
GraphTER: Unsupervised Learning of Graph Transformation Equivariant

Representations via Auto-Encoding Node-wise Transformations

Xiang Gao1, Wei Hu1,∗, and Guo-Jun Qi2

1Wangxuan Institute of Computer Technology, Peking University, Beijing
2Futurewei Technologies

{gyshgx868, forhuwei}@pku.edu.cn, guojunq@gmail.com

Abstract

Recent advances in Graph Convolutional Neural Net-

works (GCNNs) have shown their efficiency for non-

Euclidean data on graphs, which often require a large

amount of labeled data with high cost. It it thus criti-

cal to learn graph feature representations in an unsuper-

vised manner in practice. To this end, we propose a novel

unsupervised learning of Graph Transformation Equivari-

ant Representations (GraphTER), aiming to capture intrin-

sic patterns of graph structure under both global and lo-

cal transformations. Specifically, we allow to sample dif-

ferent groups of nodes from a graph and then transform

them node-wise isotropically or anisotropically. Then, we

self-train a representation encoder to capture the graph

structures by reconstructing these node-wise transforma-

tions from the feature representations of the original and

transformed graphs. In experiments, we apply the learned

GraphTER to graphs of 3D point cloud data, and results on

point cloud segmentation/classification show that Graph-

TER significantly outperforms state-of-the-art unsupervised

approaches and pushes greatly closer towards the upper

bound set by the fully supervised counterparts. The code

is available at: https://github.com/gyshgx868/graph-ter.

1. Introduction

Graphs are a natural representation of irregular data,

such as 3D geometric points, social networks, citation net-

works and brain networks. Recent advances in Graph Con-

volutional Neural Networks (GCNNs) have shown their ef-

ficiency in learning representations of such data [4, 54, 53,

46], which generalize the celebrated CNN models. Exist-

ing GCNNs are mostly trained in a supervised or semi-

supervised fashion, requiring a large amount of labeled data

to learn graph representations. This prevents the wide appli-

∗Corresponding author: Wei Hu (forhuwei@pku.edu.cn). This

work was supported by National Natural Science Foundation of China

[61972009] and Beijing Natural Science Foundation [4194080].

E D
Node-wise

Transformation
Estimated

Transformation

Figure 1. An illustration of the proposed GraphTER model for

unsupervised feature learning. The encoder learns representa-

tions of the original graph data X associated with adjacency ma-

trix A and its transformed counterpart t(X) associated with Ã

respectively. By decoding node-wise transformations t from both

representations, the auto-encoder is able to learn intrinsically mor-

phable structures of graphs.

cability of GCNNs due to the high labeling cost especially

for large-scale graphs in many real scenarios. Hence, it is

demanded to train graph feature representations in an unsu-

pervised fashion, which can adapt to downstream learning

tasks on graphs.

Auto-Encoders (AEs) and Generative Adversarial Net-

works (GANs) are two most representative methods for un-

supervised learning. Auto-encoders aim to train an encoder

to learn feature representations by reconstructing input data

via a decoder [42, 36, 16, 18]. Most of auto-encoders stick

to the idea of reconstructing input data at the output end

(e.g., images [16], graphs [19], 3D point clouds [48]), and

thus can be classified into the Auto-Encoding Data (AED)

[51]. In contrast, GANs [14, 10, 11, 50, 26, 7, 3] extract

feature representations in an unsupervised fashion by gen-

erating data from input noises via a pair of generator and

discriminator, where the noises are viewed as the data rep-

resentations, and the generator is trained to generate data

from the “noise” feature representations.

Based on AEs and GANs, many approaches have sought

7163

to learn transformation equivariant representations (TER)

to further improve the quality of unsupervised representa-

tion learning. It assumes that representations equivarying

to transformations are able to encode the intrinsic struc-

tures of data such that the transformations can be recon-

structed from the representations before and after transfor-

mations [34]. Learning transformation equivariant repre-

sentations has been advocated in Hinton’s seminal work on

learning transformation capsules [16]. Following this, a va-

riety of approaches have been proposed to learn transforma-

tion equivariant representations [20, 41, 38, 40, 23, 12, 9, 8].

Among them are the group equivariant convolutions [6] and

group equivariant capsule networks [24] that generalize the

CNNs and capsule nets to equivary to various transforma-

tions. However, these models are restricted to discrete trans-

formations, and they should be trained in a supervised fash-

ion. This limits their ability to learn unsupervised represen-

tations equivariant to a generic composition of continuous

transformations [34].

To generalize to generic transformations, Zhang et al.

[51] propose to learn unsupervised feature representa-

tions via Auto-Encoding Transformations (AET) rather than

AED. By randomly transforming images, they seek to train

auto-encoders by directly reconstructing these transforma-

tions from the learned representations of both the original

and transformed images. A variational AET [35] is also in-

troduced from an information-theoretic perspective by max-

imizing the lower bound of mutual information between

transformations and representations. Moreover, it has also

been theoretically proved [34, 35] that the unsupervised rep-

resentations by the AET are equivariant to the applied trans-

formations. Unfortunately, these works focus on transfor-

mation equivariant representation learning of images that

are Euclidean data, which cannot be extended to graphs due

to the irregular data structures.

In this paper, we take a first step towards this goal –

we formalize Graph Transformation Equivariant Represen-

tation (GraphTER) learning by auto-encoding node-wise

transformations in an unsupervised manner. The proposed

method is novel in twofold aspects. On one hand, we

define graph signal transformations and present a graph-

based auto-encoder architecture, which encodes the repre-

sentations of the original and transformed graphs so that

the graph transformations can be reconstructed from both

representations. On the other hand, in contrast to the AET

where global spatial transformations are applied to the en-

tire input image, we perform node-wise transformations on

graphs, where each node can have its own transformation.

Representations of individual nodes are thus learned by de-

coding node-wise transformations to reveal the graph struc-

tures around it. These representations will not only cap-

ture the local graph structures under node-wise transforma-

tions, but also reveal global information about the graph

as we randomly sample nodes into different groups over

training iterations. Different groups of nodes model dif-

ferent parts of graphs, allowing the learned representations

to capture various scales of graph structures under isotropic

and/or anisotropic node-wise transformations. This results

in transformation equivariant representations to character-

ize the intrinsically morphable structures of graphs.

Specifically, given an input graph signal and its associ-

ated graph, we sample a subset of nodes from the graph

(globally or locally) and perform transformations on indi-

vidual nodes, either isotropically or anisotropically. Then

we design a full graph-convolution auto-encoder architec-

ture, where the encoder learns the representations of in-

dividual nodes in the original and transformed graphs re-

spectively, and the decoder predicts the applied node-wise

transformations from both representations. Experimental

results demonstrate that the learned GraphTER significantly

outperforms the state-of-the-art unsupervised models, and

achieves comparable results to the fully supervised ap-

proaches in the 3D point cloud classification and segmen-

tation tasks.

Our main contributions are summarized as follows.

• We are the first to propose Graph Transformation

Equivariant Representation (GraphTER) learning to

extract adequate graph signal feature representations

in an unsupervised fashion.

• We define generic graph transformations and formal-

ize the GraphTER to learn feature representations of

graphs by decoding node-wise transformations end-to-

end in a full graph-convolution auto-encoder architec-

ture.

• Experiments demonstrate the GraphTER model out-

performs the state-of-the-art methods in unsupervised

graph feature learning as well as greatly pushes closer

to the upper bounded performance by the fully super-

vised counterparts.

The remainder of this paper is organized as follows.

We first review related works in Sec. 2. Then we define

graph transformations in Sec. 3 and formalize the Graph-

TER model in Sec. 4. Finally, experimental results and con-

clusions are presented in Sec. 5 and Sec. 6, respectively.

2. Related Works

Transformation Equivariant Representations. Many

approaches have been proposed to learn equivariant rep-

resentations, including transforming auto-encoders [16],

equivariant Boltzmann machines [20, 41], equivariant de-

scriptors [38], and equivariant filtering [40]. Lenc et al.

[23] prove that the AlexNet [22] trained on ImageNet learns

representations that are equivariant to flip, scaling and rota-

tion transformations. Gens et al. [12] propose an approx-

imately equivariant convolutional architecture, which uti-

lizes sparse and high-dimensional feature maps to deal with

7164

groups of transformations. Dieleman et al. [9] show that ro-

tation symmetry can be exploited in convolutional networks

for effectively learning an equivariant representation. This

work is later extended in [8] to evaluate on other computer

vision tasks that have cyclic symmetry. Cohen et al. [6]

propose group equivariant convolutions that have been de-

veloped to equivary to more types of transformations. The

idea of group equivariance has also been introduced to the

capsule nets [24] by ensuring the equivariance of output

pose vectors to a group of transformations. Zhang et al.

[51] propose to learn unsupervised feature representations

via Auto-Encoding Transformations (AET) by estimating

transformations from the learned feature representations of

both the original and transformed images. This work is

later extended in [35] by introducing a variational transfor-

mation decoder, where the AET model is trained from an

information-theoretic perspective by maximizing the lower

bound of mutual information.

Auto-Encoders and GANs. Auto-encoders (AEs) have

been widely adopted to learn unsupervised representations

[17], which employ an encoder to extract feature represen-

tations and a decoder to reconstruct the input data from the

representations. The idea is based on good feature represen-

tations should contain sufficient information to reconstruct

the input data. A large number of approaches have been

proposed following this paradigm of Auto-Encoding Data

(AED), including variational AEs (VAEs) [18], denoising

AEs [42], contrastive AEs [36], transforming AEs [16], etc.

Based on the above approaches, graph AEs have been pro-

posed to learn latent representations for graphs. These ap-

proaches basically learn graph embeddings for plain graphs

[5, 43] and attributed graphs [19, 31], which are still trained

in the AED fashion. In addition to AEs, Generative Adver-

sarial Networks (GANs) [14] become popular for learning

unsupervised representations of data, which tend to gener-

ate data from noises sampled from a random distribution.

The basic idea of these models is to treat the sampled noise

as the feature of the output data, and an encoder can be

trained to obtain the “noise” feature representations for in-

put data, while the generator is treated as the decoder to gen-

erate data from the “noise” feature representations [10, 11].

Recently, several approaches have been proposed to build

graph GANs. For instance, [50] and [26] propose to gener-

ate nodes and edges alternately, while [7] and [3] propose

to integrate GCNNs with LSTMs and GANs respectively to

generate graphs.

3. Graph Transformations

3.1. Preliminaries

Consider an undirected graph G = {V, E} composed of

a node set V of cardinality |V| = N , and an edge set E
connecting nodes. Graph signal refers to data/features as-

sociated with the nodes of G, denoted by X ∈ R
N×C with

ith row representing the C-dimensional graph signal at the

ith node of V .

To characterize the similarities (and thus the graph struc-

ture) among node signals, an adjacency matrix A is defined

on G, which is a real-valued symmetric N ×N matrix with

ai,j as the weight assigned to the edge (i, j) connecting

nodes i and j. Formally, the adjacency matrix is constructed

from graph signals as follows,

A = f(X), (1)

where f(·) is a linear or non-linear function applied to each

pair of nodes to get the pair-wise similarity. For example,

a widely adopted function is to nonlinearly construct a k-

nearest-neighbor (kNN) graph from node features [44, 52].

3.2. Graph Signal Transformation

Unlike Euclidean data like images, graph signals are ir-

regularly sampled, whose transformations are thus nontriv-

ial to define. To this end, we define a graph transformation

on the signals X as node-wise filtering on X.

Formally, suppose we sample a graph transformation t

from a transformation distribution Tg , i.e., t ∼ Tg . Apply-

ing the transformation to graph signals X that are sampled

from data distribution Xg , i.e., X ∼ Xg , leads to the filtered

graph signal

X̃ = t(X). (2)

The filter t is applied to each node individually, which

can be either node-invariant or node-variant. In other words,

the transformation of each node signal associated with t can

be different from each other. For example, for a translation

t, a distinctive translation can be applied to each node. We

will call the graph transformation isotropic (anisotropic) if

it is node-invariant (variant).

Consequently, the adjacency matrix of the transformed

graph signal X̃ equivaries according to (1):

Ã = f(X̃) = f(t(X)), (3)

which transforms the graph structures, as edge weights are

also filtered by t(·).
Under this definition, there exist a wide spectrum of

graph signal transformations. Examples include affine

transformations (translation, rotation and shearing) on the

location of nodes (e.g., 3D coordinates in point clouds), and

graph filters such as low-pass filtering on graph signals by

the adjacency matrix [37].

3.3. Nodewise Graph Signal Transformation

As aforementioned, in this paper, we focus on node-wise

graph signal transformation, i.e., each node has its own

transformation, either isotropically or anisotropically. We

seek to learn graph representations through the node-wise

transformations by revealing how different parts of graph

structures would change globally and locally.

Specifically, here are two distinct advantages.

7165

(a) Original model (b) Global+Isotropic (c) Global+Anisotropic (d) Local+Isotropic (e) Local+Anisotropic

Figure 2. Demonstration of different sampling (Global or Local) and node-wise translation (Isotropic or Anisotropic) methods on

3D point clouds. Red and blue points represent transformed and non-transformed points, respectively. Note that we adopt the wing as a

sampled local point set for clear visualization.

(a) Before transformation. (b) After transformation.

Figure 3. An example of kNN graphs before and after node-

wise transformations. We first construct a kNN (k = 5) graph for

the yellow node (other connections are omitted). Then we perform

node-wise transformations on some blue nodes, which alters the

graph structure around the yellow node.

• The node-wise transformations allow us to use node

sampling to study different parts of graphs under vari-

ous transformations.

• By decoding the node-wise transformations, we will be

able to learn the representations of individual nodes.

Moreover, these node-wise representations will not

only capture the local graph structures under these

transformations, but also contain global information

about the graph when these nodes are sampled into dif-

ferent groups over iterations during training.

Next, we discuss the formulation of learning graph

transformation equivariant representations by decoding the

node-wise transformations via a graph-convolutional en-

coder and decoder.

4. GraphTER: The Proposed Approach

4.1. The Formulation

Given a pair of graph signal and adjacency matrix

(X,A), and a pair of transformed graph signal and adja-

cency matrix (X̃, Ã) by a node-wise graph transformation

t, a function E(·) is transformation equivariant if it satisfies

E(X̃, Ã) = E (t(X), f (t(X))) = ρ(t) [E(X,A)] , (4)

where ρ(t) is a homomorphism of transformation t in the

representation space.

Our goal is to learn a function E(·), which extracts

equivariant representations of graph signals X. For this pur-

pose, we employ an encoder-decoder network: we learn a

graph encoder E : (X,A) 7→ E(X,A), which encodes the

feature representations of individual nodes from the graph.

To ensure the transformation equivariance of representa-

tions, we train a decoder D :
(

E(X,A), E(X̃, Ã)
)

7→ t̂

to estimate the node-wise transformation t̂ from the rep-

resentations of the original and transformed graph signals.

Hence, we cast the learning problem of transformation

equivariant representations as the joint training of the rep-

resentation encoder E and the transformation decoder D. It

has been proved that the learned representations in this way

satisfy the generalized transformation equivariance without

relying on a linear representation of graph structures [35].

Further, we sample a subset of nodes S following a sam-

pling distribution Sg from the original graph signal X, lo-

cally or globally in order to reveal graph structures at vari-

ous scales. Node-wise transformations are then performed

on the subset S isotropically or anisotropically, as demon-

strated in Fig. 2. In order to predict the node-wise transfor-

mation t, we choose a loss function ℓS(t, t̂) that quantifies

the distance between t and its estimate t̂ in terms of their

parameters. Then the entire network is trained end-to-end

by minimizing the loss

min
E,D

E
S∼Sg

E
t∼Tg

X∼Xg

ℓS(t, t̂), (5)

where the expectation E is taken over the sampled graph

signals and transformations, and the loss is taken over the

(locally or globally) sampled subset S of nodes in each iter-

ation of training.

In (5), the node-wise transformation t̂ is estimated from

the decoder

t̂ = D
(

E(X,A), E(X̃, Ã)
)

. (6)

Thus, we update the parameters in encoder E and decoder

D iteratively by backward propagation of the loss.

4.2. The Algorithm

Given graph signals X = {x1,x2, ...,xN}⊤ over N

nodes, in each iteration of training, we randomly sample a

subset of nodes S from the graph, either globally or locally.

Global sampling refers to random sampling over the entire

nodes globally, while local sampling is limited to a local set

of nodes in the graph. Node sampling not only enables us

to characterize global and local graph structures at various

scales, but also reduces the number of node-wise transfor-

mation parameters to estimate for computational efficiency.

7166

Unsupervised feature learning stage
Supervised evaluation stage

EdgeConv Layer Feature-wise ConcatenationFC Layer

Linear
Classifier

Classification
Score

Econv1 Econv2

frozen weights

Encoder Decoder

Econv1 Econv2 Econv3

shared weights

Econv1 Econv2 Econv3

Figure 4. The architecture of the proposed GraphTER. In the

unsupervised feature learning stage, the representation encoder

and transformation decoder are jointly trained by minimizing (5).

In the supervised evaluation stage, the first several blocks of the

encoder are fixed with frozen weights and a linear classifier is

trained with labeled samples.

Then we draw a node-wise transformation ti corre-

sponding to each sample xi of nodes in S, either isotrop-

ically or anisotropically. Accordingly, the graph Ã asso-

ciated with the transformed graph also transforms equivari-

antly from the original A under t. Specifically, as illustrated

in Fig. 3, we construct a kNN graph to make use of the con-

nectivity between the nodes, whose matrix representation in

A changes after applying the sampled node-wise transfor-

mations.

To learn the applied node-wise transformations, we de-

sign a full graph-convolutional auto-encoder network as il-

lustrated in Fig. 4. Among various paradigms of GCNNs,

we choose EdgeConv [44] as a basic building block of the

auto-encoder network, which efficiently learns node-wise

representations by aggregating features along all the edges

emanating from each connected node. Below we will ex-

plain the representation encoder and the transformation de-

coder in detail.

4.2.1 Representation Encoder

The representation encoder E takes the signals of an orig-

inal graph X and the transformed counterparts X̃ as input,

along with their corresponding graphs. E encodes node-

wise features of X and X̃ through a Siamese encoder net-

work with shared weights, where EdgeConv layers are used

as basic feature extraction blocks. As shown in Fig. 3,

given a non-transformed central node xi and its transformed

neighbors tj(xj), the input layer of encoded feature of xi

is

Ein(X̃, Ã)i = max
j∈N (i)

ãi,j

= max
j∈N (i)

ReLU(θ(tj(xj)− xi) + φxi),
(7)

where ãi,j denotes the edge feature, i.e., edge weight in Ã.

θ and φ are two weighting parameters, and j ∈ N (i) de-

notes node j is in the k-nearest neighborhood of node i.

Then, multiple layers of regular edge convolutions [44] are

stacked to form the final encoder.

Edge convolution in (7) over each node essentially ag-

gregates features from neighboring nodes via edge weights

ãi,j . Since the edge information of the underlying graph

transforms with the transformations of individual nodes as

demonstrated in Fig. 3, edge convolution is able to extract

higher-level features from the original and transformed edge

information. Also, as features of each node are learned via

propagation from transformed and non-transformed nodes

isotropically or anisotropically by both local or global sam-

pling, the learned representation is able to capture intrinsic

graph structures at multiple scales.

4.2.2 Transformation Decoder

Node-wise features of the original and transformed graphs

are then concatenated at each node, which are then fed into

the transformation decoder. The decoder consists of several

EdgeConv blocks to aggregate the representations of both

the original and transformed graphs to predict the node-

wise transformations t. Based on the loss in (5), t is de-

coded by minimizing the mean squared error (MSE) be-

tween the ground truth and estimated transformation param-

eters at each sampled node. Fig. 4 illustrates the architecture

of learning the proposed GraphTER in such an auto-encoder

structure.

5. Experiments

In this section, we evaluate the GraphTER model by ap-

plying it to graphs of 3D point cloud data on two repre-

sentative downstream tasks: point cloud classification and

segmentation. We compare the proposed method with state-

of-the-art supervised and unsupervised approaches.

5.1. Datasets and Experimental Setup

ModelNet40 [47]. This dataset contains 12, 311 meshed

CAD models from 40 categories, where 9, 843 models are

used for training and 2, 468 models are for testing. For each

model, 1, 024 points are sampled from the original mesh.

We train the unsupervised auto-encoder and the classifier

under the training set, and evaluate the classifier under the

testing set.

ShapeNet part [49]. This dataset contains 16, 881 3D

point clouds from 16 object categories, annotated with 50
parts. Each 3D point cloud contains 2, 048 points, most of

7167

Table 1. Classification accuracy (%) on ModelNet40 dataset.

Method Year Unsupervised Accuracy

3D ShapeNets [47] 2015 No 84.7

VoxNet [30] 2015 No 85.9

PointNet [32] 2017 No 89.2

PointNet++ [33] 2017 No 90.7

KD-Net [21] 2017 No 90.6

PointCNN [25] 2018 No 92.2

PCNN [2] 2018 No 92.3

DGCNN [44] 2019 No 92.9

RS-CNN [28] 2019 No 93.6

T-L Network [13] 2016 Yes 74.4

VConv-DAE [39] 2016 Yes 75.5

3D-GAN [45] 2016 Yes 83.3

LGAN [1] 2018 Yes 85.7

FoldingNet [48] 2018 Yes 88.4

MAP-VAE [15] 2019 Yes 90.2

L2G-AE [27] 2019 Yes 90.6

GraphTER Yes 92.0

which are labeled with fewer than six parts. We employ

12, 137 models for training the auto-encoder and the classi-

fier, and 2, 874 models for testing.

We treat points in each point cloud as nodes in a graph,

and the (x, y, z) coordinates of points as graph signals. A

kNN graph is then constructed on the graph signals to guide

graph convolution.

Next, we introduce our node-wise graph signal transfor-

mation. In experiments, we sample a portion of nodes with

a sampling rate r from the entire graph to perform node-

wise transformations, including 1) Global sampling: ran-

domly sample r% of points from all the points in a 3D point

cloud; 2) Local sampling: randomly choose a point and

search its k nearest neighbors in terms of Euclidean dis-

tance, forming a local set of r% of points.

Then, we apply three types of node-wise transformations

to the coordinates of point clouds, including 1) Transla-

tion: randomly translate each of three coordinates of a point

by three parameters in the range [−0.2, 0.2]; 2) Rotation:

randomly rotate each point with three rotation parameters

all in the range [−5◦, 5◦]; 3) Shearing: randomly shear the

x-, y-, z-coordinates of each point with the six parameters

of a shearing matrix in the range [−0.2, 0.2]. We consider

two strategies to transform the sampled nodes: Isotrop-

ically or Anisotropically, which applies transformations

with node-invariant or node-variant parameters.

5.2. Point Cloud Classification

First, we evaluate the GraphTER model on the Model-

Net40 [47] dataset for point cloud classification.

5.2.1 Implementation Details

In this task, the auto-encoder network is trained via the

SGD optimizer with a batch size of 32. The momentum

and weight decay rate are set to 0.9 and 10−4, respectively.

The initial learning rate is 0.1, and then decayed using a co-

sine annealing schedule [29] for 512 training epochs. We

adopt the cross entropy loss to train the classifier.

We deploy eight EdgeConv layers as the encoder, and the

number k of nearest neighbors is set to 20 for all EdgeConv

layers. Similar to [44], we use shortcut connections for the

first five layers to extract multi-scale features, where we

concatenate features from these layers to acquire a 1, 024-

dimensional node-wise feature vector. After the encoder,

we employ three consecutive EdgeConv layers as the de-

coder – the output feature representations of the Siamese en-

coder first go through a channel-wise concatenation, which

are then fed into the decoder to estimate node-wise trans-

formations. The batch normalization layer and LeakyReLU

activation function with a negative slope of 0.2 is employed

after each convolutional layer.

During the training procedure of the classifier, the first

five EdgeConv layers in the encoder are used to represent

input cloud data by node-wise concatenating their output

features with the weights frozen. After the five EdgeConv

layers, we apply three fully-connected layers node-wise to

the aggregated features. Then, global max pooling and av-

erage pooling are deployed to acquire the global features,

after which three fully-connected layers are used to map the

global features to the classification scores. Dropout with a

rate of 0.5 is adopted in the last two fully-connected layers.

5.2.2 Experimental Results

Tab. 1 shows the results for 3D point cloud classifica-

tion, where the proposed model applies isotropic node-

wise shearing transformation with a global sampling rate

of r = 25%. We compare with two classes of methods:

unsupervised approaches and supervised approaches. The

GraphTER model achieves 92.0% of classification accu-

racy on the ModelNet40 dataset, which outperforms the

state-of-the-art unsupervised methods. In particular, most

of the compared unsupervised models combine the ideas

of both GAN and AED, and map 3D point clouds to un-

supervised representations by auto-encoding data, such as

FoldingNet [48], MAP-VAE [15] and L2G-AE [27]. Re-

sults show that the GraphTER model achieves significant

improvement over these methods, showing the superiority

of the proposed node-wise AET over both the GAN and

AED paradigms.

Moreover, the unsupervised GraphTER model also

achieves comparable performance with the state-of-the-art

fully supervised results. This significantly closes the gap

between unsupervised approaches and the fully supervised

counterparts in literature.

5.2.3 Ablation Studies

Further, we conduct ablation studies under various exper-

imental settings of sampling and transformation strategies

7168

Table 2. Unsupervised classification accuracy (%) on ModelNet40

dataset with different sampling and transformation strategies.

Global Sampling Local Sampling
Mean

Iso. Aniso. Iso. Aniso.

Translation 90.15 90.15 89.91 89.55 89.94

Rotation 91.29 90.24 90.48 89.87 90.47

Shearing 92.02 90.32 91.65 89.99 90.99

Mean
91.15 90.24 90.68 89.80

90.70 90.24

Table 3. Unsupervised classification accuracy (%) on ModelNet40

dataset applying translation at different node sampling rates.

Sampling

Rate

Global Sampling Local Sampling
Mean

Iso. Aniso. Iso. Aniso.

25% 90.15 90.15 89.91 89.55 89.94

50% 90.03 89.63 89.95 89.47 89.77

75% 91.00 89.67 91.41 89.75 90.46

100% 89.67 89.99 89.67 89.99 89.83

on the ModelNet40 dataset.

First, we analyze the effectiveness of different node-wise

transformations under global or local sampling. Tab. 2

presents the classification accuracy with three types of

node-wise transformation methods. We see that the shear-

ing transformation achieves the best performance, improv-

ing by 1.05% on average over translation, and 0.52% over

rotation. This shows that the proposed GraphTER model is

able to learn better feature representations under more com-

plex transformations.

Moreover, we see that the proposed model achieves an

accuracy of 90.70% on average under global sampling,

which outperforms local sampling by 0.46%. This is be-

cause global sampling better captures the global structure of

graphs, which is crucial in such a graph-level task of classi-

fying 3D point clouds. Meanwhile, under the two sampling

strategies, the classification accuracy from isotropic trans-

formations is higher than that from the anisotropic one. The

reason lies in the intrinsic difficulty of training the transfor-

mation decoder with increased complexity of more param-

eters when applying anisotropic transformations.

Moreover, we evaluate the effectiveness of different sam-

pling rates r under the translations as reported in Tab. 3.

The classification accuracies under various sampling rates

are almost the same, and the result under r = 25% is com-

parable to that under r = 100%. This shows that the perfor-

mance of the proposed model is insensitive to the variation

of sampling rates, i.e., applying node-wise transformations

to a small number of nodes in the graph is sufficient to learn

intrinsic graph structures.

5.3. Point Cloud Segmentation

We also apply the GraphTER model to 3D point cloud

part segmentation on ShapeNet part dataset [49].

5.3.1 Implementation Details

We also use SGD optimizer to train the auto-encoding trans-

formation network. The hyper-parameters are the same as

in 3D point cloud classification except that we train for 256
epochs. We adopt the negative log likelihood loss to train

the node-wise classifier for segmenting each point in the

clouds.

The auto-encoding architecture is similar to that of the

classification task, where we employ five EdgeConv layers

as the encoder. However, the first two EdgeConv blocks

consist of two MLP layers with the number of neurons {64,

64} in each layer. We use shortcut connections to concate-

nate features from the first four layers to a 512-dimensional

node-wise feature vector.

As for the node-wise classifier, we deploy the same ar-

chitecture as in [44]. The output features from the encoder

are concatenated node-wise with globally max-pooled fea-

tures, followed by four fully-connected layers to classify

each node. During the training procedure, the weights of the

first four EdgeConv blocks in the encoder are kept frozen.

5.3.2 Experimental Results

We adopt the Intersection-over-Union (IoU) metric to eval-

uate the performance. We follow the same evaluation pro-

tocol as in the PointNet [32]: the IoU of a shape is com-

puted by averaging the IoUs of different parts occurring in

that shape, and the IoU of a category is obtained by aver-

aging the IoUs of all the shapes belonging to that category.

The mean IoU (mIoU) is finally calculated by averaging the

IoUs of all the test shapes.

We also compare the proposed model with unsuper-

vised approaches and supervised approaches in this task,

as listed in Tab. 4. We achieve a mIoU of 81.9%, which

significantly outperforms the state-of-the-art unsupervised

method MAP-VAE [15] by 13.9%.

Moreover, the unsupervised GraphTER model also

achieves the comparable performance to the state-of-the-art

fully supervised approaches, greatly pushing closer towards

the upper bound set by the fully supervised counterparts.

5.3.3 Visualization Results

Fig. 5 visualizes the results of the proposed unsupervised

model and two state-of-the-art fully supervised methods:

DGCNN [44] and RS-CNN [28]. The proposed model pro-

duces better segmentation on the “table” model in the first

row, and achieves comparable results on the other mod-

els. Further, we qualitatively compare the proposed method

with the state-of-the-art unsupervised method MAP-VAE

[15], as illustrate in Fig. 6. The proposed model leads to

more accurate segmentation results than MAP-VAE, e.g.,

the engines of planes and the legs of chairs.

7169

Table 4. Part segmentation results on ShapeNet part dataset. Metric is mIoU(%) on points.

Unsup. Mean Aero Bag Cap Car Chair
Ear

Phone
Guitar Knife Lamp Laptop Motor Mug Pistol Rocket

Skate

Board
Table

Samples 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271

PointNet [32] No 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

PointNet++ [33] No 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

KD-Net [21] No 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3

PCNN [2] No 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8

PointCNN [25] No 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0

DGCNN [44] No 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6

RS-CNN [28] No 86.2 83.5 84.8 88.8 79.6 91.2 81.1 91.6 88.4 86.0 96.0 73.7 94.1 83.4 60.5 77.7 83.6

LGAN [1] Yes 57.0 54.1 48.7 62.6 43.2 68.4 58.3 74.3 68.4 53.4 82.6 18.6 75.1 54.7 37.2 46.7 66.4

MAP-VAE [15] Yes 68.0 62.7 67.1 73.0 58.5 77.1 67.3 84.8 77.1 60.9 90.8 35.8 87.7 64.2 45.0 60.4 74.8

GraphTER Yes 81.9 81.7 68.1 83.7 74.6 88.1 68.9 90.6 86.6 80.0 95.6 56.3 90.0 80.8 55.2 70.7 79.1

(a) Ground-truth (b) DGCNN (c) RS-CNN (d) GraphTER

Figure 5. Visual comparison of point cloud part segmentation

with supervised methods. Our unsupervised GraphTER learn-

ing achieves comparable results with the state-of-the art fully su-

pervised approaches.

(a) MAP-VAE

(b) GraphTER

Figure 6. Visual comparison of point cloud part segmentation

with the state-of-the-art unsupervised method MAP-VAE. We

achieve more accurate segmentation even in tiny parts and transi-

tion regions.

5.3.4 Ablation Studies

Similar to the classification task, we analyze the effective-

ness of different node-wise transformations under global or

local sampling, as presented in Tab. 5. The proposed model

achieves the best performance under the shearing transfor-

mation, improving by 1.23% on average over translation,

Table 5. Unsupervised segmentation results on ShapeNet part

dataset with different transformation strategies. Metric is mIoU

(%) on points.

Global Sampling Local Sampling
Mean

Iso. Aniso. Iso. Aniso.

Translation 79.83 79.88 80.05 79.85 79.90

Rotation 80.20 80.29 80.87 80.02 80.35

Shearing 81.88 80.28 81.89 80.48 81.13

Mean
80.64 80.15 80.94 80.12

80.39 80.53

and 0.78% over rotation, which demonstrates the benefits

of GraphTER learning under complex transformations.

Further, the proposed model achieves a mIoU of 80.53%

on average under local sampling, which outperforms global

sampling by 0.14%. This is because local sampling of nodes

captures the local structure of graphs better, which is crucial

in node-level 3D point cloud segmentation task.

6. Conclusion

In this paper, we propose a novel paradigm of learn-

ing graph transformation equivariant representation (Graph-

TER) via auto-encoding node-wise transformations in an

unsupervised fashion. We allow it to sample different

groups of nodes from a graph globally or locally and

then perform node-wise transformations isotropically or

anisotropically, which enables it to characterize morphable

structures of graphs at various scales. By decoding these

node-wise transformations, GraphTER enforces the en-

coder to learn intrinsic representations that contain suffi-

cient information about structures under applied transfor-

mations. We apply the GraphTER model to classification

and segmentation of graphs of 3D point cloud data, and

experimental results demonstrate the superiority of Graph-

TER over the state-of-the-art unsupervised approaches, sig-

nificantly closing the gap with the fully supervised counter-

parts. We will apply the general GraphTER model to more

applications as future works, such as node classification of

citation networks.

7170

References

[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and generative

models for 3d point clouds. In Proceedings of the 35th In-

ternational Conference on Machine Learning (ICML), pages

40–49, 2018.

[2] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point

convolutional neural networks by extension operators. ACM

Transactions on Graphics (TOG), 37(4):1–12, July 2018.

[3] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner,

and Stephan Günnemann. Netgan: Generating graphs via

random walks. In Proceedings of the 35th International Con-

ference on Machine Learning (ICML), pages 609–618, 2018.

[4] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur

Szlam, and Pierre Vandergheynst. Geometric deep learning:

going beyond euclidean data. IEEE Signal Processing Mag-

azine, 34(4):18–42, 2017.

[5] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural net-

works for learning graph representations. In Thirtieth AAAI

Conference on Artificial Intelligence (AAAI), pages 1145–

1152, 2016.

[6] Taco Cohen and Max Welling. Group equivariant con-

volutional networks. In Proceedings of the 33rd Inter-

national Conference on Machine Learning (ICML), pages

2990–2999, 2016.

[7] Nicola De Cao and Thomas Kipf. Molgan: An implicit gen-

erative model for small molecular graphs. arXiv preprint

arXiv:1805.11973, 2018.

[8] Sander Dieleman, Jeffrey De Fauw, and Koray Kavukcuoglu.

Exploiting cyclic symmetry in convolutional neural net-

works. In Proceedings of the 33rd International Conference

on Machine Learning (ICML), pages 1889–1898, 2016.

[9] Sander Dieleman, Kyle W Willett, and Joni Dambre.

Rotation-invariant convolutional neural networks for galaxy

morphology prediction. Monthly Notices of the Royal Astro-

nomical Society, 450(2):1441–1459, 2015.

[10] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Ad-

versarial feature learning. In International Conference on

Learning Representations (ICLR), 2017.

[11] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier

Mastropietro, Alex Lamb, Martin Arjovsky, and Aaron

Courville. Adversarially learned inference. In International

Conference on Learning Representations (ICLR), 2017.

[12] Robert Gens and Pedro M Domingos. Deep symmetry net-

works. In Advances in Neural Information Processing Sys-

tems (NIPS), pages 2537–2545, 2014.

[13] Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Ab-

hinav Gupta. Learning a predictable and generative vector

representation for objects. In European Conference on Com-

puter Vision (ECCV), pages 484–499. Springer, 2016.

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances in

Neural Information Processing Systems (NIPS), pages 2672–

2680, 2014.

[15] Zhizhong Han, Xiyang Wang, Yu-Shen Liu, and Matthias

Zwicker. Multi-angle point cloud-vae: Unsupervised feature

learning for 3d point clouds from multiple angles by joint

self-reconstruction and half-to-half prediction. In The IEEE

International Conference on Computer Vision (ICCV), Octo-

ber 2019.

[16] Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang.

Transforming auto-encoders. In International Conference on

Artificial Neural Networks (ICANN), pages 44–51. Springer,

2011.

[17] Geoffrey E Hinton and Richard S Zemel. Autoencoders,

minimum description length and helmholtz free energy. In

Advances in Neural Information Processing Systems (NIPS),

pages 3–10, 1994.

[18] Diederik P Kingma and Max Welling. Auto-encoding varia-

tional bayes. In International Conference on Learning Rep-

resentations (ICLR), 2014.

[19] Thomas N Kipf and Max Welling. Variational graph auto-

encoders. In Proceedings of the NIPS Workshop on Bayesian

Deep Learning, 2016.

[20] Jyri J Kivinen and Christopher KI Williams. Transforma-

tion equivariant boltzmann machines. In International Con-

ference on Artificial Neural Networks (ICANN), pages 1–9.

Springer, 2011.

[21] Roman Klokov and Victor Lempitsky. Escape from cells:

Deep kd-networks for the recognition of 3d point cloud mod-

els. In Proceedings of the IEEE International Conference on

Computer Vision (ICCV), pages 863–872, 2017.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in Neural Information Processing Sys-

tems (NIPS), pages 1097–1105, 2012.

[23] Karel Lenc and Andrea Vedaldi. Understanding image repre-

sentations by measuring their equivariance and equivalence.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 991–999, 2015.

[24] Jan Eric Lenssen, Matthias Fey, and Pascal Libuschewski.

Group equivariant capsule networks. In Advances in Neural

Information Processing Systems (NIPS), pages 8844–8853,

2018.

[25] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,

and Baoquan Chen. Pointcnn: Convolution on x-transformed

points. In Advances in Neural Information Processing Sys-

tems (NIPS), pages 820–830, 2018.

[26] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and

Peter Battaglia. Learning deep generative models of graphs.

arXiv preprint arXiv:1803.03324, 2018.

[27] Xinhai Liu, Zhizhong Han, Xin Wen, Yu-Shen Liu, and

Matthias Zwicker. L2g auto-encoder: Understanding point

clouds by local-to-global reconstruction with hierarchical

self-attention. In Proceedings of the 27th ACM Interna-

tional Conference on Multimedia (ACM MM), pages 989–

997. ACM, 2019.

[28] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong

Pan. Relation-shape convolutional neural network for point

cloud analysis. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages

8895–8904, 2019.

7171

[29] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient

descent with warm restarts. In International Conference on

Learning Representations (ICLR), 2017.

[30] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-

volutional neural network for real-time object recognition.

In 2015 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 922–928. IEEE, 2015.

[31] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao,

and Chengqi Zhang. Adversarially regularized graph au-

toencoder for graph embedding. In International Joint Con-

ference on Artificial Intelligence (IJCAI), pages 2609–2615,

2018.

[32] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

652–660, 2017.

[33] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In Advances in Neural Informa-

tion Processing Systems (NIPS), pages 5099–5108, 2017.

[34] Guo-Jun Qi. Learning generalized transformation equivari-

ant representations via autoencoding transformations. arXiv

preprint arXiv:1906.08628, 2019.

[35] Guo-Jun Qi, Liheng Zhang, Chang Wen Chen, and Qi Tian.

Avt: Unsupervised learning of transformation equivariant

representations by autoencoding variational transformations.

Proceedings of the IEEE International Conference on Com-

puter Vision (ICCV), 2019.

[36] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glo-

rot, and Yoshua Bengio. Contractive auto-encoders: Ex-

plicit invariance during feature extraction. In Proceedings

of the 28th International Conference on Machine Learning

(ICML), pages 833–840. Omnipress, 2011.

[37] Aliaksei Sandryhaila and José MF Moura. Discrete signal

processing on graphs. IEEE transactions on Signal Process-

ing, 61(7):1644–1656, 2013.

[38] Uwe Schmidt and Stefan Roth. Learning rotation-aware fea-

tures: From invariant priors to equivariant descriptors. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 2050–2057. IEEE,

2012.

[39] Abhishek Sharma, Oliver Grau, and Mario Fritz. Vconv-

dae: Deep volumetric shape learning without object labels.

In European Conference on Computer Vision (ECCV), pages

236–250. Springer, 2016.

[40] Henrik Skibbe. Spherical Tensor Algebra for Biomedical Im-

age Analysis. PhD thesis, Verlag nicht ermittelbar, 2013.

[41] Kihyuk Sohn and Honglak Lee. Learning invariant rep-

resentations with local transformations. In Proceedings

of the 29th International Conference on Machine Learning

(ICML), pages 1339–1346, 2012.

[42] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and

Pierre-Antoine Manzagol. Extracting and composing ro-

bust features with denoising autoencoders. In Proceedings

of the 25th International Conference on Machine Learning

(ICML), pages 1096–1103. ACM, 2008.

[43] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep

network embedding. In Proceedings of the ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining (KDD), pages 1225–1234. ACM, 2016.

[44] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,

Michael M Bronstein, and Justin M Solomon. Dynamic

graph cnn for learning on point clouds. ACM Transactions

on Graphics (TOG), 38(5):146, 2019.

[45] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and

Josh Tenenbaum. Learning a probabilistic latent space of ob-

ject shapes via 3d generative-adversarial modeling. In Ad-

vances in Neural Information Processing Systems (NIPS),

pages 82–90, 2016.

[46] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,

Chengqi Zhang, and Philip S Yu. A comprehensive survey

on graph neural networks. arXiv preprint arXiv:1901.00596,

2019.

[47] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

shapenets: A deep representation for volumetric shapes. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 1912–1920, 2015.

[48] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-

ingnet: Point cloud auto-encoder via deep grid deformation.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 206–215, 2018.

[49] Li Yi, Vladimir G Kim, Duygu Ceylan, I Shen, Mengyan

Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Sheffer,

Leonidas Guibas, et al. A scalable active framework for re-

gion annotation in 3d shape collections. ACM Transactions

on Graphics (TOG), 35(6):210, 2016.

[50] Jiaxuan You, Rex Ying, Xiang Ren, William L Hamilton,

and Jure Leskovec. GraphRNN: A deep generative model for

graphs. In Proceedings of the 35th International Conference

on Machine Learning (ICML), pages 5694–5703, 2018.

[51] Liheng Zhang, Guo-Jun Qi, Liqiang Wang, and Jiebo Luo.

Aet vs. aed: Unsupervised representation learning by auto-

encoding transformations rather than data. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 2547–2555, 2019.

[52] Yingxue Zhang and Michael Rabbat. A graph-cnn for 3d

point cloud classification. In IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages

6279–6283. IEEE, 2018.

[53] Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on

graphs: A survey. arXiv preprint arXiv:1812.04202, 2018.

[54] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang,

Zhiyuan Liu, and Maosong Sun. Graph neural networks:

A review of methods and applications. arXiv preprint

arXiv:1812.08434, 2018.

7172

