
Discrete Model Compression with Resource Constraint

for Deep Neural Networks

Shangqian Gao1,3, Feihu Huang1, Jian Pei2, and Heng Huang∗1,3

1Electrical and Computer Engineering Department, University of Pittsburgh, PA, USA
2School of Computing Science, Simon Fraser University, BC, Canada

3JD Finance America Corporation, Mountain View, CA, USA
shg84@pitt.edu, feh23@pitt.edu, jpei@cs.sfu.ca, heng.huang@pitt.edu

Abstract

In this paper, we target to address the problem of com-

pression and acceleration of Convolutional Neural Net-

works (CNNs). Specifically, we propose a novel structural

pruning method to obtain a compact CNN with strong dis-

criminative power. To find such networks, we propose an

efficient discrete optimization method to directly optimize

channel-wise differentiable discrete gate under resource

constraint while freezing all the other model parameters.

Although directly optimizing discrete variables is a complex

non-smooth, non-convex and NP-hard problem, our opti-

mization method can circumvent these difficulties by using

the straight-through estimator. Thus, our method is able to

ensure that the sub-network discovered within the training

process reflects the true sub-network. We further extend the

discrete gate to its stochastic version in order to thoroughly

explore the potential sub-networks. Unlike many previous

methods requiring per-layer hyper-parameters, we only re-

quire one hyper-parameter to control FLOPs budget. More-

over, our method is globally discrimination-aware due to

the discrete setting. The experimental results on CIFAR-

10 and ImageNet show that our method is competitive with

state-of-the-art methods.

1. Introduction

Convolutional Neural Networks (CNNs) have achieved

great success in computer vision tasks [23, 39, 40, 42, 2].

With more and more sophisticated GPU support on CNNs,

the complexity of CNN grows dramatically from several

layers [23, 43] to hundreds of layers [9, 17]. Although these

∗Corresponding Author. This work was partially supported by U.S.

NSF IIS 1836945, IIS 1836938, IIS 1845666, IIS 1852606, IIS 1838627,

IIS 1837956.

complex CNNs can achieve strong performance on vision

tasks, there is an unavoidable growth of the computational

cost and model parameters. Such a huge computational bur-

den prohibits the model from being deployed on mobile de-

vices and resource-limited platforms. Even if the model can

be deployed on mobile devices, the battery will be depleted

quickly due to huge computational costs. To tackle such

problems, many efforts [8, 7] have been devoted for get-

ting compact sub-networks from the original computational

heavy model.

Structural pruning, especially channel pruning, is an ef-

ficient way to reduce computational cost since it doesn’t re-

quire any post-processing steps to acquire acceleration. One

of the most challenging parts of structural pruning is how

to deal with the natural discrete configuration of channels

in each layer. Many existing works [31, 37] try to solve

this problem by relaxing discrete values to continuous val-

ues. However, such relaxation may lead to a biased estima-

tion of the corresponding pruning criterion, since you can’t

completely remove the impact of channels with small im-

portance value. Some other methods [28, 34] use the esti-

mation of channel importance to decide whether to prune

a channel, nonetheless, the relative importance of a chan-

nel can be changed due to the choice of the sub-network.

Recently, discrimination-aware pruning [49] has been pro-

posed to explore the impact of discriminative power on

channel pruning. Although this method considers the dis-

criminative power of CNNs by adding classifiers on inter-

mediate layers, it does not consider CNN as a whole, which

may result in sub-optimal compression results.

To deal with these challenges, we propose a new method

of using the discrete gate to turn off or turn on certain chan-

nels. By doing so, we can always get the exact model out-

put given different sub-network architectures. Thanks to

the precise output estimation of a sub-network, our method

1899



is able to consider the discriminative power of a complete

sub-network. At the same time, we do not take the mag-

nitude of a channel into consideration, the global discrim-

inative power is the only criterion. Moreover, we pro-

pose an efficient optimization method to obtain the sub-

network. Although directly optimizing discrete variables is

often non-smooth non-convex and NP-hard, our optimiza-

tion method can circumvent these difficulties by using the

straight-through estimator (STE) [1].

Automatic Model Compression (AMC) [11] is a pioneer

method using the discrete channel setting, which is opti-

mized by reinforced learning. Different from AMC, our

method is guided by gradients of the loss function when ex-

ploring sub-networks from the original CNN . Our method

can obtain a sub-network efficiently due to its differentiable

nature. On ImageNet dataset, our method can discover

a high performance sub-network satisfying given budget

within 2% of time for regular training (finetuning time is

excluded). From this perspective, our method is also related

to differentiable architecture search (DARTS) [27].

Our main contributions are summarized as follows:

1) To compress a model, we apply the discrete gate on

each channel, which ensures that the output from any

sub-networks is correct and unbiased.

2) We use STE to enable back-propagation through dis-

crete variables. To further enlarge the search space

of sub-networks, we replace the discrete gate with its

stochastic version.

3) To ensure we can get the model with the given compu-

tational budget, we further propose resource regular-

ization when exploring potential sub-networks.

4) Extensive experimental results show that our method

achieves state-of-the-art results on CIFAR10 and Ima-

geNet with ResNet and MobileNetV2.

2. Related Works

Model compression recently has drawn a lot of attention

from the compute vision community. In general, current

model compression methods can be separated into the fol-

lowing four categories: weight pruning, structural pruning,

weight quantization, and knowledge distillation [14].

Weight pruning eliminates model parameters without

any assumption on the structure of weights. One of the early

works [8] uses L1 or L2 magnitude as criterion to remove

weights. Under this setting, parameters lower than a certain

threshold are removed, and weights with small magnitude

are considered not important. A systematic DNN weight

pruning framework [48] has been proposed by using alter-

nating direction method of multipliers (ADMM) [3, 15, 16].

Different from the aforementioned works, SNIP [24] up-

dates the importance of weights by backpropagating gradi-

ents from the loss function. Lottery ticket hypothesis [6]

is another very interesting weight pruning algorithm, which

manifests that small high-performance sub-networks exist

within the overparameterized large network at initialization

time. Different from the lottery ticket hypothesis, in re-

thinking the value of network pruning [29], they argue that

fine-tuning a pre-trained model is not necessary and show

that the pruned model with random initialization achieves

better performance. he major drawback of weight level

pruning is that they often require specially designed sparse

matrix multiplication library to achieve acceleration.

Different from weight pruning, structural pruning pro-

vides a natural way to reduce computational costs. The de-

velopment of structural pruning is similar to weight pruning

in that channels with low magnitude are often regarded as

not important [25]. Similar to the idea of magnitude prun-

ing, Group Lasso [45] is also applied on CNNs to struc-

turally make channels or filters to have all 0 values, thus

those channels can be safely removed. GrOWL [47] fo-

cuses on exploring inter-channel relations on top of spar-

sity, and argues that similar channels can share the same

weights. The following researches show that weights with

small magnitude could be important [30], and it’s difficult

for channels under L1 regularization to achieve exact zero

values. To compensate this, they propose to get exact zero

values for each channel by using explicit L0 regulariza-

tion [30]. Besides simply using channel magnitude as prun-

ing standards, other methods utilize batchnorm to achieve

the similar target, since batchnorm [19] is an indispensable

component in recent neural network designs [9, 17]. For

each channel, batchnorm uses a scaling factor γ to adjust

the magnitude of corresponding feature maps. To achieve

the goal of channel pruning, γ is regularized to be sparse

and γ fell below a predefined threshold will be set to 0 dur-

ing model pruning [28]. Other works related to this idea in-

cludes [46, 18, 20]. Unlike previous methods relying on the

magnitude of channels, discrimination-aware pruning [49]

utilizes local discriminative power to help channel pruning.

AMC [11] achieves the goal of channel pruning in a dis-

crete setting by taking the advantages of reinforcing learn-

ing. Collaborative channel pruning [37] focuses on pruning

channels by utilizing Taylor expansion of the loss function.

Our method belongs to this category, the major difference

between our method and previous model pruning methods

is that our method strictly uses the discrete setting of chan-

nels while it can be optimized through gradient descent.

Weight quantization is another direction for model com-

pression, which focuses on reducing the numerical preci-

sion of weights from 32-bit float point value to low bit value.

Binary connects [4] and binary neural network [38] push

the full precision weight to binary weight values, making

the model weights become binary values. The connection

between our method and weight quantization is that both of

them use STE to estimate the gradient for discrete value.

1900



…
…

… …

… …

… …

0.91 0.20 0.88 0.43 0.00 1.00

1 0 1 0 0 1

Binarization

0.89 0.77 0.63 0.68 0.00 0.23

1 1 1 1 0 0

Binarization

𝒈(𝜽)
𝜽min𝜃 𝐿 + 𝜆𝑅

S
T

E

Gradients

0.22

0.20

0.58
Sampling 

Probability

Sampling Sub-network with 

Stochastic Discrete Gate

Update 𝜽with STE  

Original Model

𝒍

𝒍 + 𝟏

Figure 1: The gate training process of the proposed method.

A sub-network is sampled according to Eq. (4). Then θ is

optimized through STE with gradient descent. At the next

iteration, the sub-network is sampled with the updated θ.

Besides the aforementioned methods, there are works

from other directions. There is a range of methods focus on

pruning weights [33] or structures [35] by utilizing uncer-

tainty in weights. EigenDamge [44] can achieve structural

pruning by using Kronecker-factored eigenbasis.

3. Proposed Method

3.1. Notations

To better describe proposed approach, we first define

some notations. The feature map of each layer can be rep-

resented by Fl ∈ ℜCl×Wl×Hl where Cl is the number of

channels, Wl and Hl are height and width of the current fea-

ture map. Fl,c is the feature map of c-th channel from l-th

layer. The mini-batch dimension of feature map is ignored

to simplify notations. Throughout the paper, w.p. means

with probability. 1 = [1, . . . , 1]T is a vector with all ones.

sign(·) is the popular sign function.

3.2. Differentiable Discrete Gate

In this paper, to incorporate the discrete nature of chan-

nel pruning, we explicitly consider using discrete-valued

gates to represent open or close of a channel. The discrete

gate function can be described as follows:

g(θ) =

{
1 if θ ∈ [0.5, 1],
0 if θ ∈ [0, 0.5),

(1)

where θ ∈ [0, 1] is a learnable parameter in our setting. The

discrete gate function is applied after the output feature map

of a layer:

F̂l,c = g(θl,c) · Fl,c, (2)

where F̂l,c is the feature map after pruning.

Since the binary gate function is not differentiable,

STE [1] is used to enable gradient calculation, which can

be described as follows:

∂L

∂θ
=

∂L

∂g(θ)
, (3)

where L is the loss function. Here, the backward propaga-

tion of g(θ) can be understood as an identity function within

certain range. If θ 6∈ [0, 1], the gradient will not be calcu-

lated, and the θ will be clipped to range [0, 1].
In fact, there are some limitations of the deterministic

discrete gate function. For example, once the g(θ) of cer-

tain channels become 0, then these channels are probably

remained pruned, and they may never be selected as candi-

date channels. To compensate such situations, we further

propose the stochastic discrete gate to ensure gates with

θ lower than 0.5 can be considered as candidate channels

again. Specifically, the stochastic discrete gate is achieved

by applying stochastic rounding:

g(θ) =

{
1 w.p. θ

0 w.p. 1− θ
(4)

where θ is within [0, 1] to satisfy the definition of probabil-

ity. From this definition, we can see that a channel always

has a chance to be sampled if θ 6= 0. Since our method uses

the discrete setting, sampling from the stochastic discrete

gate is equivalent to sample a sub-network.

3.3. Model Compression as Constrained Optimiza­
tion

There are many different ways to represent the pruning

objective for model compression. In this paper, we mainly

focus on the following channel pruning problem:

min
Θ

L
(
f(x;W,Θ), y

)

s.t. 1Tg − p1TC = 0

g ∈ {0, 1}n,

(5)

where g = (g1, . . . , gL) is a vector containing all gate val-

ues, gl = [g(θl,1), . . . , g(θl,Cl
)]T is the vector containing

gate values in l-th layer, Θ are the parameters of discrete

gates following the definition in section 3.2, W is the model

parameters, p is a predefined threshold working as the prun-

ing rate, and C = (C1, · · · , CL). Here, 1Tg is the sum of

all gate values, which represents the number of remained

channels, n is the total number of gates and 1TC is the to-

tal number of channels. Note that not all layers are included

in Eq. (5), and the vector g and C only contain layers are

used for pruning. There are several remarks on this pruning

objective: 1) The pruning of channels only depends on the

discriminate power of its own, channel magnitude is irrel-

evant during model pruning; 2) There exists no layer-wise

1901



hyper-parameter, only a global hyper-parameter is used to

control pruning rate; 3) During training of the parameters

for the gate function, model parameters W are fixed.

Under this setting, the major advantage of the discrete

gate setting is that the impact of pruned channels are pre-

cisely reflected in the value of loss function. If the gates are

relaxed in continuous values, then it doesn’t possess such

good property. In addition, continuous relaxed gate func-

tion causes severe difficulty to solve the optimization prob-

lem defined in Eq. (5).

For simplicity, we replace the equality constraint with a

regularization term and redefine the optimization problem

as follows:

min
Θ

F(Θ) := L
(
f(x;W,Θ), y

)
+λR(1Tg, p1TC), (6)

where R(·, ·) is the specific regularization function used,

which can be a typical regression loss function such as

MAE or MSE. In practice, both MAE and MSE are not

used, we will talk about the choice of R(·, ·) later. The

constraint g ∈ {0, 1}n is absorbed into the optimization

problem due to the definition of discrete gate (Eq. (1) and

(4)).

Recently, there are increasing interests in reducing the

float point operations (FLOPs) in model pruning literature.

The definition used in Eq. (6) along with the definition of

deterministic discrete gate in Eq. (1) can easily transform

the pruning rate constraint in Eq. (5) to FLOPs constraint.

Recall that for a single convolution layer l with one sample,

the FLOPs calculation can be down as follows:

(FLOPs)l = kl · kl ·
cl−1

Gl

· cl · wl · hl, (7)

where kl is the kernel size, Gl is the number of groups, cl−1

and cl are the number of input and output channels, wl and

hl are width and height, (FLOPs)l is the FLOPs of l-th layer.

By replacing cl and cl−1 with gl and gl−1, we get a new rep-

resentation of FLOPs during searching for sub-networks:

̂(FLOPs)l = kl · kl ·
1Tgl−1

Gl

· 1Tgl · wl · hl, (8)

Then combining Eq. (7), Eq. (8) with Eq. (6), the original

R(1Tg, p1TC) is replaced by the FLOPs regularzation:

R(T̂ , pT ), (9)

where T̂ =
L∑

l=1

̂(FLOPs)l and T =
L∑

l=1

(FLOPs)l are re-

mained FLOPs and total FLOPs of the model. Note that

we still use p as the only global hyper-parameter to repre-

sent the remaining fractions of the FLOPs. By incorporating

FLOPs regularization and the objective in Eq. (6), we can

prune the model to arbitrary level of FLOPs.

(a) function value of the regular-

ization

(b) gradients of the regulariza-

tion

Figure 2: The values and gradients of the resource regular-

ization, y is set to 0 for better visualization.

3.4. Choice of the Regularization Loss

In order to train the parameters of gates properly, the

value of the regularization term should be decreased to near

0 in the early stage of gate training, and remain near 0 for

the rest of the training process. The reason we want to keep

the regularization term near 0 for most time is to ensure the

algorithm have enough time to discover the best possible

sub-architecture with the given constraint. Regular regres-

sion loss like MAE and MSE can’t satisfy this requirement,

since their gradient is either constant or decreasing when

close to 0. To overcome this issue, we propose the follow-

ing regularization loss:

Rlog(x, y) = log(|x− y|+ 1). (10)

The plot of gradient and value of this function is shown in

Fig. 2. The benefit of this function is that when x is close to

target y, the gradient will increase and keep x close to the

target value y. The loss function is not differentiable at the

point x = y by definition, but sub-gradient can be used here

which has been implemented in major deep learning frame-

works. In practice, the Eq. (10) works well for appropriate

choice of λ, on the contrary, MAE and MSE often fail to

keep the value of the regularization term close to 0.

3.5. Symmetric Weight Decay

To further expand search space, we propose a symmetric

weight decay on the weights of gates, which is inspired by

the subgradient of the regularization loss:

∂Rlog

∂θl,c
=

{
ηl ·

1

|T̂−pT |+1
· T̂−pT

|T̂−pT |
, if T̂ 6= pT

0, if T̂ = pT
(11)

where ηl = k2l ·
1
T
gl−1

Gl
·wl ·hl. Eq. (11) indicates that Rlog

works like weight decay with different decay value for each

layer while the decay value is also different for each training

iteration. Since the impact of Rlog on θ can be expressed by

weight decay, the stochasticity of the gates can be increased

in a similar way. Based on above arguments, we can explore

1902



Algorithm 1: Discrete Model Compression

input: dataset for training gate, Dgate; remaining

rate of FLOPs, p; regularization hyper-parameter,

λ; symmetric weight decay parameter β; gate

training epochs num-E; pre-trained model f .

Freeze W and batchnorm parameters in f .

Initialize all θl,c to 1.

for e := 1 to num-E do
shuffle(Dgate)

foreach x, y in Dgate do
1. forward calculation:

min
Θ

F(Θ) = L(f(x;W,Θ), y) + λRlog

2. calculate gradient w.r.t θl,c.

3. update each θl,c by ADAM optimizer.

4. apply symmetric weight decay on θl,c
defined in Eq. (12).

5. clip each θl,c to [0,1].

end

end

return model f with the final Θ.

larger search spaces by applying symmetric weight decay

on each θl,c. The goal of doing this is to slow down the

pace of gate parameters to become deterministic (approach

0 or 1). As a result, the search space is enlarged:

θl,c = θl,c − βsign(θl,c − 0.5), (12)

where β is the hyper-parameter to control the strength of

weight decay.

3.6. Our DMC Algorithm

We have introduced the core idea of our method, and the

discrete model compression (DMC) algorithm is presented

in Algorithm 1. During freezing trainable parameters, the

batchnorm running statistics are also frozen. It should be

emphasized again that the gate learning process is isolated

from the training of the model parameters. In this way, we

can prune any pre-trained models without modifications. In

the calculation of L, the sub-networks are drawn from the

stochastic discrete gate. When calculating FLOPs regular-

ization and during model pruning, the deterministic version

of the gate is used. Both stochastic and deterministic calcu-

lation share the same θl,c.

4. Experiments

4.1. Settings

Implementation Detail. We use CIFAR-10 [22] and Im-

ageNet [5] to verify the performance of our method. Our

method only requires one hyperparameter p to control the

FLOPs budget. For all experiments, we use resource reg-

ularization with Rlog defined in Eq. (10). As a result, p

Conv1x1, BN, Relu

Conv3x3, BN, Relu

Conv1x1, BN, Relu

Gate-2

Gate-1

(a) Bottleneck Block

Conv1x1, BN, Relu

Dwise3x3, BN, Relu

Conv1x1, BN

Gate

Gate

S
h

a
re

 w
e

ig
h

ts

(b) Inverted Residual Block

Figure 3: Gate placement for different architectures. (a)

Bottleneck Block for ResNet. (b) Inverted Residual Block

for MobileNetV2.

decides how much FLOPs are preserved for each experi-

ment. λ decides the regularization strength in our method.

We choose λ = 4 in all CIFAR-10 experiments and λ = 8
for all ImageNet experiments. For CIFAR-10, we compare

with other methods on ResNet-56 and MobileNetV2. For

ImageNet, we select ResNet-34, ResNet50, ResNet101 and

MobileNetV2 as our target models. The reason we choose

these models is because that ResNet [9] models and Mo-

bileNetV2 [41] are much harder to prune than earlier mod-

els like AlexNet [23] and VGG [43]. For CIFAR-10 mod-

els, we train it from scratch following the code from Py-

Torch examples. After pruning the model, we finetune the

model for 160 epochs using SGD with start learning rate

0.1, weight decay 0.0001 and momentum 0.8, the learning

rate is multiplied by 0.1 at epoch 80 and 120. For ImageNet

models, we directly use the pre-trained models released

from pytorch [36]. After pruning, we finetune the model for

100 epochs using SGD with start learning rate 0.01, weight

decay 0.0001 and momentum 0.9, and the learning rate is

scaled by 0.1 at epoch 30, 60 and 90. For MobileNetV2 on

ImageNet, we choose weight decay as 0.00004 which is usd

in the original paper [41]. Both CIFAR-10 and ImageNet

finetuning hyperparameters are similar to those used in Col-

laborative Channel Pruning (CCP) [37]. During gate train-

ing, we choose the β of symmetric weight decay (Eq. (12))

as 0.0001. We randomly choose 2, 500 and 10, 000 samples

as the dataset for training gate (Dgate) for CIFAR-10 and

ImageNet separately. We didn’t create a standalone valida-

tion set for training gate in order to directly use pre-trained

models. In the gate training process, we use ADAM [21]

optimizer with a constant learning rate 0.001 and train gate

parameters for 300 epochs. All the codes are implemented

with pytorch [36]. The experiments are conducted on a ma-

chine with 4 Nvidia Tesla P40 GPUs.

Placement of Gate. Where to put gates is a crucial problem

to best approximate the output from actual sub-networks

1903



Method Architecture Baseline Acc Pruned Acc ∆-Acc Pruned FLOPs

Channel Pruning [13]

ResNet-56

92.80% 91.80% -1.00% 50.0%

AMC [11] 92.80% 91.90% -0.90% 50.0%

Pruning Filters [25] 93.04% 93.06% +0.02% 27.6%

Soft Prunings [10] 93.59% 93.35% -0.24% 52.6%

DCP [49] 93.80% 93.59% -0.31% 50.0%

DCP-Adapt [49] 93.80% 93.81% +0.01% 47.0%

CCP [37] 93.50% 93.42% -0.08% 52.6%

DMC(ours) 93.62% 93.69% +0.07% 50.0%

WM* [49]

MobileNetV2

94.47% 94.17% -0.30% 26.0%

DCP [49] 94.47% 94.69% +0.22% 26.0%

DMC(ours) 94.23% 94.49% +0.26% 40.0%

Table 1: Comparison results on CIFAR-10 dataset with ResNet-56 and MobileNetV2. ∆-Acc represents the performance

changes before and after model pruning. +/- indicates increase or decrease compared to baseline results. WM represents

width multiplier used in original design of MobileNetV2, this result is from DCP [49] paper.

(a) ResNet-50

(b) MobileNetV2

Figure 4: Networks discovered by our method from

ResNet-50 and MobileNetV2. Dashed line indicates chan-

nel number changes in the original model.

when corresponding channels are pruned. Following the

settings in NAS works [27, 50], we regard Conv-BN-Relu

as a complete block, thus the gates are always placed after

Relu activation functions. To better simulate the results of a

sub-network, we place two individual gates for a bottleneck

block in a ResNet. For MobileNetV2, we place two gates

in an inverted residual block, and the two gates share the

same set of parameters due to the nature of depth-wise con-

volution. Details are shown in Fig. 3. Following the above

settings, outputs from sampled sub-networks can well ap-

proximate the outputs from the actual compact network.

4.2. Results on CIFAR­10

In Tab. 1, we show all the comparison results on CIFAR-

10. For ResNet-56, our method performs much better than

early methods [13, 11, 25, 10]. Specially, when compared

with Soft Pruning, our method is better than their results

by 0.31% on ∆-Acc given similar pruned FLOPs (52.6%
vs 50%). Discrimination-aware pruning utilizes local dis-

crimination criterion when pruning the model. Our method

outperforms DCP [49] by 0.38% on ∆-Acc with the same

pruned FLOPs. Moreover, our method outperforms DCP-

adapt (stronger version of DCP) by 0.06% give similar

pruned FLOPs. Collaborative filter pruning [37] is one of

the most recent works on channel pruning which consid-

ers the correlation between different weights when apply-

ing Taylor expansion on the loss function. Our method still

outperforms their result by 0.15% on ∆-Acc. Such obser-

vation may indicate that our method also implicitly consid-

ers weights correlation during the search of optimal sub-

network. For MobileNetV2, our method outperforms DCP

by 0.04% on ∆-Acc, while pruning 14% more FLOPs than

DCP. This shows that global discrimination-aware is better

than local discrimination-aware.

4.3. Results on ImageNet

In Tab. 2, we presents all the comparison results on Im-

ageNet. All results are adopted from their original papers

except for ThiNet on MobileNetV2. To establish a high-

quality baseline, the comparison methods are mainly cho-

sen from recently published papers. Specially, DCP [49],

CCP [37], IE [34], FPGM [12] and GAL [26] are from this

category. Such high-quality baselines can help us better un-

derstand the benefit of using discrete channel settings.

For ResNet-34, our method can prune 43.4% FLOPs

while only result in 0.73% and 0.31% performance drops

on Top-1 accuracy and Top-5 accuracy separately. FPGM

prunes slightly less FLOPs compared with our method

(41.1% vs 43.3%), however, it causes larger damage to the

final performance than our method (0.56% worse with Top-

1904



Method Architecture Baseline Top-1 Acc Baseline Top-5 Acc ∆-Acc Top-1 ∆-Acc Top-5 Pruned FLOPs

Pruning Filters [25]

ResNet-34

73.23% - -1.06% - 24.8%

Soft Prunings [10] 73.93% 91.62% -2.09% -1.92% 41.1%

IE [34] 73.31% - -0.48% - 24.2%

FPGM [12] 73.92% 91.62% -1.29% -0.54% 41.1%

DMC(ours) 73.30% 91.42% -0.73% -0.31% 43.4%

Soft Pruning [10]

ResNet-50

76.15% 92.87% -1.54% -0.81% 41.8%

IE [34] 76.18% - -1.68% - 45%

FPGM [12] 76.15% 92.87% -1.32% -0.55% 53.5%

GAL [26] 76.15% 92.87% -4.35% -2.05% 55.0%

DCP [49] 76.01% 92.93% -1.06% -0.61% 55.6%

CCP [37] 76.15% 92.87% -0.94% -0.45% 54.1%

DMC(ours) 76.15% 92.87% -0.80% -0.38% 55.0%

Rethinking [46]

ResNet-101

77.37% - -2.10% - 47.0%

IE [34] 77.37% - -0.02% - 39.8%

FPGM [12] 77.37% 93.56% -0.05% 0.00% 41.1%

DMC(ours) 77.37% 93.56% +0.03% +0.04% 56.0%

ThiNet* [32]

MobileNetV2

70.11% - -6.40% -4.60% 44.7%

DCP [49] 70.11% - -5.89% -3.77% 44.7%

DMC(ours) 71.88% 90.29% -3.51% -1.83% 46.0%

Table 2: Comparison results on ImageNet dataset with ResNet-34, ResNet-50, ResNet-101 and MobileNetV2. ∆-Acc rep-

resents the performance changes before and after model pruning. +/- indicates increase or decrease compared to baseline

results. ThiNet on MobileNetV2 results are from DCP [49] paper.

Gate Setting Architecture Top-1 Acc Top-5 Acc Pruned FLOPs

1-Gate
ResNet-50

75.06% 92.41% 55.2%

2-Gate 75.35% 92.49% 55.0%

1-Gate
MobileNetV2

67.73% 88.14% 45.3%

2-Gate-Shared 68.37% 88.46% 46.0%

Table 3: Performance of pruned models given different gate

settings on ImageNet.

1 accuracy and 0.23% worse with Top-5 accuracy). The

other two methods only prune a small amount of FLOPs

(around 25%). Our method has a lower Top-1 accuracy

compared with IE, but we prune 1.8 times as much FLOPs

as IE. For ResNet-50, our method achieves the best ∆-

Acc Top-1 and ∆-Acc Top-5 accuracy compared with all

other methods. Among all comparison methods, CCP has

the smallest performance gap with our method. Specifi-

cally, our DMC algorithm outperforms the state-of-the-art

pruning algorithm CCP by 0.14% at Top-1 accuracy with

slightly more pruned FLOPs (55.0% vs 54.1%). For other

comparison methods, our DMC algorithm has advantages

on Top-1 accuracy varying from 0.26% to 3.55%. For

ResNet-101, our method also achieves the best ∆-Acc Top-

1 and ∆-Acc Top-5 accuracy. Moreover, our DMC algo-

rithm prunes a much larger amount of FLOPs than all the

other methods (56% vs 47% the second largest). After

pruning 56% of FLOPs, the pruned ResNet-101 only has

3.43 GFLOPs which is even less than the vanilla ResNet-50

(4.09 GFLOPs). At such a high pruning rate for FLOPs,

the performance of pruned ResNet-101 even increases by

0.03% and 0.04% for Top-1 and Top-5 accuracy respec-

tively. For MobileNet-V2, our method largely increases

the results obtained by DCP. With similar amount of pruned

FLOPs (46% vs 44.7%), DMC outperforms DCP by 2.38%
and 1.94% for ∆-Acc Top-1 and ∆-Acc Top-5 accuracy.

Such significant improvement further shows that the global

discrimination-aware pruning utilized in our method has ob-

vious advantages when compared with local discrimination-

aware pruning utilized in DCP. Global discrimination-aware

is a direct consequence of discrete channel settings intro-

duced in our algorithm. We further plot the channel config-

urations for each layer of ResNet-50 and MobileNetV2 after

pruning in Fig. 4. Since early layers often have a large im-

pact on FLOPs, most early layers are aggressively pruned.

But there are some exceptions, layer-1 and layer-8 have a

much higher preserved number of channels compared to ad-

jacent layers in ResNet-50. Similar observations hold for

layer-3 and layer-6 in MobileNetV2. These layers are re-

garded as important components in our method.

4.4. Impact of Gate Placement

In Tab. 3, we show how gate placement impacts the per-

formance of the pruned model. 1-Gate represents removing

gates with the dashed line in Fig 3. 2-Gate and 2-Gate-

Shared are the original settings described in section 4.1.

From this table, we can see that precise estimation of sub-

network performance results in improvements in the final

model (+0.29% on Top-1 for ResNet, +0.64% on Top-1

for MobileNetV2). This experiment clearly shows that the

1905



(a) 35% FLOPs (b) 50% FLOPs (c) 65% FLOPs (d) 80% FLOPs

(e) 35% FLOPs (f) 50% FLOPs (g) 65% FLOPs (h) 80% FLOPs

(i) 35% FLOPs (j) 50% FLOPs (k) 55% FLOPs (l) 80% FLOPs

Figure 5: (a)-(d): Test set performance and regularization loss with the progress of gate training. (e)-(h): Pruning rate on

different layers with the progress of gate training. (i)-(l): Evolution of gate randomness during the progress of gate training.

discrepancy between the precise and imprecise estimation

of sub-network during gate training.

4.5. Understanding the Training of Discrete Gates

We draw related figures about the gate training process

in Fig. 5. Four experiments are conducted given different

values of p from 0.35 to 0.8 on CIFAR-10 with ResNet-56.

Fig. 5 (a)-(d) show the test performance along with regu-

larization loss. It’s quite clear that there are two stages for

gate training. In the first stage, the test accuracy of the sub-

network sharply drops, at the same time, regularization loss

drops too. In the second stage, regularization loss is near

0, the test performance continues to increase until the end

of the training process. This shows that our DMC algorithm

can consistently find sub-networks with better performance.

Fig. 5 (e)-(h) show the progress of pruning rate for different

layers. We can see the pruning rate of a layer dramatically

decreases at the beginning. However, within the process

of the second training stage, some pruned channels of cer-

tain layers are recovered. This observation shows that our

method indeed explores the search space instead of stack-

ing at a trivial solution with a fixed sub-network. In Fig.5

(i)-(l), we plot the value of s =
∑L

l=1

∑Cl
c=1

|θl,c−0.5|

n
. This value

can roughly measure whether the discrete gate is inclined to

deterministic (θ is close to 0 or 1) or stochastic (θ is close

to 0.5). At the beginning of training, s dramatically drops,

depicting that increased stochasticity when sampling a sub-

network. After training for a while, there is a turning point

that the gates start to become more deterministic. This is

mainly because that the information from the samples is uti-

lized to reduce the stochasticity and make it more confident

towards the final sub-network.

5. Conclusion

In this paper, we proposed an effective discrete model

compression method to prune CNNs given certain re-

source constraints. By turning deterministic discrete gate to

stochastic discrete gate, moreover, our method can explore

larger search space of sub-networks. To further enlarge the

space, we introduced the symmetric weight decay on the

gate parameters inspired by the fact that regularization loss

can be regarded as weight decay. Our method also benefits

from the exact estimation of sub-networks’ outputs because

of a combination of the precise placement of gates and the

discrete setting. Extensive experiments results on ImageNet

and CIFAR-10 show that our method outperforms state-of-

the-art methods.

1906



References

[1] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.

Estimating or propagating gradients through stochastic

neurons for conditional computation. arXiv preprint

arXiv:1308.3432, 2013.

[2] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,

Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D

Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.

End to end learning for self-driving cars. arXiv preprint

arXiv:1604.07316, 2016.

[3] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato,

Jonathan Eckstein, et al. Distributed optimization and sta-

tistical learning via the alternating direction method of mul-

tipliers. Foundations and Trends R© in Machine learning,

3(1):1–122, 2011.

[4] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre

David. Binaryconnect: Training deep neural networks with

binary weights during propagations. In Advances in neural

information processing systems, pages 3123–3131, 2015.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical im-

age database. In Computer Vision and Pattern Recognition,

2009. CVPR 2009. IEEE Conference on, pages 248–255.

Ieee, 2009.

[6] Jonathan Frankle and Michael Carbin. The lottery ticket hy-

pothesis: Finding sparse, trainable neural networks. In Inter-

national Conference on Learning Representations, 2019.

[7] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015.

[8] Song Han, Jeff Pool, John Tran, and William Dally. Learning

both weights and connections for efficient neural network. In

Advances in neural information processing systems, pages

1135–1143, 2015.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[10] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi

Yang. Soft filter pruning for accelerating deep convolutional

neural networks. In International Joint Conference on Arti-

ficial Intelligence (IJCAI), pages 2234–2240, 2018.

[11] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and

Song Han. Amc: Automl for model compression and ac-

celeration on mobile devices. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 784–

800, 2018.

[12] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.

Filter pruning via geometric median for deep convolutional

neural networks acceleration. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4340–4349, 2019.

[13] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 1389–1397, 2017.

[14] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015.

[15] Feihu Huang, Songcan Chen, and Heng Huang. Faster

stochastic alternating direction method of multipliers for

nonconvex optimization. In International Conference on

Machine Learning, pages 2839–2848, 2019.

[16] Feihu Huang, Shangqian Gao, Jian Pei, and Heng

Huang. Nonconvex zeroth-order stochastic admm meth-

ods with lower function query complexity. arXiv preprint

arXiv:1907.13463, 2019.

[17] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4700–4708, 2017.

[18] Zehao Huang and Naiyan Wang. Data-driven sparse struc-

ture selection for deep neural networks. In Proceedings of

the European conference on computer vision (ECCV), pages

304–320, 2018.

[19] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In Proceedings of the 32Nd International Con-

ference on International Conference on Machine Learning -

Volume 37, ICML, pages 448–456. JMLR.org, 2015.

[20] Jaedeok Kim, Chiyoun Park, Hyun-Joo Jung, and Yoonsuck

Choe. Plug-in, trainable gate for streamlining arbitrary neu-

ral networks. CoRR, abs/1904.10921, 2019.

[21] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[22] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. Technical report, Cite-

seer, 2009.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in neural information processing sys-

tems, pages 1097–1105, 2012.

[24] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS

Torr. Snip: Single-shot network pruning based on connec-

tion sensitivity. ICLR, 2019.

[25] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. ICLR,

2017.

[26] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang,

Liujuan Cao, Qixiang Ye, Feiyue Huang, and David Doer-

mann. Towards optimal structured cnn pruning via genera-

tive adversarial learning. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

2790–2799, 2019.

[27] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:

Differentiable architecture search. In International Confer-

ence on Learning Representations, 2019.

[28] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,

Shoumeng Yan, and Changshui Zhang. Learning efficient

convolutional networks through network slimming. In ICCV,

2017.

1907



[29] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and

Trevor Darrell. Rethinking the value of network pruning.

In International Conference on Learning Representations,

2019.

[30] Christos Louizos, Max Welling, and Diederik P. Kingma.

Learning sparse neural networks through l0 regularization.

In International Conference on Learning Representations,

2018.

[31] Jian-Hao Luo and Jianxin Wu. Autopruner: An end-to-end

trainable filter pruning method for efficient deep model in-

ference. arXiv preprint arXiv:1805.08941, 2018.

[32] Jian-Hao Luo, Hao Zhang, Hong-Yu Zhou, Chen-Wei Xie,

Jianxin Wu, and Weiyao Lin. Thinet: pruning cnn filters

for a thinner net. IEEE transactions on pattern analysis and

machine intelligence, 2018.

[33] Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov.

Variational dropout sparsifies deep neural networks. In Pro-

ceedings of the 34th International Conference on Machine

Learning-Volume 70, pages 2498–2507. JMLR. org, 2017.

[34] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,

and Jan Kautz. Importance estimation for neural network

pruning. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 11264–11272,

2019.

[35] Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and

Dmitry P Vetrov. Structured bayesian pruning via log-normal

multiplicative noise. In Advances in Neural Information Pro-

cessing Systems, pages 6775–6784, 2017.

[36] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. 2017.

[37] Hanyu Peng, Jiaxiang Wu, Shifeng Chen, and Junzhou

Huang. Collaborative channel pruning for deep networks.

In International Conference on Machine Learning, pages

5113–5122, 2019.

[38] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. Xnor-net: Imagenet classification using bi-

nary convolutional neural networks. In European Conference

on Computer Vision, pages 525–542. Springer, 2016.

[39] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788, 2016.

[40] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015.

[41] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4510–4520, 2018.

[42] Karen Simonyan and Andrew Zisserman. Two-stream con-

volutional networks for action recognition in videos. In Ad-

vances in neural information processing systems, pages 568–

576, 2014.

[43] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[44] Chaoqi Wang, Roger B. Grosse, Sanja Fidler, and Guodong

Zhang. Eigendamage: Structured pruning in the kronecker-

factored eigenbasis. In Proceedings of the 36th International

Conference on Machine Learning, ICML 2019, pages 6566–

6575, 2019.

[45] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and

Hai Li. Learning structured sparsity in deep neural networks.

In Advances in neural information processing systems, pages

2074–2082, 2016.

[46] Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. Rethink-

ing the smaller-norm-less-informative assumption in channel

pruning of convolution layers. In International Conference

on Learning Representations, 2018.

[47] Dejiao Zhang, Haozhu Wang, Mario Figueiredo, and Laura

Balzano. Learning to share: Simultaneous parameter tying

and sparsification in deep learning. 2018.

[48] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wu-

jie Wen, Makan Fardad, and Yanzhi Wang. A systematic

dnn weight pruning framework using alternating direction

method of multipliers. In Proceedings of the European Con-

ference on Computer Vision (ECCV), pages 184–199, 2018.

[49] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,

Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.

Discrimination-aware channel pruning for deep neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 875–886, 2018.

[50] Barret Zoph and Quoc V. Le. Neural architecture search with

reinforcement learning. 2017.

1908


