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Abstract

In this paper, we target to address the problem of com-

pression and acceleration of Convolutional Neural Net-

works (CNNs). Specifically, we propose a novel structural

pruning method to obtain a compact CNN with strong dis-

criminative power. To find such networks, we propose an

efficient discrete optimization method to directly optimize

channel-wise differentiable discrete gate under resource

constraint while freezing all the other model parameters.

Although directly optimizing discrete variables is a complex

non-smooth, non-convex and NP-hard problem, our opti-

mization method can circumvent these difficulties by using

the straight-through estimator. Thus, our method is able to

ensure that the sub-network discovered within the training

process reflects the true sub-network. We further extend the

discrete gate to its stochastic version in order to thoroughly

explore the potential sub-networks. Unlike many previous

methods requiring per-layer hyper-parameters, we only re-

quire one hyper-parameter to control FLOPs budget. More-

over, our method is globally discrimination-aware due to

the discrete setting. The experimental results on CIFAR-

10 and ImageNet show that our method is competitive with

state-of-the-art methods.

1. Introduction

Convolutional Neural Networks (CNNs) have achieved

great success in computer vision tasks [23, 39, 40, 42, 2].

With more and more sophisticated GPU support on CNNs,

the complexity of CNN grows dramatically from several

layers [23, 43] to hundreds of layers [9, 17]. Although these
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complex CNNs can achieve strong performance on vision

tasks, there is an unavoidable growth of the computational

cost and model parameters. Such a huge computational bur-

den prohibits the model from being deployed on mobile de-

vices and resource-limited platforms. Even if the model can

be deployed on mobile devices, the battery will be depleted

quickly due to huge computational costs. To tackle such

problems, many efforts [8, 7] have been devoted for get-

ting compact sub-networks from the original computational

heavy model.

Structural pruning, especially channel pruning, is an ef-

ficient way to reduce computational cost since it doesn’t re-

quire any post-processing steps to acquire acceleration. One

of the most challenging parts of structural pruning is how

to deal with the natural discrete configuration of channels

in each layer. Many existing works [31, 37] try to solve

this problem by relaxing discrete values to continuous val-

ues. However, such relaxation may lead to a biased estima-

tion of the corresponding pruning criterion, since you can’t

completely remove the impact of channels with small im-

portance value. Some other methods [28, 34] use the esti-

mation of channel importance to decide whether to prune

a channel, nonetheless, the relative importance of a chan-

nel can be changed due to the choice of the sub-network.

Recently, discrimination-aware pruning [49] has been pro-

posed to explore the impact of discriminative power on

channel pruning. Although this method considers the dis-

criminative power of CNNs by adding classifiers on inter-

mediate layers, it does not consider CNN as a whole, which

may result in sub-optimal compression results.

To deal with these challenges, we propose a new method

of using the discrete gate to turn off or turn on certain chan-

nels. By doing so, we can always get the exact model out-

put given different sub-network architectures. Thanks to

the precise output estimation of a sub-network, our method
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is able to consider the discriminative power of a complete

sub-network. At the same time, we do not take the mag-

nitude of a channel into consideration, the global discrim-

inative power is the only criterion. Moreover, we pro-

pose an efficient optimization method to obtain the sub-

network. Although directly optimizing discrete variables is

often non-smooth non-convex and NP-hard, our optimiza-

tion method can circumvent these difficulties by using the

straight-through estimator (STE) [1].

Automatic Model Compression (AMC) [11] is a pioneer

method using the discrete channel setting, which is opti-

mized by reinforced learning. Different from AMC, our

method is guided by gradients of the loss function when ex-

ploring sub-networks from the original CNN . Our method

can obtain a sub-network efficiently due to its differentiable

nature. On ImageNet dataset, our method can discover

a high performance sub-network satisfying given budget

within 2% of time for regular training (finetuning time is

excluded). From this perspective, our method is also related

to differentiable architecture search (DARTS) [27].

Our main contributions are summarized as follows:

1) To compress a model, we apply the discrete gate on

each channel, which ensures that the output from any

sub-networks is correct and unbiased.

2) We use STE to enable back-propagation through dis-

crete variables. To further enlarge the search space

of sub-networks, we replace the discrete gate with its

stochastic version.

3) To ensure we can get the model with the given compu-

tational budget, we further propose resource regular-

ization when exploring potential sub-networks.

4) Extensive experimental results show that our method

achieves state-of-the-art results on CIFAR10 and Ima-

geNet with ResNet and MobileNetV2.

2. Related Works

Model compression recently has drawn a lot of attention

from the compute vision community. In general, current

model compression methods can be separated into the fol-

lowing four categories: weight pruning, structural pruning,

weight quantization, and knowledge distillation [14].

Weight pruning eliminates model parameters without

any assumption on the structure of weights. One of the early

works [8] uses L1 or L2 magnitude as criterion to remove

weights. Under this setting, parameters lower than a certain

threshold are removed, and weights with small magnitude

are considered not important. A systematic DNN weight

pruning framework [48] has been proposed by using alter-

nating direction method of multipliers (ADMM) [3, 15, 16].

Different from the aforementioned works, SNIP [24] up-

dates the importance of weights by backpropagating gradi-

ents from the loss function. Lottery ticket hypothesis [6]

is another very interesting weight pruning algorithm, which

manifests that small high-performance sub-networks exist

within the overparameterized large network at initialization

time. Different from the lottery ticket hypothesis, in re-

thinking the value of network pruning [29], they argue that

fine-tuning a pre-trained model is not necessary and show

that the pruned model with random initialization achieves

better performance. he major drawback of weight level

pruning is that they often require specially designed sparse

matrix multiplication library to achieve acceleration.

Different from weight pruning, structural pruning pro-

vides a natural way to reduce computational costs. The de-

velopment of structural pruning is similar to weight pruning

in that channels with low magnitude are often regarded as

not important [25]. Similar to the idea of magnitude prun-

ing, Group Lasso [45] is also applied on CNNs to struc-

turally make channels or filters to have all 0 values, thus

those channels can be safely removed. GrOWL [47] fo-

cuses on exploring inter-channel relations on top of spar-

sity, and argues that similar channels can share the same

weights. The following researches show that weights with

small magnitude could be important [30], and it’s difficult

for channels under L1 regularization to achieve exact zero

values. To compensate this, they propose to get exact zero

values for each channel by using explicit L0 regulariza-

tion [30]. Besides simply using channel magnitude as prun-

ing standards, other methods utilize batchnorm to achieve

the similar target, since batchnorm [19] is an indispensable

component in recent neural network designs [9, 17]. For

each channel, batchnorm uses a scaling factor γ to adjust

the magnitude of corresponding feature maps. To achieve

the goal of channel pruning, γ is regularized to be sparse

and γ fell below a predefined threshold will be set to 0 dur-

ing model pruning [28]. Other works related to this idea in-

cludes [46, 18, 20]. Unlike previous methods relying on the

magnitude of channels, discrimination-aware pruning [49]

utilizes local discriminative power to help channel pruning.

AMC [11] achieves the goal of channel pruning in a dis-

crete setting by taking the advantages of reinforcing learn-

ing. Collaborative channel pruning [37] focuses on pruning

channels by utilizing Taylor expansion of the loss function.

Our method belongs to this category, the major difference

between our method and previous model pruning methods

is that our method strictly uses the discrete setting of chan-

nels while it can be optimized through gradient descent.

Weight quantization is another direction for model com-

pression, which focuses on reducing the numerical preci-

sion of weights from 32-bit float point value to low bit value.

Binary connects [4] and binary neural network [38] push

the full precision weight to binary weight values, making

the model weights become binary values. The connection

between our method and weight quantization is that both of

them use STE to estimate the gradient for discrete value.
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Figure 1: The gate training process of the proposed method.

A sub-network is sampled according to Eq. (4). Then θ is

optimized through STE with gradient descent. At the next

iteration, the sub-network is sampled with the updated θ.

Besides the aforementioned methods, there are works

from other directions. There is a range of methods focus on

pruning weights [33] or structures [35] by utilizing uncer-

tainty in weights. EigenDamge [44] can achieve structural

pruning by using Kronecker-factored eigenbasis.

3. Proposed Method

3.1. Notations

To better describe proposed approach, we first define

some notations. The feature map of each layer can be rep-

resented by Fl ∈ ℜCl×Wl×Hl where Cl is the number of

channels, Wl and Hl are height and width of the current fea-

ture map. Fl,c is the feature map of c-th channel from l-th

layer. The mini-batch dimension of feature map is ignored

to simplify notations. Throughout the paper, w.p. means

with probability. 1 = [1, . . . , 1]T is a vector with all ones.

sign(·) is the popular sign function.

3.2. Differentiable Discrete Gate

In this paper, to incorporate the discrete nature of chan-

nel pruning, we explicitly consider using discrete-valued

gates to represent open or close of a channel. The discrete

gate function can be described as follows:

g(θ) =

{
1 if θ ∈ [0.5, 1],
0 if θ ∈ [0, 0.5),

(1)

where θ ∈ [0, 1] is a learnable parameter in our setting. The

discrete gate function is applied after the output feature map

of a layer:

F̂l,c = g(θl,c) · Fl,c, (2)

where F̂l,c is the feature map after pruning.

Since the binary gate function is not differentiable,

STE [1] is used to enable gradient calculation, which can

be described as follows:

∂L

∂θ
=

∂L

∂g(θ)
, (3)

where L is the loss function. Here, the backward propaga-

tion of g(θ) can be understood as an identity function within

certain range. If θ 6∈ [0, 1], the gradient will not be calcu-

lated, and the θ will be clipped to range [0, 1].
In fact, there are some limitations of the deterministic

discrete gate function. For example, once the g(θ) of cer-

tain channels become 0, then these channels are probably

remained pruned, and they may never be selected as candi-

date channels. To compensate such situations, we further

propose the stochastic discrete gate to ensure gates with

θ lower than 0.5 can be considered as candidate channels

again. Specifically, the stochastic discrete gate is achieved

by applying stochastic rounding:

g(θ) =

{
1 w.p. θ

0 w.p. 1− θ
(4)

where θ is within [0, 1] to satisfy the definition of probabil-

ity. From this definition, we can see that a channel always

has a chance to be sampled if θ 6= 0. Since our method uses

the discrete setting, sampling from the stochastic discrete

gate is equivalent to sample a sub-network.

3.3. Model Compression as Constrained Optimiza
tion

There are many different ways to represent the pruning

objective for model compression. In this paper, we mainly

focus on the following channel pruning problem:

min
Θ

L
(
f(x;W,Θ), y

)

s.t. 1Tg − p1TC = 0

g ∈ {0, 1}n,

(5)

where g = (g1, . . . , gL) is a vector containing all gate val-

ues, gl = [g(θl,1), . . . , g(θl,Cl
)]T is the vector containing

gate values in l-th layer, Θ are the parameters of discrete

gates following the definition in section 3.2, W is the model

parameters, p is a predefined threshold working as the prun-

ing rate, and C = (C1, · · · , CL). Here, 1Tg is the sum of

all gate values, which represents the number of remained

channels, n is the total number of gates and 1TC is the to-

tal number of channels. Note that not all layers are included

in Eq. (5), and the vector g and C only contain layers are

used for pruning. There are several remarks on this pruning

objective: 1) The pruning of channels only depends on the

discriminate power of its own, channel magnitude is irrel-

evant during model pruning; 2) There exists no layer-wise
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hyper-parameter, only a global hyper-parameter is used to

control pruning rate; 3) During training of the parameters

for the gate function, model parameters W are fixed.

Under this setting, the major advantage of the discrete

gate setting is that the impact of pruned channels are pre-

cisely reflected in the value of loss function. If the gates are

relaxed in continuous values, then it doesn’t possess such

good property. In addition, continuous relaxed gate func-

tion causes severe difficulty to solve the optimization prob-

lem defined in Eq. (5).

For simplicity, we replace the equality constraint with a

regularization term and redefine the optimization problem

as follows:

min
Θ

F(Θ) := L
(
f(x;W,Θ), y

)
+λR(1Tg, p1TC), (6)

where R(·, ·) is the specific regularization function used,

which can be a typical regression loss function such as

MAE or MSE. In practice, both MAE and MSE are not

used, we will talk about the choice of R(·, ·) later. The

constraint g ∈ {0, 1}n is absorbed into the optimization

problem due to the definition of discrete gate (Eq. (1) and

(4)).

Recently, there are increasing interests in reducing the

float point operations (FLOPs) in model pruning literature.

The definition used in Eq. (6) along with the definition of

deterministic discrete gate in Eq. (1) can easily transform

the pruning rate constraint in Eq. (5) to FLOPs constraint.

Recall that for a single convolution layer l with one sample,

the FLOPs calculation can be down as follows:

(FLOPs)l = kl · kl ·
cl−1

Gl

· cl · wl · hl, (7)

where kl is the kernel size, Gl is the number of groups, cl−1

and cl are the number of input and output channels, wl and

hl are width and height, (FLOPs)l is the FLOPs of l-th layer.

By replacing cl and cl−1 with gl and gl−1, we get a new rep-

resentation of FLOPs during searching for sub-networks:

̂(FLOPs)l = kl · kl ·
1Tgl−1

Gl

· 1Tgl · wl · hl, (8)

Then combining Eq. (7), Eq. (8) with Eq. (6), the original

R(1Tg, p1TC) is replaced by the FLOPs regularzation:

R(T̂ , pT ), (9)

where T̂ =
L∑

l=1

̂(FLOPs)l and T =
L∑

l=1

(FLOPs)l are re-

mained FLOPs and total FLOPs of the model. Note that

we still use p as the only global hyper-parameter to repre-

sent the remaining fractions of the FLOPs. By incorporating

FLOPs regularization and the objective in Eq. (6), we can

prune the model to arbitrary level of FLOPs.

(a) function value of the regular-

ization

(b) gradients of the regulariza-

tion

Figure 2: The values and gradients of the resource regular-

ization, y is set to 0 for better visualization.

3.4. Choice of the Regularization Loss

In order to train the parameters of gates properly, the

value of the regularization term should be decreased to near

0 in the early stage of gate training, and remain near 0 for

the rest of the training process. The reason we want to keep

the regularization term near 0 for most time is to ensure the

algorithm have enough time to discover the best possible

sub-architecture with the given constraint. Regular regres-

sion loss like MAE and MSE can’t satisfy this requirement,

since their gradient is either constant or decreasing when

close to 0. To overcome this issue, we propose the follow-

ing regularization loss:

Rlog(x, y) = log(|x− y|+ 1). (10)

The plot of gradient and value of this function is shown in

Fig. 2. The benefit of this function is that when x is close to

target y, the gradient will increase and keep x close to the

target value y. The loss function is not differentiable at the

point x = y by definition, but sub-gradient can be used here

which has been implemented in major deep learning frame-

works. In practice, the Eq. (10) works well for appropriate

choice of λ, on the contrary, MAE and MSE often fail to

keep the value of the regularization term close to 0.

3.5. Symmetric Weight Decay

To further expand search space, we propose a symmetric

weight decay on the weights of gates, which is inspired by

the subgradient of the regularization loss:

∂Rlog

∂θl,c
=

{
ηl ·

1

|T̂−pT |+1
· T̂−pT

|T̂−pT |
, if T̂ 6= pT

0, if T̂ = pT
(11)

where ηl = k2l ·
1
T
gl−1

Gl
·wl ·hl. Eq. (11) indicates that Rlog

works like weight decay with different decay value for each

layer while the decay value is also different for each training

iteration. Since the impact of Rlog on θ can be expressed by

weight decay, the stochasticity of the gates can be increased

in a similar way. Based on above arguments, we can explore
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Algorithm 1: Discrete Model Compression

input: dataset for training gate, Dgate; remaining

rate of FLOPs, p; regularization hyper-parameter,

λ; symmetric weight decay parameter β; gate

training epochs num-E; pre-trained model f .

Freeze W and batchnorm parameters in f .

Initialize all θl,c to 1.

for e := 1 to num-E do
shuffle(Dgate)

foreach x, y in Dgate do
1. forward calculation:

min
Θ

F(Θ) = L(f(x;W,Θ), y) + λRlog

2. calculate gradient w.r.t θl,c.

3. update each θl,c by ADAM optimizer.

4. apply symmetric weight decay on θl,c
defined in Eq. (12).

5. clip each θl,c to [0,1].

end

end

return model f with the final Θ.

larger search spaces by applying symmetric weight decay

on each θl,c. The goal of doing this is to slow down the

pace of gate parameters to become deterministic (approach

0 or 1). As a result, the search space is enlarged:

θl,c = θl,c − βsign(θl,c − 0.5), (12)

where β is the hyper-parameter to control the strength of

weight decay.

3.6. Our DMC Algorithm

We have introduced the core idea of our method, and the

discrete model compression (DMC) algorithm is presented

in Algorithm 1. During freezing trainable parameters, the

batchnorm running statistics are also frozen. It should be

emphasized again that the gate learning process is isolated

from the training of the model parameters. In this way, we

can prune any pre-trained models without modifications. In

the calculation of L, the sub-networks are drawn from the

stochastic discrete gate. When calculating FLOPs regular-

ization and during model pruning, the deterministic version

of the gate is used. Both stochastic and deterministic calcu-

lation share the same θl,c.

4. Experiments

4.1. Settings

Implementation Detail. We use CIFAR-10 [22] and Im-

ageNet [5] to verify the performance of our method. Our

method only requires one hyperparameter p to control the

FLOPs budget. For all experiments, we use resource reg-

ularization with Rlog defined in Eq. (10). As a result, p

Conv1x1, BN, Relu

Conv3x3, BN, Relu

Conv1x1, BN, Relu

Gate-2

Gate-1

(a) Bottleneck Block

Conv1x1, BN, Relu

Dwise3x3, BN, Relu

Conv1x1, BN

Gate

Gate

S
h

a
re

 w
e

ig
h

ts

(b) Inverted Residual Block

Figure 3: Gate placement for different architectures. (a)

Bottleneck Block for ResNet. (b) Inverted Residual Block

for MobileNetV2.

decides how much FLOPs are preserved for each experi-

ment. λ decides the regularization strength in our method.

We choose λ = 4 in all CIFAR-10 experiments and λ = 8
for all ImageNet experiments. For CIFAR-10, we compare

with other methods on ResNet-56 and MobileNetV2. For

ImageNet, we select ResNet-34, ResNet50, ResNet101 and

MobileNetV2 as our target models. The reason we choose

these models is because that ResNet [9] models and Mo-

bileNetV2 [41] are much harder to prune than earlier mod-

els like AlexNet [23] and VGG [43]. For CIFAR-10 mod-

els, we train it from scratch following the code from Py-

Torch examples. After pruning the model, we finetune the

model for 160 epochs using SGD with start learning rate

0.1, weight decay 0.0001 and momentum 0.8, the learning

rate is multiplied by 0.1 at epoch 80 and 120. For ImageNet

models, we directly use the pre-trained models released

from pytorch [36]. After pruning, we finetune the model for

100 epochs using SGD with start learning rate 0.01, weight

decay 0.0001 and momentum 0.9, and the learning rate is

scaled by 0.1 at epoch 30, 60 and 90. For MobileNetV2 on

ImageNet, we choose weight decay as 0.00004 which is usd

in the original paper [41]. Both CIFAR-10 and ImageNet

finetuning hyperparameters are similar to those used in Col-

laborative Channel Pruning (CCP) [37]. During gate train-

ing, we choose the β of symmetric weight decay (Eq. (12))

as 0.0001. We randomly choose 2, 500 and 10, 000 samples

as the dataset for training gate (Dgate) for CIFAR-10 and

ImageNet separately. We didn’t create a standalone valida-

tion set for training gate in order to directly use pre-trained

models. In the gate training process, we use ADAM [21]

optimizer with a constant learning rate 0.001 and train gate

parameters for 300 epochs. All the codes are implemented

with pytorch [36]. The experiments are conducted on a ma-

chine with 4 Nvidia Tesla P40 GPUs.

Placement of Gate. Where to put gates is a crucial problem

to best approximate the output from actual sub-networks
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Method Architecture Baseline Acc Pruned Acc ∆-Acc Pruned FLOPs

Channel Pruning [13]

ResNet-56

92.80% 91.80% -1.00% 50.0%

AMC [11] 92.80% 91.90% -0.90% 50.0%

Pruning Filters [25] 93.04% 93.06% +0.02% 27.6%

Soft Prunings [10] 93.59% 93.35% -0.24% 52.6%

DCP [49] 93.80% 93.59% -0.31% 50.0%

DCP-Adapt [49] 93.80% 93.81% +0.01% 47.0%

CCP [37] 93.50% 93.42% -0.08% 52.6%

DMC(ours) 93.62% 93.69% +0.07% 50.0%

WM* [49]

MobileNetV2

94.47% 94.17% -0.30% 26.0%

DCP [49] 94.47% 94.69% +0.22% 26.0%

DMC(ours) 94.23% 94.49% +0.26% 40.0%

Table 1: Comparison results on CIFAR-10 dataset with ResNet-56 and MobileNetV2. ∆-Acc represents the performance

changes before and after model pruning. +/- indicates increase or decrease compared to baseline results. WM represents

width multiplier used in original design of MobileNetV2, this result is from DCP [49] paper.

(a) ResNet-50

(b) MobileNetV2

Figure 4: Networks discovered by our method from

ResNet-50 and MobileNetV2. Dashed line indicates chan-

nel number changes in the original model.

when corresponding channels are pruned. Following the

settings in NAS works [27, 50], we regard Conv-BN-Relu

as a complete block, thus the gates are always placed after

Relu activation functions. To better simulate the results of a

sub-network, we place two individual gates for a bottleneck

block in a ResNet. For MobileNetV2, we place two gates

in an inverted residual block, and the two gates share the

same set of parameters due to the nature of depth-wise con-

volution. Details are shown in Fig. 3. Following the above

settings, outputs from sampled sub-networks can well ap-

proximate the outputs from the actual compact network.

4.2. Results on CIFAR10

In Tab. 1, we show all the comparison results on CIFAR-

10. For ResNet-56, our method performs much better than

early methods [13, 11, 25, 10]. Specially, when compared

with Soft Pruning, our method is better than their results

by 0.31% on ∆-Acc given similar pruned FLOPs (52.6%
vs 50%). Discrimination-aware pruning utilizes local dis-

crimination criterion when pruning the model. Our method

outperforms DCP [49] by 0.38% on ∆-Acc with the same

pruned FLOPs. Moreover, our method outperforms DCP-

adapt (stronger version of DCP) by 0.06% give similar

pruned FLOPs. Collaborative filter pruning [37] is one of

the most recent works on channel pruning which consid-

ers the correlation between different weights when apply-

ing Taylor expansion on the loss function. Our method still

outperforms their result by 0.15% on ∆-Acc. Such obser-

vation may indicate that our method also implicitly consid-

ers weights correlation during the search of optimal sub-

network. For MobileNetV2, our method outperforms DCP

by 0.04% on ∆-Acc, while pruning 14% more FLOPs than

DCP. This shows that global discrimination-aware is better

than local discrimination-aware.

4.3. Results on ImageNet

In Tab. 2, we presents all the comparison results on Im-

ageNet. All results are adopted from their original papers

except for ThiNet on MobileNetV2. To establish a high-

quality baseline, the comparison methods are mainly cho-

sen from recently published papers. Specially, DCP [49],

CCP [37], IE [34], FPGM [12] and GAL [26] are from this

category. Such high-quality baselines can help us better un-

derstand the benefit of using discrete channel settings.

For ResNet-34, our method can prune 43.4% FLOPs

while only result in 0.73% and 0.31% performance drops

on Top-1 accuracy and Top-5 accuracy separately. FPGM

prunes slightly less FLOPs compared with our method

(41.1% vs 43.3%), however, it causes larger damage to the

final performance than our method (0.56% worse with Top-
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Method Architecture Baseline Top-1 Acc Baseline Top-5 Acc ∆-Acc Top-1 ∆-Acc Top-5 Pruned FLOPs

Pruning Filters [25]

ResNet-34

73.23% - -1.06% - 24.8%

Soft Prunings [10] 73.93% 91.62% -2.09% -1.92% 41.1%

IE [34] 73.31% - -0.48% - 24.2%

FPGM [12] 73.92% 91.62% -1.29% -0.54% 41.1%

DMC(ours) 73.30% 91.42% -0.73% -0.31% 43.4%

Soft Pruning [10]

ResNet-50

76.15% 92.87% -1.54% -0.81% 41.8%

IE [34] 76.18% - -1.68% - 45%

FPGM [12] 76.15% 92.87% -1.32% -0.55% 53.5%

GAL [26] 76.15% 92.87% -4.35% -2.05% 55.0%

DCP [49] 76.01% 92.93% -1.06% -0.61% 55.6%

CCP [37] 76.15% 92.87% -0.94% -0.45% 54.1%

DMC(ours) 76.15% 92.87% -0.80% -0.38% 55.0%

Rethinking [46]

ResNet-101

77.37% - -2.10% - 47.0%

IE [34] 77.37% - -0.02% - 39.8%

FPGM [12] 77.37% 93.56% -0.05% 0.00% 41.1%

DMC(ours) 77.37% 93.56% +0.03% +0.04% 56.0%

ThiNet* [32]

MobileNetV2

70.11% - -6.40% -4.60% 44.7%

DCP [49] 70.11% - -5.89% -3.77% 44.7%

DMC(ours) 71.88% 90.29% -3.51% -1.83% 46.0%

Table 2: Comparison results on ImageNet dataset with ResNet-34, ResNet-50, ResNet-101 and MobileNetV2. ∆-Acc rep-

resents the performance changes before and after model pruning. +/- indicates increase or decrease compared to baseline

results. ThiNet on MobileNetV2 results are from DCP [49] paper.

Gate Setting Architecture Top-1 Acc Top-5 Acc Pruned FLOPs

1-Gate
ResNet-50

75.06% 92.41% 55.2%

2-Gate 75.35% 92.49% 55.0%

1-Gate
MobileNetV2

67.73% 88.14% 45.3%

2-Gate-Shared 68.37% 88.46% 46.0%

Table 3: Performance of pruned models given different gate

settings on ImageNet.

1 accuracy and 0.23% worse with Top-5 accuracy). The

other two methods only prune a small amount of FLOPs

(around 25%). Our method has a lower Top-1 accuracy

compared with IE, but we prune 1.8 times as much FLOPs

as IE. For ResNet-50, our method achieves the best ∆-

Acc Top-1 and ∆-Acc Top-5 accuracy compared with all

other methods. Among all comparison methods, CCP has

the smallest performance gap with our method. Specifi-

cally, our DMC algorithm outperforms the state-of-the-art

pruning algorithm CCP by 0.14% at Top-1 accuracy with

slightly more pruned FLOPs (55.0% vs 54.1%). For other

comparison methods, our DMC algorithm has advantages

on Top-1 accuracy varying from 0.26% to 3.55%. For

ResNet-101, our method also achieves the best ∆-Acc Top-

1 and ∆-Acc Top-5 accuracy. Moreover, our DMC algo-

rithm prunes a much larger amount of FLOPs than all the

other methods (56% vs 47% the second largest). After

pruning 56% of FLOPs, the pruned ResNet-101 only has

3.43 GFLOPs which is even less than the vanilla ResNet-50

(4.09 GFLOPs). At such a high pruning rate for FLOPs,

the performance of pruned ResNet-101 even increases by

0.03% and 0.04% for Top-1 and Top-5 accuracy respec-

tively. For MobileNet-V2, our method largely increases

the results obtained by DCP. With similar amount of pruned

FLOPs (46% vs 44.7%), DMC outperforms DCP by 2.38%
and 1.94% for ∆-Acc Top-1 and ∆-Acc Top-5 accuracy.

Such significant improvement further shows that the global

discrimination-aware pruning utilized in our method has ob-

vious advantages when compared with local discrimination-

aware pruning utilized in DCP. Global discrimination-aware

is a direct consequence of discrete channel settings intro-

duced in our algorithm. We further plot the channel config-

urations for each layer of ResNet-50 and MobileNetV2 after

pruning in Fig. 4. Since early layers often have a large im-

pact on FLOPs, most early layers are aggressively pruned.

But there are some exceptions, layer-1 and layer-8 have a

much higher preserved number of channels compared to ad-

jacent layers in ResNet-50. Similar observations hold for

layer-3 and layer-6 in MobileNetV2. These layers are re-

garded as important components in our method.

4.4. Impact of Gate Placement

In Tab. 3, we show how gate placement impacts the per-

formance of the pruned model. 1-Gate represents removing

gates with the dashed line in Fig 3. 2-Gate and 2-Gate-

Shared are the original settings described in section 4.1.

From this table, we can see that precise estimation of sub-

network performance results in improvements in the final

model (+0.29% on Top-1 for ResNet, +0.64% on Top-1

for MobileNetV2). This experiment clearly shows that the
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(a) 35% FLOPs (b) 50% FLOPs (c) 65% FLOPs (d) 80% FLOPs

(e) 35% FLOPs (f) 50% FLOPs (g) 65% FLOPs (h) 80% FLOPs

(i) 35% FLOPs (j) 50% FLOPs (k) 55% FLOPs (l) 80% FLOPs

Figure 5: (a)-(d): Test set performance and regularization loss with the progress of gate training. (e)-(h): Pruning rate on

different layers with the progress of gate training. (i)-(l): Evolution of gate randomness during the progress of gate training.

discrepancy between the precise and imprecise estimation

of sub-network during gate training.

4.5. Understanding the Training of Discrete Gates

We draw related figures about the gate training process

in Fig. 5. Four experiments are conducted given different

values of p from 0.35 to 0.8 on CIFAR-10 with ResNet-56.

Fig. 5 (a)-(d) show the test performance along with regu-

larization loss. It’s quite clear that there are two stages for

gate training. In the first stage, the test accuracy of the sub-

network sharply drops, at the same time, regularization loss

drops too. In the second stage, regularization loss is near

0, the test performance continues to increase until the end

of the training process. This shows that our DMC algorithm

can consistently find sub-networks with better performance.

Fig. 5 (e)-(h) show the progress of pruning rate for different

layers. We can see the pruning rate of a layer dramatically

decreases at the beginning. However, within the process

of the second training stage, some pruned channels of cer-

tain layers are recovered. This observation shows that our

method indeed explores the search space instead of stack-

ing at a trivial solution with a fixed sub-network. In Fig.5

(i)-(l), we plot the value of s =
∑L

l=1

∑Cl
c=1

|θl,c−0.5|

n
. This value

can roughly measure whether the discrete gate is inclined to

deterministic (θ is close to 0 or 1) or stochastic (θ is close

to 0.5). At the beginning of training, s dramatically drops,

depicting that increased stochasticity when sampling a sub-

network. After training for a while, there is a turning point

that the gates start to become more deterministic. This is

mainly because that the information from the samples is uti-

lized to reduce the stochasticity and make it more confident

towards the final sub-network.

5. Conclusion

In this paper, we proposed an effective discrete model

compression method to prune CNNs given certain re-

source constraints. By turning deterministic discrete gate to

stochastic discrete gate, moreover, our method can explore

larger search space of sub-networks. To further enlarge the

space, we introduced the symmetric weight decay on the

gate parameters inspired by the fact that regularization loss

can be regarded as weight decay. Our method also benefits

from the exact estimation of sub-networks’ outputs because

of a combination of the precise placement of gates and the

discrete setting. Extensive experiments results on ImageNet

and CIFAR-10 show that our method outperforms state-of-

the-art methods.
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