationship among

unstructured points [15, 43, 33, 44, 17]. Other methods

propose novel strategies for convolution to gather informa-

tion from the neighboring points [46, 49, 22, 19, 40]. There

are also attempts to introduce various local signatures, such

as distance to neighboring points and angle between local

surface normals, and use them to represent point clouds

[5, 6, 50, 21]. Our method shares the same philosophy of

incorporating local information surrounding point clouds.

We capture the distance field around each point, and encap-

sulate it in a fixed-size vector using a neural network.

Recently, there have been proposals to design unsuper-

vised representations of the point clouds before conducting

analyses [9]. Li et al. [18] proposed to first conduct unsu-

pervised learning on each point cloud instance by creating a

self-organizing map and identifying a set of nodes unique to

each individual. The node information as well as the neigh-

borhood information is used to train a deep neural network.

Our method also conducts preprocessing to learn a repre-

sentation for each instance in an unsupervised manner. We

design our embedding strategy to capture the implicit repre-

sentation around the objects points. The proposed method

is also designed to achieve invariance to important elements

such as scaling, point permutation, and coordinate change.

Recent methods use neural networks to embed implicit

representation of shapes for modeling purposes [24, 3].

Park et al. [26] use distance field obtained from a set of sam-

pling points to train an auto-decoder, which returns a latent
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Figure 2: Implicit representation: Distance field Φ. Darker

colors indicate larger distance. Sampling sphere (black cir-

cle in 2D) is placed over each surface point (blue).

vector corresponding to the provided distance field. The la-

tent vector, along with the sampling coordinates is used to

train a deep neural network to learn the distance field of

various shapes. Instead of using an auto-decoder to obtain

a signature for a given distance field, we propose to use the

weights of the neural network as the representation. Our

method achieves invariance to sampling point permutation,

as well as invariance to scaling of coordinate values.

3. Proposed Method

We propose a novel method that overcomes the difficulty

of creating a representation for unstructured point clouds.

Our method consists of two steps: Conversion of point

cloud data into an implicit representation, the distance field,

and network embedding of the implicit representation.

3.1. Implicit Representation: Distance Field

There are two reasons behind choosing the distance field

as the representation. The first is that it achieves invariance

to point permutation. The same set of points results in the

same distance field, regardless of the point order. The sec-

ond reason, which is the key to our method, is that distance

is scale-covariant. When the coordinate values are scaled,

the distance is also scaled by the same factor. This is critical

for achieving scale invariance for embedding distances into

a neural network with scale commutative property.

Given a point cloud P consisting of n surface points

p ∈ R
3, the distance function φ at a sampling point in the

surrounding space x ∈ X is defined as

φ(x) = min
p∈P

‖x− p‖ . (1)

In practice, we prepare what we call a sampling sphere

on top of each surface point in the point cloud P as shown in

Fig. 2. The sampling sphere consists of m sampling points

x distributed within the sphere. In this method, the location

fixed weights trainable weights

Figure 3: Embedding Neural Network: Extreme Learning

Machine. The distance field Φ for the i-th point is embed-

ded in the ELM.

of the m sampling points x are identical among sampling

spheres of all the point cloud instances. The coordinates of

the sampling points in each sphere are normalized, with the

corresponding surface point p as the center of each sphere.

Therefore, the distance within the normalized sphere i is

φPi
(x) = min

p̃
‖xi − p̃‖ . (2)

where p̃ = p − pi is the normalized coordinates of the

surface points centered at the i-th point pi.

The distance field, as is, is covariant to coordinate

change. When sampling spheres and the target shape is ro-

tated, the coordinates of the sampling points change and but

the distance field inside the sphere remains the same.

We define the radius of each sampling sphere to be rela-

tive to the radius of the sphere encapsulating the entire point

cloud. If the underlying shape is either partial or open, we

define the radius of the sampling spheres to be the average

distance from each point to its k-th nearest point, assuming

that the density of points are even among all point clouds.

3.2. Parameterization of Implicit Representation

The distance field from each sampling sphere is then em-

bedded into a neural network so that its weights capture the

characteristics of the distances within each sampling sphere.

For each surface point p, we train one neural network to

capture the characteristics of the distance field around it.

A regular neural network has numerous possibilities

of weight combinations, as both the input-to-hidden-layer

weights W and the corresponding hidden-to-output-layer

weights β are simultaneously optimized during training.

To enable comparison between the neural network weights,

they have to be embedded in the same metric space. We,

therefore, employ a specific type of a neural network,

namely an Extreme Learning Machine (ELM) [12].

In this method, we employ a simple 3-layer ELM. An

ELM is a feed forward neural network whose input-to-
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common

calculation: 1

unique

calculation: 1 per sphere

Figure 4: Efficient embedding strategy. As the points in

the sampling sphere are normalized with respect to the cen-

ter, the pseudoinverse H† = f(WX)† has to be calculated

only once. This matrix is multiplied by the distance values

obtained from the sampling sphere around each point, pro-

viding us with a unique weight β for each sampling sphere

without repetitive calculation of the pseudoinverse.

hidden-layer weights are fixed W, as shown in Fig. 3. The

input to the ELM is the sampling points X ∈ R
m×3 in each

sampling sphere centered around a surface point. We train

the ELM to return ΦPi
(X), the distance from the sampling

points to the closest point in the point cloud P . The objec-

tive function of ELM is

β∗
i
=β

i
‖ΦPi

(X)− β⊤
i
f(WX⊤ + b)‖2

F
, (3)

where βi ∈ R
k is the network weights, f is a non-linear

activation function, W ∈ R
k×3 is the random weight, and

b ∈ R
k is the random bias. To obtain the weights β so that

the network output matches the target ΦPi
(X), we simply

need to solve for the pseudoinverse of H = f(WX+b) to

obtain β∗ = H†ΦP(X), or more robustly, obtain

β∗
i
= (cI+H⊤H)−1H⊤ΦPi

(X) , (4)

where, c is a constraint added to the diagonal elements of

H⊤H. To reflect the scale, we set c as the variance of the

sampling points X. By definition, we are able to obtain a

unique solution β∗ regardless of the permutation of X.

We fix W of all ELMs to a common orthogonalized ran-

dom matrix, as proposed in a prior work [12]. The weights

β are determined by the distance field values. We will ex-

ploit this characteristic of ELMs to provide a unique set of

weights β for each sampling sphere.

3.2.1 Fixing W

We have two purposes behind fixing the input-to-hidden-

layer weights W. The first can be observed from the formu-

lation of ELM. ELM obtains the output value by calculating

Figure 5: Coordinate invariant representation. The original

points, which can be considered as the 0-level set of the

distance field, are shown. Despite randomly rotating the

original model, our method aligns the distance fields.

β⊤f(WX⊤+b), which is the inner product between a vec-

tor f(WX⊤ + b) and the trainable weight β. Fixing W is

equivalent to introducing the Euclidean metric to the metric

space of β. Without defining the inner product, trainable

weights β obtained from ELMs cannot be easily compared.

The second purpose is efficiency. We can make the train-

ing process significantly efficient by taking advantage of

the structure of sampling spheres, using the fact that the

sampling points in all the spheres are identical and nor-

malized. Generally, calculation of trainable weights β re-

quires the pseudoinverse H† = (cI + H⊤H)−1H⊤ to be

calculated as many times as the number of the sampling

spheres n. However, as mentioned previously, we use the

same set of normalized sampling points to capture the local

distance field within each sphere. Therefore, we can define

H = f(WX + b) to be the same for all sampling points.

This means that the pseudoinverse H† only has to be cal-

culated once throughout the dataset, as shown in Fig 4. To

obtain the weights β of all the sampling spheres simultane-

ously, we concatenate all the distance fields obtained by the

sampling spheres into a single matrix, so that

β∗ = (cI+H⊤H)−1H⊤ΦP(X) , (5)

where ΦP(X) ∈ R
m×n and β∗ ∈ R

k×n are matrices

whose i-th columns contain the distances and the resulting

ELM weights from the i-th sampling sphere, respectively.

3.3. Achieving Coordinate and Scale Invariance

We can design the ELM weights β to be invariant to co-

ordinate values and scale. The invariance is achieved by

modifying the input to the embedding ELM, and by select-

ing a specific activation layer for the ELM.

3.3.1 Coordinate Invariance: Canonical Projection

We project the distance field onto a 4-dimensional canoni-

cal space to achieve invariance to rotation. We introduce a
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Figure 6: Network architecture for the proposed representation. The ELM weights containing local distance field information

are used as input to train a global feature vector. The feature is fed into subsequent networks to conduct analysis. In the

segmentation task, we concatenate the global feature with the original ELM weights corresponding to each point.

sampling matrix X =
[

x1, x2, · · · ,xm

]⊤
∈ R

m×3

and the corresponding sampled distance vector ΦP(X) =
[

φ(x1), φ(x2), · · · , φ(xm)
]⊤

∈ R
m and concatenate

them into a matrix M =
[

X ΦP(X)
]

. We then apply

singular value decomposition (SVD) on M to obtain

M = USV⊤ . (6)

As the results from SVD may contain sign ambiguity,

we propose to transform the data using all the possible sign

permutations. Given an input data, we prepare a vector c

consisting of 1 and −1. We apply the signs to V⊤ so that

V̄⊤ = V⊤C , (7)

where C is a diagonal matrix with c as its elements.

As can be seen by modifying eq. 6 to M̄ = MV̄, V̄ is

the projection of the data matrix to a 4-dimensional canon-

ical space. The projection allows the distance field to be

aligned to a unique pose in the 4D space based on the vari-

ance of the distance field, as can be seen in Fig. 5 demon-

strates the effect of applying V̄. We will demonstrate the

robustness to surface point density in the experiments.

The representation in the canonical space is now invari-

ant to rotation up to ambiguity of sign of V. We resolve

this ambiguity by preparing all the variations from possible

sign permutations. The input to the ELM is X̄ = XV̄X,

the coordinates of the sampling points in the 4D canonical

space. V̄X ∈ R
3×4 is the first three rows of V̄. The ELM is

trained to return the distance vector ΦP(X) corresponding

to the sampling points. The elements of the distance vector

is removed from the input to avoid trivial solutions.

To efficiently solve for V̄X, we place a global sphere

surrounding the entire point cloud instance. The distance

values within the sphere is used to align each instance to a

unique pose. The global sphere is solely used to align the

global distance field. After alignment, sampling spheres are

placed on surface points to acquire the local distance fields.

3.3.2 Scale Invariance: ReLU Activation Function

We achieve scale invariance by taking advantage of the

scale commutative property of the rectified linear unit

(ReLU) [25]. We adopt it as the activation function f of

the ELM and remove the bias term from eq. (3). The modi-

fied embedding ELM is now denoted as

β∗ =β ‖ΦP(X)− β⊤f(WX̄b)‖
2
F
, (8)

where X̄b ∈ R
m×(4+1) is X̄ with an additional column.

The extra column is the bias scaled by the standard devia-

tion of all the values in X̄. In this process, we have removed

the bias term and inserted it into the input matrix.

To prove the scale invariance, we consider the case of ap-

plying a scaling factor s to the input X̄b. The output ΦP(X)
is also scaled due to the property of distance. Therefore, eq.

(8) is modified to

sΦP(X) ≈ β∗⊤f(WsX̄b) . (9)

As ReLU lets through positive values, the scaling factor s
can be moved outside the activation function:

sΦP(X) ≈ sβ∗⊤f(WX̄b) . (10)

The scaling factor s cancels each other out, leaving the net-

work weights β unchanged. This allows our modified ver-

sion of ELM to be invariant to scaling of the point clouds.

Variants of ReLU, such as LeakyReLU, also preserves this

quality, and can be used as the activation function.

4. Experiments

Our method is implemented with Keras, and all the cal-

culations were executed on an Intel(R) Xeon(R) Silver 4114

CPU @ 2.20GHz computer with NVIDIA V100 graphics

card. We utilized the graphics card to accelerate multipli-

cation of the matrices involved in distance calculation. We
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used a network configuration similar to PointNet [27], as

shown in Fig 6. Feature learning network contains 4 shared

fully connected layers (1024 nodes). Batch normalization

and ReLU are applied after each layer. Batch size is 16.

4.1. Classification Accuracy

We firstly use the proposed representation to classify

the benchmark dataset ModelNet 10/40 [47]. To make the

comparison with other methods fair, we first normalize the

CAD models in the dataset by setting them to zero-mean,

encapsulating the models in a unit sphere, and then uni-

formly sample over the model surface, as conducted in prior

work [27]. 2048 surface points are sampled. The direction

of gravity is known in this dataset. For comparison to other

methods, we also use the original point cloud data before

the proposed projection for calculation of distance fields.

We prepared 2048 sampling spheres, equivalent to the

number of the surface points, and trained one ELM per each

sphere to parameterize each instance in the dataset, and con-

verted all the data in the training and testing set to ELM

weights. These are used as features representing each in-

dividual shape. The fixed random weights are orthogonal-

ized, as conducted in [38], to improve the result of regres-

sion. MLP with 3 hidden layers (512, 256, 128 nodes) with

dropout (0.4 keep rate) is used as the classification network.

Table 1 shows the classification accuracy on both Model-

Net 10 and ModelNet 40 dataset. We compared our results

to some of the state-of-the-art methods. The top half of the

table shows the results from methods that rely on the ren-

derings of meshed data of the point clouds. These methods

generally conduct pretraining using external datasets. The

results of these methods, therefore, cannot be directly com-

pared with point-based methods. The bottom half of the

table shows the point-based methods. Our representation

achieves the best results on ModelNet 10 and achieves sec-

ond best on ModelNet 40. The best results were achieved

using m = 1024 sampling points, embedding ELMs with

dimension of k = 256, and sampling spheres with radius

of 0.3. Similar to other methods, concatenating the nor-

mals and point coordinate information improved the classi-

fication result using our representation.However, the scale

invariance is lost, as point coordinates vary with scaling,

while our representation does not. Using the average dis-

tance to k-nearest neighbor (k = 256) as the sampling

sphere radius achieved similar results: 96.2% and 93.2%
for ModelNet 10 and 40 respectively.

Interestingly, adding noise to our representation, a com-

mon data augmentation practice, resulted in a lower accu-

racy. This is because the embedding using ELM already

contains some margin of error, which is essentially equiva-

1The method applies various transformation during testing phase to

conduct voting. Other methods do not explicitly conduct this operation,

therefore, excluded the results achieved using this voting scheme.

Classification Accuracy (%)

Method Pretrain Data MN 10 MN 40

MV [36]

Yes Img

- 90.1

Dom. [42] - 93.8

VIP [11] 94.1 92.0

RotNet [13] 98.5 97.4

Voxel [47]

None Pt+N

83.5 77.0

Auth. [34] 88.4 83.9

Kdtree [15] 94.0 91.8

PNet++ [29] - 91.9

SONET [18] 95.7 93.4

Pt2Sq [20] 95.3 92.6

PConv [46] - 92.5

KPConv [40] - 92.9

RSCNN [21]1 - 92.9

ShellNet [49] - 93.1

Ours None Weights 95.7 92.2

Ours None W+Pt+N 96.7 93.2

Table 1: Comparison of results on ModelNet 10 and 40.

Our method performs better than most of the state of the art

methods with just one representation per instance.

lent to adding noise directly to the original point cloud data.

4.2. Effects of Elements Pertaining to Embedding

To observe the effect of each element to the descriptive-

ness of the resulting representation, we alter the dimension

k of ELM weight W, the radius of the sampling spheres,

and the number m of sampling points within each sphere. In

each experiment, we fixed two of the elements and changed

the third one to see the change in classification accuracy.

Fig. 7 are the results from the experiment observing the

effect of each element for ModelNet 10 and ModelNet 40
datasets. The averages and standard deviations of 10 evalu-

ations from each combination are used in the plot. As can

be seen from the results, the classification accuracy is low

when all the elements are set too low, which was expected.

However, as the elements are set to higher values, the accu-

racy reaches a peak before showing slight regression in ac-

curacy. More information is involved in the embedding, and

ELMs with small number of nodes cannot fully encapsulate

the details that the surrounding distance fields present.

We also note that, theoretically, setting all the elements

to a much larger value would result in a finer representa-

tion around each surface point, leading to improvement in

classification accuracy. However, the size of the data would

grow exponentially, requiring heavy memory usage. In this

experiment, we set the upper threshold to each of the ele-

ments to keep the proposed representation compact.

While most point classification methods rely on deep
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Figure 7: Classification accuracy (%) change under different settings. (7a) Effect of dimension k of ELM weight. (7b) Effect

of sampling sphere radius. (7c) Effect of samplings points in each sphere.

Classification Accuracy (%)

points (n)

2048 1024 512 256

ModelNet 10 96.7 95.9 94.3 93.5

ModelNet 40 93.2 92.7 91.1 90.1

Table 2: Classification accuracy after changing number of

original point cloud points n.

Classification Accuracy (%)

Maximum Angle

0 π

4
π

2
3
4π π π

4 sc.

P++ [29] 91.9 36.4 40.5 41.1 44.3 44.2

SNet [18] 93.4 84.5 77.4 79.0 69.4 77.1

Ours 93.2 85.8 84.9 82.6 81.8 83.9

Table 3: Comparison of classification results on ModelNet

40 after perturbation on test data.

neural network structures, our classification network is rel-

atively simple, requiring shorter time for training. For clas-

sification of ModelNet 40 dataset with 512 sample points in

each sampling sphere, and with the dimension of the ELM

weights set to k = 256, the proposed method requires ap-

proximately 110 minutes for training the neural network,

compared to approximately 180 minutes for SO-Net, the

most efficient method introduced in this paper.

4.3. Robustness to Number of Surface Points

To observe the robustness of the proposed implicit repre-

sentation to number of points in the point clouds, we sam-

pled a subset of points from the point clouds before cal-

culating the distance field and used it to train ELMs in the

proposed method. We prepared a sampling sphere over each

point in the point set, each containing 1024 sampling points

within the radius of 0.3, and embedded it in a ELM with

k = 256. We used the same classification network to ob-

tain the results. As can be seen from the results in Table 2,

the method can classify instances relatively accurately. This

can be attributed to the fact that the implicit representation,

distance field, is robust to the density of the original point

cloud. The results demonstrate that our representation takes

full advantage of the robustness.

4.4. Effect of Canonical Embedding

To demonstrate the invariance to various factors such as

coordinate change and scale, we test the accuracy of the

proposed method when test data is transformed and scaled.

This is common in real life situations, as not all objects are

upright on the tabletop. We apply random rotation along all

three axes and scaling to the test data and observe the effects

on the classification accuracy. To make the comparison fair,

we did not conduct data augmentation on the training data

for any of the methods. Here, we compared our method to

representative point-based methods, PointNet++ [29] and

SO-Net [18], based on the codes made publicly available.

We selected these methods, due to the fact that the calcu-

lation efficiency of our method and these methods are rela-

tively high compared to other point-based methods.

To compare the variance of each representation, we

firstly applied random rotation to the test data to observe

whether the learnt model can be used to classify rotated

data. Table 3 shows the classification accuracy of the three

methods after applying random rotation to test data with

limits to the maximum angles. The numbers indicate the

median values from 10 attempts. When random rotation is

applied to all three axes of rotation, Prior methods start to

underperform with more rotation. Our method, in contrast,

outperforms others even after large amount of rotation is ap-

plied. This demonstrates that our representation is aligned

in the canonical space, and is only slightly perturbed by

sampling noise caused by the rotation. Augmenting train-

ing data by applying random rotation only slightly improves

the results of prior methods, as there are endless possible
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Intersection over Union (IoU)

mean air bag cap car chair ear. guit. kni. lam. lap. mot. mug pist. rock. ska. tab.

P [27] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

P++ [29] 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

Kd [15] 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3

SO [18] 84.9 82.8 77.8 88.0 77.3 90.6 73.5 90.7 83.9 82.8 94.8 69.1 94.2 80.9 53.1 72.9 83.0

Ours 85.2 84.0 80.4 88.0 80.2 90.7 77.5 91.2 86.4 82.6 95.5 70.0 93.9 84.1 55.6 75.6 82.1

Table 4: ShapeNetPart segmentation results from methods using PointNet based architecture.

Figure 8: Visualization of segmentation results using our

representation. Top: Ground truth. Bottom: Our results.

poses that shapes can take. This fact suggest much more

data augmentation would be required for other point-based

methods to handle all the possible rotational perturbations.

The last column compares the classification accuracy after

rotational and scale perturbation. Rotation with maximal

angle of π/4 and scaling of 0.5 is applied to all the point

cloud coordinates. The results from other methods further

degrade, while our method maintains an accuracy of 83.9%.

4.5. Point Cloud Segmentation

We also verify the descriptiveness of the proposed repre-

sentation through segmentation of point cloud data based on

per-point labels. We use the ShapeNetCore Part dataset for

the experiment. The dataset consists of 12145 training data

and 2873 test data, consisting of 16 classes and 50 labeled

parts. For fair comparison, we follow the protocol indicated

in prior works, such as PointNet++ [29] and SO-Net [18].

We place the sampling sphere on top of each point in

the same manner as in classification process. The param-

eter from the ELM is used as the local representation of

the corresponding point. As shown in Fig. 6, we concate-

nate the local ELM weights and the intermediate global fea-

ture obtained from pooling the output of the first section of

the segmentation network. We also use the normals and

the original point coordinates along with the concatenated

representation and to classify each point. The setting for

factors, such as the number of sampling points, ELM di-

mension, and sampling sphere radius, are inherited from the

classification experiment: 1024, 256, and 0.3, respectively.

The segmentation results are visualized in Fig. 8. We

compare the results from our representation with state-of-

the-art approaches that employ PointNet based network ar-

chitecture in Table 4. We followed the prior works and

used the point intersection over union (IoU) to compare the

results. The segmentation result using our representation

achieves the best mean IoU and outperforms the state-of-

the-art methods in most of the classes. Compared to the

results from the SO-Net, our method performs better in 12
of the total 16 categories. As our proposal can be used as a

feature along with point coordinates, the representation can

be directly inserted into more complex networks [19, 22].

5. Conclusion

The proposal is inspired by the observation that if neural

networks are capable of learning extremely complex func-

tions that separate various classes accurately, they should

also be able to learn a function that represents one shape.

The results demonstrate that our proposal is more descrip-

tive, yet more efficient to process than the prior methods.

No end-to-end training is conducted, and only unsupervised

learning to encapsulate local distance fields is required.

Our method is useful for achieving various invariances that

made representation of unstructured point complex.

Our method derives from the belief that shapes should

be preprocessed into a unified parametric space rather than

trying to manually prepare all possible variations of the

shapes through data augmentation. As was demonstrated in

the experiment with coordinate and scaling perturbations,

many of the current methods fail when the axis of gravita-

tional direction is unknown. Methods proposed to conduct

point cloud analysis need to consider various circumstances

where the orientation of the point cloud is unavailable.

The results presented in this paper can theoretically be

improved, as the random fixed weights used in the embed-

ding ELMs are not trained to improve the accuracy of the

following tasks, such as classification. As future work, we

will pursue a method to tune the fixed ELM weights. Find-

ing efficient methods to encapsulate more detailed informa-

tion is also another direction of research.
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