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Figure 1: Gallery of 3D shapes generated as sets of handles (zoom for details). We propose a class of generative models

for synthesizing sets of handles – lightweight proxies that can be easily utilized for high-level tasks such as shape editing,

parsing, animation etc. Our model can generate sets with different cardinality and is flexible to work with various types of

handles, such as sphere-mesh handles [37] (first and third figures) and cuboids (middle figure).

Abstract

We present a generative model to synthesize 3D shapes

as sets of handles – lightweight proxies that approximate

the original 3D shape – for applications in interactive edit-

ing, shape parsing, and building compact 3D representa-

tions. Our model can generate handle sets with varying

cardinality and different types of handles (Figure 1). Key

to our approach is a deep architecture that predicts both

the parameters and existence of shape handles, and a novel

similarity measure that can easily accommodate different

types of handles, such as cuboids or sphere-meshes. We

leverage the recent advances in semantic 3D annotation

as well as automatic shape summarizing techniques to su-

pervise our approach. We show that the resulting shape

representations are intuitive and achieve superior quality

than previous state-of-the-art. Finally, we demonstrate how

our method can be used in applications such as interac-

tive shape editing, completion, and interpolation, leverag-

ing the latent space learned by our model to guide these

tasks. Project page: http://mgadelha.me/shapehandles.

1. Introduction

Dramatic improvements in quality of image generation

have become a key driving force behind many novel image

editing applications. Yet, similar approaches are lacking for

editing and generating 3D shapes. There are two related

challenges. First, learning generative models for 3D data is

challenging, as unlike images, high-quality 3D data is hard

to obtain and the data is high dimensional and often unstruc-

tured. Second, regardless of whether good generative mod-

els are available, manipulating and editing 3D shapes in in-

teractive applications is harder to users than editing images.

For this reason, the geometry processing community has de-

veloped techniques for representing 3D data as a small col-

lection of simpler proxy shapes [2,4,7,17,22,24,43]. In this

paper, we refer to these light-weight proxies as shape han-

dles due to their ability to be easily manipulated by users.

These representations have been widely used in tasks that

require interaction and high-level reasoning in 3D environ-

ments, such as shape editing [12,37], animation [38], grasp-

ing [27], and tracking [39].

We propose a generative models of shape handles. Our
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method adopts a two-branch network architecture to gen-

erate shapes with varying number of handles, where one

branch focuses on generating handles while the other pre-

dicts the existence of each handle (Section 3.2). Further-

more, we propose a novel similarity measure based on dis-

tance fields to compare shape handle pairs. This measure

can be easily adapted to accommodate various type of han-

dles, such as cuboids and sphere-meshes [37] (Section 3.1).

Finally, in contrast to previous work [32, 40] which focuses

on unsupervised methods, we leverage recent works in col-

lecting 3D annotations [29] as well as shape summarization

techniques [37] to provide supervision to our approach. Ex-

periments show that our method significantly outperforms

previous methods on shape parsing and generation tasks.

Using self-supervised training data generated by [37], our

approach produces shapes that are twice as accurate as com-

peting approaches in terms of intersection-over-union (IoU)

metric. By employing human annotated data, our model

can be further improved, achieving even higher accuracy

than using self-supervised training data. Moreover, as shape

handles provide a compact representation, our generative

networks are compact (less than 10MB). Despite the small

memory footprint, our method generates a diverse set of

high quality 3D shapes, as seen in Figure 1.

Finally, our method is built towards generating shapes

using representations that are amenable to manipulation by

users. In contrast to point clouds and other 3D representa-

tions such as occupancy grids, handles are intuitive to mod-

ify and naturally suitable for editing and animation tasks.

The latent space of shape handles induced by the learned

generative model can be leveraged to support shape editing,

completion, and interpolation tasks, as depicted in Figure 2.

2. Related work

Deep generative models of 3D shapes. Multiple 3D

shape representations have been used in the context of

deep generative models. 3D voxel grids [6, 10] are a nat-

ural extension to image-based architectures, but suffer from

high memory footprint requirements. Sparse occupancy

grids [15, 33, 36, 42] alleviate this issue using a hierarchical

grid, but they are still not able to generate detailed shapes

and they require additional bookkeeping. Multi-view repre-

sentations [23,34], point clouds [1,8,9,11], mesh deforma-

tions [19, 41] and implicit functions [5, 13, 26, 31] provide

alternatives that are compact and capable of generating de-

tailed shapes. However, these approaches are focused on

reconstructing accurate 3D shapes and are not amenable to

tasks like editing. Our goal is different: we explore genera-

tive models to produce sets of handles – summarized shape

representations that can be easily manipulated by users.

Two closely related methods to ours are Tulsiani et

al. [40] and Paschalidou et al. [32] where they propose mod-

els to generate shapes as a collection of primitives without

Figure 2: Overview. We propose a method to train a gen-

erative model g for sets of shape handles. Once trained, the

latent representation z can also be used in applications like

shape editing and interpolation.

supervision. In contrast, we are focused on creating mod-

els capable of utilizing shape decompositions provided by

external agents; either a human annotator or a shape sum-

marization technique. We demonstrate that, by using the

extra information provided by annotations or well known

geometric processing techniques, our method is capable of

generating more accurate shapes while keeping the repre-

sentation interpretable and intuitive for easy editing. Other

approaches focused on learning shape structures through

stronger supervision [21, 28, 30], requiring not only han-

dle description, but also relationships between them, e.g.

support, symmetry, adjacency, hierarchy, etc. In contrast,

our method models shapes as sets and we show that inter-

handle relationships can be learned directly from data, so

that the latent space induced by our model can be used to

guide shape editing, completion, and interpolation tasks.

Furthermore, we present a general framework that can be

easily adapted to different types of handles, not only a

single parametric family, like cuboids [21, 28, 40] or su-

perquadrics [32].

Methods for shape decomposition. Shape decomposi-

tion has been extensively studied by the geometry pro-

cessing literature. The task is to approximate a complex

shape as a set of simpler, lower-dimensional parts that are

amenable for editing. We refer to these parts as shape han-

dles. Early cognitive studies have shown that humans tend

to reason about 3D shapes as a union of convex compo-

nents [16]. Multiple approaches have explored decompos-

ing shapes in this manner [18, 22, 46]. However, those ap-

proaches are likely to generate too many parts, making them

difficult to manipulate. This problem was addressed by

later shape approximation methods such as cages [43], 3D

curves [12,14,25] and sphere-meshes [37], which are shown

very useful in shape editing and other high-level tasks. Our

method is flexible to work with various types of shape han-

dles, and in particular we show experiments using cuboids

as well as sphere-meshes.

Several closely related methods to ours approximate
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complex shapes using primitives such as cylinders [45] or

cuboids [43]. These approximations are easy to interpret

and manipulate by humans. However, most existing meth-

ods rely solely on geometric cues for computing primitives,

which can lead to counter-intuitive decompositions. In con-

trast, our method takes supervision from semantic informa-

tion provided by human annotators or shape summarization

techniques, and therefore our results more accurately match

human intuition.

3. Method

Consider a dataset D = {Si}
n
i=1 containing n sets of

shape handles. Each set of handles Si represents a 3D shape

and consists of multiple handle descriptors. Our goal is to

train a model fθ capable of generating sets similar to the

ones in D, i.e., using them as supervision. More precisely,

given an input xi associated with a set of handles Si, our

goal is to estimate the parameters ✓ such that fθ(xi) ⇡ Si.

The input xi can be an image, a point cloud, an occupancy

grid, or even the set of handles itself. When xi = Si, fθ
corresponds to an autoencoder. If we add a regularization

term to the bottleneck of fθ, we have a Variational Auto-

Encoder (VAE), which we use for applications like shape

editing, completion and interpolation (Section 4.4). How-

ever, we need to use a loss function capable of measuring

the similarity between two sets of handles, i.e. the recon-

struction component of a VAE. Ideally, this loss function

would be versatile – we should be able to use it to gener-

ate different types of handles with minimal modifications.

Moreover, our model needs to be capable of generating sets

with different cardinalities, since the sets Si do not always

have the same size – in practice, the size of the sets used as

supervision can vary a lot and our network must accommo-

date this need.

In this section, we describe how to create a model satis-

fying these constraints. First, we describe how to compute

similarities between handles. Our method is flexible and

only relies on the ability to efficiently compute the distance

from an arbitrary point in space to the handle’s surface. We

then demonstrate how to use this framework with two types

of handles: cuboids and sphere-meshes. Finally, we de-

scribe how to build models capable of generating sets with

varying sizes, by employing a separate network branch to

predict the existence of shape handles.

3.1. Similarity between shape handles

Consider two sets of shape handles of the same type:

A = {aj}
|A|
j=1 and B = {bk}

|B|
k=1, where aj and bk are

parameters that describe each handle. For example, if the

handle type is cuboid, aj (or bk) would include the cuboid

dimensions, rotation and translation in space. One way to

compute similarity between sets is through Chamfer dis-

tance. Let the asymmetric Chamfer distance between the

two sets of handles A and B be defined as:

Ch(A,B) =
1

|A|

X

a2A

min
b2B

D(a, b) (1)

where D(a, b) is a function that computes the similarity be-

tween two handles with parameters a and b. There are mul-

tiple choices for D(a, b). One straightforward choice is to

define D as the `p-norm of the vector a � b. However, this

is a poor choice as the parameters are not homogeneous.

For example, parameters that describe rotations should not

contribute to the similarity metric in the same way as those

describing translations. Furthermore, there may be multiple

configurations that describe the same shape – e.g., vertices

that are in different orders may describe the same triangle; a

cube can be rotated and translated in multiple ways and end

up occupying the same region in space.

We address these problems by proposing a novel dis-

tance metric D(a, b) which measures the similarity of the

distance field functions of the two handles. Specifically, let

P be a set of points in the 3D space and let µ(a) represent

the surface of the handle described by a. Now, we define D

as follows:

D(a, b) =
X

p2P

⇣

min
pa2µ(a)

kp� pak2 � min
pb2µ(b)

kp� pbk2

⌘2

(2)

Intuitively, D calculates the sum of squared differences be-

tween two feature vectors representing the distance fields

with respect to each of the handles. Each dimension of

these feature vectors contains the distance between a point

in a set of probe points P and the surface of the handle

defined by its parameters (a and b in Equation 2). The

main advantage of this similarity computation is its ver-

satility: it allows us to compare any types of shape han-

dles; the only requirement is the ability to efficiently com-

pute minph2µ(h) kp� phk2 given handle parameters h and

a point p. In the following subsections, we show how to

efficiently perform this computation for two types of shape

handles: cuboids and sphere-meshes.

Cuboids. We choose to represent a cuboid by parame-

ters h = hc, l, r1, r2i, where c 2 R
3 is the cuboid cen-

ter, l 2 R
3 is the cuboid scale factor (i.e. dimensions),

r1, r2 2 R
3 are vectors describing the rotation of the

cuboid. This rotation representation has continuity proper-

ties that benefit its estimation through neural networks [44].

Notice that we can build a rotation matrix R from r1 and

r2 by following the procedure described in [44]. Now, con-

sider the transformation ⌧h(p) = R
T p�c. Let µC(h) 2 R

3

represent the surface of the cuboid parametrized by h. We

can compute minph2µC(h) kp� phk2 (i.e. distance from p

to the cuboid) as follows:

min
ph2µC(h)

kp� phk2 =
�

�(|⌧h(p)|� l)+
�

�

2
+
�

max(|⌧h(p)|�l)
��
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Figure 3: Schematic representation of sphere-meshes. A sphere-

mesh (middle) is computed from a regular triangle mesh (left) as

input, and it consists of multiple sphere-triangles (right), each of

which is a volumetric representation

where (·)+, (·)� and | · | represent element-wise max(·, 0),
min(·, 0) and absolute value, respectively. Since this ex-

pression can be computed in O(1), we are able to compute

Equation 2 in O(|P|), where the number of probing points

|P| is relatively small. In practice, we sample 64 points in a

regular grid in the unit cube.

Sphere-meshes. A triangle mesh consists of a set of ver-

tices and triangular faces representing the vertex connectiv-

ity. Every vertex is a point in space and the surface of a

triangle contains all the points that can be generated by in-

terpolating the triangle’s vertices using barycentric coordi-

nates. A sphere-mesh is a generalization of a triangle mesh

– every vertex is a sphere instead of a point in space. Thus,

every sphere-mesh “triangle” is actually a volume delim-

ited by the convex-hull of the spheres centered at the tri-

angle vertices. Figure 3 presents a visual description of

sphere-mesh components. Thiery et al. [37] introduced an

algorithm to compute sphere-meshes from regular triangle

meshes. They show that complex meshes can be closely ap-

proximated with a sphere-mesh containing a fraction of the

original components.

We model sphere-meshes as a set of sphere-mesh trian-

gles, called sphere-triangles. Similarly to a regular trian-

gle, a sphere-triangle is fully defined by its vertices, the

difference being that its vertices are now spheres instead of

points. Thus, we choose to represent a sphere-triangle using

parameters h = hr1, r2, r3, c1, c2, c3i; where c1, c2, c3 2
R

3 are the centers of the three spheres, and r1, r2, r3 2 R
+

are their radii. Let µT (h) represent the the surface of the

sphere-triangle parametrized by h. For calculating the simi-

larity between two sphere-triangles: as each sphere-triangle

is uniquely defined by its three spheres, it suffices to have

µT contain only the surfaces of these three spheres, and

hence it does not need to contain the entire sphere trian-

gle. Thus, the distance of a probing point p to the handle

surface is computed as follows:

min
ph2µT (h)

kp� phk2 = min
i2{1,2,3}

(kp� cik2 � ri).

3.2. Generating sets with varying cardinality

The neural network f generates shapes represented by

sets of handles given an input x. Our design of f includes

two main components: an encoder q that, given an input

x, outputs a latent set representation z; and a decoder g

that, given the latent set representation z, generates a set

of handles. Even though we can use a symmetric version

of Equation 1 to compute the similarity between the gen-

erated set g(q(xi)) and the ground-truth set of handles Si,

so far our model has not taken into account the varying size

(i.e. number of elements) of the generated sets. We ad-

dress this issue by separating the generator into two parts: a

parameter prediction branch gp and an existence prediction

branch ge. The parameter prediction branch is trained to

always output a fixed number of handle parameters where

[gp(z)]i represents the parameters of the ith handle. On the

other hand, the existence prediction branch [ge(z)]i 2 [0, 1]
represents the probability of existence of the ith generated

handle. Now, we need to adapt our loss function to consider

the probability of existence of a handle.

If we assume that all handles exist, our model can be

trained using the following loss:

L = Ch(gp(zi), Si) + Ch(Si, gp(zi)),

where Si is a set of shape handles drawn from the training

data and zi is a latent representation computed from the as-

sociated input xi. However, we want to modify this loss to

take into account the probability of a handle existing or not.

To do so, note that L has two terms. The first term mea-

sures accuracy: i.e. how close each of the handles in gp(zi)
is from the handles in Si. For this term, we can use ge as

weights for the summation in Equation 1, which leads to the

following definition:

P (z, S) =

K
X

i=1

min
s2S

D([gp(z)]i, s)[ge(z)]i, (3)

where z is a latent space representation, S is a set of handles

and K = |gp(z)| = |ge(z)|. The intuition is quite simple:

if the ith handle is likely to exist, its distance to the clos-

est handle should be taken into consideration; on the other

hand, if the ith handle is unlikely to exist, it does not matter

if it is approximating a handle in S or not.

The second term in L measures coverage: every han-

dle in Si must have (at least) one handle in the generated

set that is very similar to it. Here, we use an insight pre-

sented in [32] to efficiently compute the coverage of Si

while considering the probability of elements in a set exist-

ing or not. Let gsp(z) be the list of generated handles gp(z)
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Figure 4: Comparison of results after the first stage (top row)

and second stage (bottom row) of alternate training. While the first

stage ensures coverage, some extra, unnecessary handles are also

generated. The second stage trains the existence branch, which

assigns a low probability of existence to the inaccurate handles.

ordered in non-decreasing order according to D([gsp]i, s) for

i = 1, ..., |gp(z)|. We compute the coverage of a set S from

a set generated from z as follows:

C(z, S) =
X

s2|S|

K
X

i=1

D([gsp(z)]i, s)[g
s
e(z)]i

i�1
Y

j=1

(1�[gse(z)]j).

(4)

The idea behind this computation is the following: for every

handle s 2 S, we compute its distance to every handle in

gp(z), weighted by the probability of that handle existing or

not. However, the distance to a specific handle is important

only if no other handle closer to s exists. Thus, the whole

term needs to be weighted by
Qi

j=1(1� [gse(z)]j). Finally,

we can combine Equations 3 and 4 to define the reconstruc-

tion loss Lrec used to train our model:

Lrec = P (z, S) + C(z, S). (5)

Alternate training procedure. Although minimizing the

loss in Equation 5 at once enables generating sets of differ-

ent sizes, our experiments show that the results can be fur-

ther improved if we train gp and ge in an alternating fash-

ion. Specifically, we first initialize the biases and weights

of the last layer of ge to ensure that all of its outputs are 1,

i.e., the model is initialized to predict that every primitive

exists. Then, in the first stage of the training, we fix the

parameters of ge and train gp minimizing only the coverage

C(z, S). During the second stage of the training, we fix the

parameters of gp and update the parameters of ge, but this

time minimizing the full reconstruction loss Lrec. As we

show in Section 4, this alternating procedure improves the

training leading to the generation of more accurate shape

handles. The intuition is that while training the model to

predict the handle parameters (gp), the network should be

only concerned about coverage, i.e., generating at least one

similar handle for each ground-truth handle. On the other

hand, while training the existence prediction branch (ge),

we want to remove the handles that are in incorrect posi-

tions while keeping the coverage of the ground-truth set.

4. Experiments

This section describes our experiments and validates re-

sults. We experimented with two different types of han-

dles: cuboids computed from PartNet [29] segmentations

and sphere-meshes computed from ShapeNet [3] shapes us-

ing [37]. We compare our results to two other approaches

focused on generating shapes as a set of simple primitives,

namely cuboids [40] and superquadrics [32]. All the exper-

iments in the paper were implemented using Python 3.6 and

PyTorch. Computation was performed on TitanX GPUs.

4.1. Datasets

Cuboids from PartNet [29]. We experiment with hu-

man annotated handles by fitting cuboids to the parts seg-

mented in PartNet [29]. The dataset contains 26,671 shapes

from 24 categories and 573,585 part instances. In order to

compare our model with other approaches trained on the

ShapeNet [3] chairs dataset, we select the subset of PartNet

chairs that is also present in ShapeNet. This results in 6773

chair models segmented in multiple parts. Every model has

on average 18 parts, but there are also examples with as

many as 137 parts. For every part we fit a corresponding

cuboid using PCA. Then, we compute the volume of every

cuboid and keep at topmost 30 cuboids in terms of volume.

Notice that 92% of the shapes have less than 30 cuboids, so

those remain unchanged. The others will have missing com-

ponents, but those usually correspond to very small details

and can be ignored without degrading the overall structure.

Sphere-meshes from ShapeNet [3]. In contrast to

cuboids (which are computed from human annotated parts),

we compute sphere-meshes fully automatically using the

procedure described in [37]. We use ShapeNet categories

that are also analyzed in [32, 40]: chairs, airplanes and an-

imals. The sphere-mesh computation procedure requires

pre-selecting how many sphere-vertices to use. The algo-

rithm starts by considering the regular triangle mesh as a

trivial sphere-mesh (vertices with null radius) and then deci-

mates the original mesh progressively through edge collaps-

ing, optimizing for new sphere-vertex each time an edge is

removed. This procedure is iterated until the required num-

ber of vertices is achieved.

In our case, since our model is capable of generating sets

with different cardinalities, we are not required to set a fixed

number of primitives for every shape. Therefore we use

the following method to compute a sphere-mesh with adap-

tive number of vertices. Specifically, for every shape in the

dataset, we start by computing a sphere-mesh with 10 ver-

tices. Then, we sample 10K points both on the sphere-mesh
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Figure 5: Shape parsing on the chairs dataset. From top

to bottom, we show ground-truth shapes, results by Tulsiani et

al. [40], results by our method using sphere-mesh handles, and

our method using cuboids handles. Note how our results (last two

rows) are able to generate handles with much better details such

as the stripes on the back of the chair (first column), legs on wheel

chairs (second column) and armrests in several other columns.

surface and the original mesh. If the Hausdorff distance

between the point clouds is smaller than ✏ = 0.2 (point

clouds are normalized to fit the unit sphere), we keep the

current computed sphere-mesh. Otherwise, we compute a

new sphere-mesh by incrementing the number of vertices.

This procedure continues until we reach a maximum of 40

vertices. This adaptive sphere-mesh computation allows our

model to achieve a good balance between shape complexity

and summarization – simpler shapes will be naturally rep-

resented with a smaller number of primitives. We note that

the sphere-mesh computation allows the resulting mesh to

contain not only triangles, but also edges (i.e. degenerate

triangles). For simplicity, we make no distinction between

sphere-triangles or edges: edges are simply triangles that

have two identical vertices.

4.2. Shape Parsing

The shape parsing task is to compute a small set of prim-

itives from non-parsimonious, raw, 3D representations, like

occupancy grids, meshes or point clouds. We analyze the

ability of our model in performing shape parsing using a

similar setup to [32, 40]. Specifically, following the nota-

tion defined in Section 3, we train a model fθ using input-

output pairs hxi, Sii, where xi corresponds to a point cloud

with 1024 points and Si is a set of handles summarizing the

shape represented by xi. We use a PointNet [35] encoder to

process a point cloud with 1024 points and generate a 1024

dimensional encoding. This encoding is then used as an in-

put for our two-branched set decoder. Both branches follow

the same architecture: 3 fully connected layers with 256

hidden neurons followed by batch normalization and ReLU

activations. The only difference between the two branches

is in the last layer. Assume N is the maximum set cardinal-

ity generated by our model and D is the handle dimension-

ality (i.e. number of parameters of each handle descriptor,

Figure 6: Shape parsing on the airplanes and animals

datasets. From top to bottom, we show ground-truth shapes, re-

sults by Tulsiani et al. [40], results by Paschalidou et al. [32], and

results by our model trained using sphere-mesh handles. Our re-

sults contain accurate geometric details, such as the engines on the

airplanes and animal legs that are clearly separated.

Handle type
Category

Chairs Airplanes Animals

[40] Cuboid 0.129 0.065 0.334

[32] Superquadric 0.141 0.181 0.751

Ours
Cuboid 0.311 - -

Sphere-mesh 0.298 0.307 0.761

Table 1: Quantitative results for shape parsing. Intersec-

tion over union computed on the reconstructed shapes. The

best self-supervised results are shown in bold font.

which happens to be D = 12 for both sphere-mesh and

cuboid). Then gp outputs N ⇥D values followed by a tanh
activation, while ge outputs N values followed by a sigmoid

activation. We set N = 30 for cuboid handles and N = 50
for sphere-meshes. The model is trained end-to-end by us-

ing the alternating training described in Section 3. Training

is performed using the Adam optimizer with a learning rate

of 10�3 for 5K iterations in each stage.

Figures 5 and 6 show visual comparisons of our method

with previous work. Qualitatively, our method generates

shape handles with accurate geometric details, including

many thin structures that previous methods struggle with.

Quantitative comparisons We compare our method

against [32, 40] using intersection over union (IoU) metric

and results are shown in Table 1. As expected, when using

cuboids as handles, our method leverages the annotated data

from the PartNet [29] to achieve significantly more accurate

shape approximations (more than twice the IoU in compar-

ison). On the other hand, as [32, 40] are trained without

leveraging annotated data, a more fair comparison is be-

tween theirs and our method using sphere-mesh handles,

which are computed automatically. Our method still clearly
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Figure 7: Ablation studies. Shapes generated from a model

trained without our proposed handle similarity metric (first row),

model trained without the two-stage training procedure (second

row), and our full model (last row). Note that comparing handles

using just `2-norm (first row) yields poor results. Training gp and

ge at the same time (instead of alternating) yields reasonable re-

sults, but some parts are missing and/or poorly oriented.

w/o similarity w/o alternate full model

0.192 0.320 0.352

Table 2: Quantitative results of ablation studies comparing our

full model with two variations that lack our handle similarity met-

ric and alternate training procedure respectively.

outperforms theirs in all categories – chairs, airplanes and

animals. This shows that even though a neural network in

theory should be able to learn the best parsimonious shape

representations, using self-supervision generated by shape

summarization techniques (e.g. sphere-meshes) can still

help it achieve more accurate approximations.

4.3. Ablation studies

We investigated the influence of the two main contribu-

tions of this work: the similarity metric for handles and the

alternating training procedure for gp and ge. To do so, we

adopt a shape-handle auto-encoder and compare different

variations by computing the IoU of reconstructed shapes in

a held-out test set. The auto-encoder architecture is very

similar to the one used in shape parsing, except for the

encoder – it still follows a PointNet architecture, but ev-

ery “point” is actually a handle treated as a point in a D-

dimensional space. We analyzed three different variations.

In the first one, we simply used the `2-norm between the

handle parameters (cuboids, in this case). As shown in Fig-

ure 7 and Table 2, the proposed handle similarity metric has

a significant impact on the quality of the generated shapes.

The second variation consists of training the same model,

but without using the alternating procedure described in

Section 3. Figure 7 shows that the alternating training pro-

cedure generates more accurate shapes, with fewer missing

parts and better cuboid orientation.

Figure 8: Latent space interpolation Sets of handles can be

interpolated by linearly interpolating the latent representation z.

Transitions are smooth and generate plausible intermediate shapes.

Notice that the interpolation not only changes handle parameters,

but also adds new handles / removes existing handles as necessary.

4.4. Applications

In this section, we demonstrate the use of our genera-

tive model in several applications. We employed a Varia-

tional Auto-Encoder (VAE) [20] for this purpose. It follows

the same architecture as the auto-encoder described in Sec-

tion 4.3 with the only difference being that the output of the

encoder (latent representation z) has dimensionality 256 in-

stead of 512. Additionally, following [11], we added an

additional regularization term to the training objective:

Lreg = kcov(Q(x) + �)k2 + Ex⇠D[Q(x)] (6)

where Q is the encoder, cov(·) is the covariance matrix, k·k2
is the Frobenius norm, x is input handle set and � is random

noise sampled from N (0, cI). Thus, the network is trained

minimizing the following function:

L = Lrec + �Lreg. (7)

In all our experiments, we used � = 0.1 and c = 0.01.

The model is trained using the alternate procedure described

before, i.e. Lrec is replaced by C(z, S) while training gp.

Interpolation. Once the VAE model is trained, we are able

to morph between two shapes by linearly interpolating their

latent representations z. In particular, we sample two val-

ues z1, z2 from N (0, I) and generate new shapes by passing

the interpolated encodings ↵z1 +(1�↵)z2 through the de-

coder g, where ↵ 2 [0, 1]. Results using cuboid handles are

presented in Figure 8. Note that the shapes are smoothly

interpolated, with new handles added and old handles re-

moved as necessary when the overall shape deforms. Ad-

ditionally, relationships between handles, like symmetries,

adjacency and support, are preserved, thanks to the latent

space learned by our model, even though such characteris-

tics are never explicitly specified as supervision.

Handle completion. Consider an incomplete set of han-

dles A = {ai}
N
i=1 as input, the handle completion task is

to generate a complete set of handles A⇤, such that A⇤ con-

tains not only the handles in the input A but also necessary

additional handles that result in a plausible shape. For ex-

ample, given a single cuboid handle as shown in Figure 9,

we want to generate a complete chair that contains that input

handle. We perform this task by finding a latent represen-

tation z⇤ that generates a set of handles approximating the
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Figure 9: Results of handle completion. Recovering full shape

from incomplete set of handles. Using � to control the complexity

of the completed shape (left). Predicting a complete chair from a

single handle (right).

elements in A. Specifically, we solve the following opti-

mization problem:

z⇤ = argmin
z2Z

C(z,A), A⇤ = g(z⇤), (8)

where C is the coverage metric defined in Equation 4 and

A⇤ is the completed shape (i.e. output of the decoder us-

ing z⇤ as input). We can also use the existence prediction

branch (ge) in this framework to reason about how complex

we want the completed shapes to be. Specifically, we add

an additional term to the optimization:

z⇤ = argmin
z2Z

C(z,A) + �

N
X

i=1

[ge(z)]i, (9)

where � controls the complexity of the shape. If � = 0, we

are not penalizing a set with multiple handles – only cover-

age matters. As � increases, existence of multiple handles

is penalized more, leading to a solution with a lower cardi-

nality. As can be seen in Figure 9, our model is capable of

recovering plausible chairs even when given a single han-

dle. In addition, we can generate multiple proposals for A⇤

by initializing the optimization with different values of z.

More results can be found in the supplemental material.

Shape editing. For editing shapes, we use a similar opti-

mization based framework. Consider an original set of han-

dles A describing a particular shape. Assume that the user

made edits to A by modifying the parameters of some han-

dles, creating a new set A0. Our goal is to generate a plausi-

ble new shape A⇤ from A0, while minimizing the deviation

from the original shape. To achieve this goal, we solve the

following minimization problem via gradient descent:

z⇤ = argmin
z2Z

C(z,A0) + � kz � zAk2 , A⇤ = g(z⇤)

(10)

where zA is the latent representation of the original shape.

The intuition for Equation 10 is simple: we want to generate

a plausible shape that approximates the user edits by mini-

mizing C(z,A0) but also keep the overall characteristics of

the original shape A by adding a penalty for deviating too

much from zA. Results are shown in Figure 10. As ob-

served in the figure, when the user edits one of the handles,

Figure 10: Editing chairs. Given an initial set of handles, a

user can modify any handle (yellow). Our model then updates the

entire set of handles, resulting in a modified shape which observes

the user edits while preserving the overall structure.

our model can automatically modify the shape of the entire

chair while preserving its overall structure.

Limitations. Our method has several limitations to be ad-

dressed in future work. First, during training we set a max-

imum number of handles to be generated. Increasing this

number would allow more complex shapes but also entail

a larger network with higher capacity. Therefore, there

is a trade-off between the compactness of the generative

model and the desired output complexity. Furthermore, our

method currently does not guarantee the output handles ob-

serve certain geometric constraints, such as parts that need

to be axis-aligned or orthogonal to each other. For man-

made shapes, these are often desirable constraints and even

slight deviation is immediately noticeable. While our model

can already learn geometric relationships among handles

from the data directly, generated shapes might benefit from

additional supervision enforcing geometric constraints.

5. Conclusion

We presented a method to generate shapes represented

as sets of handles – lightweight proxies that approximate

the original shape and are amenable to high-level tasks,

like shape editing, parsing and animation. Our approach

leverages pre-defined sets of handles as supervision, either

through annotated data or self-supervised methods. We pro-

posed a versatile similarity metric for shape handles that

can easily accommodate different types of handles, and a

two-branch network architecture to generate handles with

varying cardinality. Experiments show that our model is

capable of generating compact and accurate shape approx-

imations, outperforming previous work. We demonstrate

our method in a variety of applications, including interac-

tive shape editing, completion, and interpolation, leveraging

the latent space learned by our model to guide these tasks.
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