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ant Representations (GraphTER), aiming to capture intrin-
sic patterns of graph structure under both global and lo-
cal transformations. Specifically, we allow to sample dif-
ferent groups of nodes from a graph and then transform
them node-wise isotropically or anisotropically. Then, we
self-train a representation encoder to capture the graph
structures by reconstructing these node-wise transforma-
tions from the feature representations of the original and
transformed graphs. In experiments, we apply the learned
GraphTER to graphs of 3D point cloud data, and results on
point cloud segmentation/classification show that Graph-
TER significantly outperforms state-of-the-art unsupervised
approaches and pushes greatly closer towards the upper
bound set by the fully supervised counterparts. The code
is available at: https://github.com/gyshgx868/graph-ter.

1. Introduction

Graphs are a natural representation of irregular data,
such as 3D geometric points, social networks, citation net-
works and brain networks. Recent advances in Graph Con-
volutional Neural Networks (GCNNs) have shown their ef-
ficiency in learning representations of such data [4, 54, 53,
46], which generalize the celebrated CNN models. Exist-
ing GCNNs are mostly trained in a supervised or semi-
supervised fashion, requiring a large amount of labeled data
to learn graph representations. This prevents the wide appli-
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Figure 1. An illustration of the proposed GraphTER model for
unsupervised feature learning. The encoder learns representa-
tions of the original graph data X associated with adjacency ma-
trix A and its transformed counterpart t(X) associated with A
respectively. By decoding node-wise transformations t from both
representations, the auto-encoder is able to learn intrinsically mor-
phable structures of graphs.

cability of GCNNs due to the high labeling cost especially
for large-scale graphs in many real scenarios. Hence, it is
demanded to train graph feature representations in an unsu-
pervised fashion, which can adapt to downstream learning
tasks on graphs.

Auto-Encoders (AEs) and Generative Adversarial Net-
works (GANs) are two most representative methods for un-
supervised learning. Auto-encoders aim to train an encoder
to learn feature representations by reconstructing input data
via a decoder [42, 36, 16, 18]. Most of auto-encoders stick
to the idea of reconstructing input data at the output end
(e.g., images [16], graphs [19], 3D point clouds [48]), and
thus can be classified into the Auto-Encoding Data (AED)
[51]. In contrast, GANs [14, 10, 11, 50, 26, 7, 3] extract
feature representations in an unsupervised fashion by gen-
erating data from input noises via a pair of generator and
discriminator, where the noises are viewed as the data rep-
resentations, and the generator is trained to generate data
from the “noise” feature representations.

Based on AEs and GANs, many approaches have sought
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to learn transformation equivariant representations (TER)
to further improve the quality of unsupervised representa-
tion learning. It assumes that representations equivarying
to transformations are able to encode the intrinsic struc-
tures of data such that the transformations can be recon-
structed from the representations before and after transfor-
mations [34]. Learning transformation equivariant repre-
sentations has been advocated in Hinton’s seminal work on
learning transformation capsules [16]. Following this, a va-
riety of approaches have been proposed to learn transforma-
tion equivariant representations [20, 41, 38, 40, 23, 12, 9, 8].
Among them are the group equivariant convolutions [6] and
group equivariant capsule networks [24] that generalize the
CNNs and capsule nets to equivary to various transforma-
tions. However, these models are restricted to discrete trans-
formations, and they should be trained in a supervised fash-
ion. This limits their ability to learn unsupervised represen-
tations equivariant to a generic composition of continuous
transformations [34].

To generalize to generic transformations, Zhang et al.
[51] propose to learn unsupervised feature representa-
tions via Auto-Encoding Transformations (AET) rather than
AED. By randomly transforming images, they seek to train
auto-encoders by directly reconstructing these transforma-
tions from the learned representations of both the original
and transformed images. A variational AET [35] is also in-
troduced from an information-theoretic perspective by max-
imizing the lower bound of mutual information between
transformations and representations. Moreover, it has also
been theoretically proved [34, 35] that the unsupervised rep-
resentations by the AET are equivariant to the applied trans-
formations. Unfortunately, these works focus on transfor-
mation equivariant representation learning of images that
are Euclidean data, which cannot be extended to graphs due
to the irregular data structures.

In this paper, we take a first step towards this goal —
we formalize Graph Transformation Equivariant Represen-
tation (GraphTER) learning by auto-encoding node-wise
transformations in an unsupervised manner. The proposed
method is novel in twofold aspects. On one hand, we
define graph signal transformations and present a graph-
based auto-encoder architecture, which encodes the repre-
sentations of the original and transformed graphs so that
the graph transformations can be reconstructed from both
representations. On the other hand, in contrast to the AET
where global spatial transformations are applied to the en-
tire input image, we perform node-wise transformations on
graphs, where each node can have its own transformation.
Representations of individual nodes are thus learned by de-
coding node-wise transformations to reveal the graph struc-
tures around it. These representations will not only cap-
ture the local graph structures under node-wise transforma-
tions, but also reveal global information about the graph

as we randomly sample nodes into different groups over
training iterations. Different groups of nodes model dif-
ferent parts of graphs, allowing the learned representations
to capture various scales of graph structures under isotropic
and/or anisotropic node-wise transformations. This results
in transformation equivariant representations to character-
ize the intrinsically morphable structures of graphs.

Specifically, given an input graph signal and its associ-
ated graph, we sample a subset of nodes from the graph
(globally or locally) and perform transformations on indi-
vidual nodes, either isotropically or anisotropically. Then
we design a full graph-convolution auto-encoder architec-
ture, where the encoder learns the representations of in-
dividual nodes in the original and transformed graphs re-
spectively, and the decoder predicts the applied node-wise
transformations from both representations. Experimental
results demonstrate that the learned GraphTER significantly
outperforms the state-of-the-art unsupervised models, and
achieves comparable results to the fully supervised ap-
proaches in the 3D point cloud classification and segmen-
tation tasks.

Our main contributions are summarized as follows.

e We are the first to propose Graph Transformation
Equivariant Representation (GraphTER) learning to
extract adequate graph signal feature representations
in an unsupervised fashion.

e We define generic graph transformations and formal-
ize the GraphTER to learn feature representations of
graphs by decoding node-wise transformations end-to-
end in a full graph-convolution auto-encoder architec-
ture.

e Experiments demonstrate the GraphTER model out-
performs the state-of-the-art methods in unsupervised
graph feature learning as well as greatly pushes closer
to the upper bounded performance by the fully super-
vised counterparts.

The remainder of this paper is organized as follows.
We first review related works in Sec. 2. Then we define
graph transformations in Sec. 3 and formalize the Graph-
TER model in Sec. 4. Finally, experimental results and con-
clusions are presented in Sec. 5 and Sec. 6, respectively.

2. Related Works

Transformation Equivariant Representations. Many
approaches have been proposed to learn equivariant rep-
resentations, including transforming auto-encoders [16],
equivariant Boltzmann machines [20, 41], equivariant de-
scriptors [38], and equivariant filtering [40]. Lenc et al.
[23] prove that the AlexNet [22] trained on ImageNet learns
representations that are equivariant to flip, scaling and rota-
tion transformations. Gens et al. [12] propose an approx-
imately equivariant convolutional architecture, which uti-
lizes sparse and high-dimensional feature maps to deal with
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groups of transformations. Dieleman et al. [9] show that ro-
tation symmetry can be exploited in convolutional networks
for effectively learning an equivariant representation. This
work is later extended in [8] to evaluate on other computer
vision tasks that have cyclic symmetry. Cohen ef al. [6]
propose group equivariant convolutions that have been de-
veloped to equivary to more types of transformations. The
idea of group equivariance has also been introduced to the
capsule nets [24] by ensuring the equivariance of output
pose vectors to a group of transformations. Zhang et al.
[51] propose to learn unsupervised feature representations
via Auto-Encoding Transformations (AET) by estimating
transformations from the learned feature representations of
both the original and transformed images. This work is
later extended in [35] by introducing a variational transfor-
mation decoder, where the AET model is trained from an
information-theoretic perspective by maximizing the lower
bound of mutual information.

Auto-Encoders and GANs. Auto-encoders (AEs) have
been widely adopted to learn unsupervised representations
[17], which employ an encoder to extract feature represen-
tations and a decoder to reconstruct the input data from the
representations. The idea is based on good feature represen-
tations should contain sufficient information to reconstruct
the input data. A large number of approaches have been
proposed following this paradigm of Auto-Encoding Data
(AED), including variational AEs (VAEs) [18], denoising
AEs [42], contrastive AEs [36], transforming AEs [16], etc.
Based on the above approaches, graph AEs have been pro-
posed to learn latent representations for graphs. These ap-
proaches basically learn graph embeddings for plain graphs
[5, 43] and attributed graphs [19, 31], which are still trained
in the AED fashion. In addition to AEs, Generative Adver-
sarial Networks (GANSs) [14] become popular for learning
unsupervised representations of data, which tend to gener-
ate data from noises sampled from a random distribution.
The basic idea of these models is to treat the sampled noise
as the feature of the output data, and an encoder can be
trained to obtain the “noise” feature representations for in-
put data, while the generator is treated as the decoder to gen-
erate data from the “noise” feature representations [10, 11].
Recently, several approaches have been proposed to build
graph GANSs. For instance, [50] and [26] propose to gener-
ate nodes and edges alternately, while [7] and [3] propose
to integrate GCNNs with LSTMs and GAN s respectively to
generate graphs.

3. Graph Transformations
3.1. Preliminaries

Consider an undirected graph G = {V, £} composed of
a node set V of cardinality |V| = N, and an edge set £
connecting nodes. Graph signal refers to data/features as-
sociated with the nodes of G, denoted by X € RV *C with

ith row representing the C'-dimensional graph signal at the
ith node of V.

To characterize the similarities (and thus the graph struc-
ture) among node signals, an adjacency matrix A is defined
on G, which is a real-valued symmetric N x N matrix with
a; ; as the weight assigned to the edge (7,j) connecting
nodes ¢ and j. Formally, the adjacency matrix is constructed
from graph signals as follows,

A= f(X), (1)
where f(-) is a linear or non-linear function applied to each
pair of nodes to get the pair-wise similarity. For example,
a widely adopted function is to nonlinearly construct a k-
nearest-neighbor (KNN) graph from node features [44, 52].

3.2. Graph Signal Transformation

Unlike Euclidean data like images, graph signals are ir-
regularly sampled, whose transformations are thus nontriv-
ial to define. To this end, we define a graph transformation
on the signals X as node-wise filtering on X.

Formally, suppose we sample a graph transformation t
from a transformation distribution 7y, i.e., t ~ 7T,. Apply-
ing the transformation to graph signals X that are sampled
from data distribution Xy, i.e., X ~ X, leads to the filtered
graph signal

X = t(X). 2)

The filter t is applied to each node individually, which
can be either node-invariant or node-variant. In other words,
the transformation of each node signal associated with t can
be different from each other. For example, for a translation
t, a distinctive translation can be applied to each node. We
will call the graph transformation isotropic (anisotropic) if
it is node-invariant (variant).

Consequently, the adjacency matrix of the transformed
graph signal X equivaries according to (1):

A = f(X) = f(t(X)), 3)
which transforms the graph structures, as edge weights are
also filtered by t(-).

Under this definition, there exist a wide spectrum of
graph signal transformations. Examples include affine
transformations (translation, rotation and shearing) on the
location of nodes (e.g., 3D coordinates in point clouds), and
graph filters such as low-pass filtering on graph signals by
the adjacency matrix [37].

3.3. Node-wise Graph Signal Transformation

As aforementioned, in this paper, we focus on node-wise
graph signal transformation, i.e., each node has its own
transformation, either isotropically or anisotropically. We
seek to learn graph representations through the node-wise
transformations by revealing how different parts of graph
structures would change globally and locally.

Specifically, here are two distinct advantages.
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(b) Global+Isotropic
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Figure 2. Demonstration of different sampling (Global or Local) and node-wise translation (Isotropic or Anisotropic) methods on
3D point clouds. Red and blue points represent transformed and non-transformed points, respectively. Note that we adopt the wing as a

sampled local point set for clear visualization.
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Figure 3. An example of kNN graphs before and after node-
wise transformations. We first construct a kNN (k = 5) graph for
the yellow node (other connections are omitted). Then we perform
node-wise transformations on some blue nodes, which alters the
graph structure around the yellow node.

e The node-wise transformations allow us to use node
sampling to study different parts of graphs under vari-
ous transformations.

e By decoding the node-wise transformations, we will be
able to learn the representations of individual nodes.
Moreover, these node-wise representations will not
only capture the local graph structures under these
transformations, but also contain global information
about the graph when these nodes are sampled into dif-
ferent groups over iterations during training.

Next, we discuss the formulation of learning graph
transformation equivariant representations by decoding the
node-wise transformations via a graph-convolutional en-
coder and decoder.

4. GraphTER: The Proposed Approach
4.1. The Formulation

Given a pair of graph signal and adjacency matrix
(X,A), and a pair of transformed graph signal and adja-
cency matrix (X, A) by a node-wise graph transformation
t, a function E(-) is transformation equivariant if it satisfies

E(X,A) = E(t(X), f (¢(X))) = p(t) [E(X, A)], (4)
where p(t) is a homomorphism of transformation t in the
representation space.

Our goal is to learn a function E(-), which extracts
equivariant representations of graph signals X. For this pur-
pose, we employ an encoder-decoder network: we learn a
graph encoder F : (X, A) — E(X, A), which encodes the
feature representations of individual nodes from the graph.
To ensure the transformation equivariance of representa-

tions, we train a decoder D : (E(X,A),E(f(7 A)) — t

to estimate the node-wise transformation t from the rep-
resentations of the original and transformed graph signals.
Hence, we cast the learning problem of transformation
equivariant representations as the joint training of the rep-
resentation encoder I and the transformation decoder D. It
has been proved that the learned representations in this way
satisfy the generalized transformation equivariance without
relying on a linear representation of graph structures [35].
Further, we sample a subset of nodes S following a sam-
pling distribution S, from the original graph signal X, lo-
cally or globally in order to reveal graph structures at vari-
ous scales. Node-wise transformations are then performed
on the subset S isotropically or anisotropically, as demon-
strated in Fig. 2. In order to predict the node-wise transfor-
mation t, we choose a loss function /g (t, t) that quantifies
the distance between t and its estimate t in terms of their
parameters. Then the entire network is trained end-to-end
by minimizing the loss
ls(t, E) , ()

min E E
E,D S~Sy t~T,
XX,
where the expectation E is taken over the sampled graph
signals and transformations, and the loss is taken over the
(locally or globally) sampled subset S of nodes in each iter-
ation of training.
In (5), the node-wise transformation t is estimated from
the decoder

t=D (E(X,A), BE(X, A)) . (6)

Thus, we update the parameters in encoder F and decoder
D iteratively by backward propagation of the loss.

4.2. The Algorithm

Given graph signals X = {xi,Xs,..,xy}' over N
nodes, in each iteration of training, we randomly sample a
subset of nodes S from the graph, either globally or locally.
Global sampling refers to random sampling over the entire
nodes globally, while local sampling is limited to a local set
of nodes in the graph. Node sampling not only enables us
to characterize global and local graph structures at various
scales, but also reduces the number of node-wise transfor-
mation parameters to estimate for computational efficiency.

7166



Econvl Econv2 Econv3

x.4) %
" _______ Ll
shared weights : iﬁ> t
i D
(00.7) ]
Econvl Econv2 Econv3
Encoder Decoder
Unsupervised feature learning stage
Supervised evaluation stage
Econvl Econv2
E i Linear Classification
XA E F> Classifier Score

frozen weights

EdgeConv Layer > FC Layer :> Feature-wise Concatenation

Figure 4. The architecture of the proposed GraphTER. In the
unsupervised feature learning stage, the representation encoder
and transformation decoder are jointly trained by minimizing (5).
In the supervised evaluation stage, the first several blocks of the
encoder are fixed with frozen weights and a linear classifier is
trained with labeled samples.

Then we draw a node-wise transformation t; corre-
sponding to each sample x; of nodes in S, either isotrop-
ically or anisotropically. Accordingly, the graph A asso-
ciated with the transformed graph also transforms equivari-
antly from the original A under t. Specifically, as illustrated
in Fig. 3, we construct a kNN graph to make use of the con-
nectivity between the nodes, whose matrix representation in
A changes after applying the sampled node-wise transfor-
mations.

To learn the applied node-wise transformations, we de-
sign a full graph-convolutional auto-encoder network as il-
lustrated in Fig. 4. Among various paradigms of GCNN:gs,
we choose EdgeConv [44] as a basic building block of the
auto-encoder network, which efficiently learns node-wise
representations by aggregating features along all the edges
emanating from each connected node. Below we will ex-
plain the representation encoder and the transformation de-
coder in detail.

4.2.1 Representation Encoder

The representation encoder E' takes the signals of an orig-
inal graph X and the transformed counterparts X as input,
along with their corresponding graphs. E encodes node-
wise features of X and X through a Siamese encoder net-
work with shared weights, where EdgeConv layers are used
as basic feature extraction blocks. As shown in Fig. 3,
given a non-transformed central node x; and its transformed
neighbors t;(x;), the input layer of encoded feature of x;

is
Ein(X, A)7 = Inax &ivj
JEN () %
= e ReLU(0(t;(x;) — %) + ¢x),

where a; ; denotes the edge feature, i.e., edge weight in A.
0 and ¢ are two weighting parameters, and j € N (i) de-
notes node j is in the k-nearest neighborhood of node i.
Then, multiple layers of regular edge convolutions [44] are
stacked to form the final encoder.

Edge convolution in (7) over each node essentially ag-
gregates features from neighboring nodes via edge weights
a; j. Since the edge information of the underlying graph
transforms with the transformations of individual nodes as
demonstrated in Fig. 3, edge convolution is able to extract
higher-level features from the original and transformed edge
information. Also, as features of each node are learned via
propagation from transformed and non-transformed nodes
isotropically or anisotropically by both local or global sam-
pling, the learned representation is able to capture intrinsic
graph structures at multiple scales.

4.2.2 Transformation Decoder

Node-wise features of the original and transformed graphs
are then concatenated at each node, which are then fed into
the transformation decoder. The decoder consists of several
EdgeConv blocks to aggregate the representations of both
the original and transformed graphs to predict the node-
wise transformations t. Based on the loss in (5), t is de-
coded by minimizing the mean squared error (MSE) be-
tween the ground truth and estimated transformation param-
eters at each sampled node. Fig. 4 illustrates the architecture
of learning the proposed GraphTER in such an auto-encoder
structure.

5. Experiments

In this section, we evaluate the GraphTER model by ap-
plying it to graphs of 3D point cloud data on two repre-
sentative downstream tasks: point cloud classification and
segmentation. We compare the proposed method with state-
of-the-art supervised and unsupervised approaches.

5.1. Datasets and Experimental Setup

ModelNet40 [47]. This dataset contains 12, 311 meshed
CAD models from 40 categories, where 9, 843 models are
used for training and 2, 468 models are for testing. For each
model, 1,024 points are sampled from the original mesh.
We train the unsupervised auto-encoder and the classifier
under the training set, and evaluate the classifier under the
testing set.

ShapeNet part [49]. This dataset contains 16,881 3D
point clouds from 16 object categories, annotated with 50
parts. Each 3D point cloud contains 2, 048 points, most of

7167



Table 1. Classification accuracy (%) on ModelNet40 dataset.

Method Year Unsupervised Accuracy
3D ShapeNets [47] 2015 No 84.7
VoxNet [30] 2015 No 85.9
PointNet [32] 2017 No 89.2
PointNet++ [33] 2017 No 90.7
KD-Net [21] 2017 No 90.6
PointCNN [25] 2018 No 92.2
PCNN [2] 2018 No 92.3
DGCNN [44] 2019 No 92.9
RS-CNN [28] 2019 No 93.6
T-L Network [13] 2016 Yes 74.4
VConv-DAE [39] 2016 Yes 75.5
3D-GAN [45] 2016 Yes 83.3
LGAN [1] 2018 Yes 85.7
FoldingNet [48] 2018 Yes 88.4
MAP-VAE [15] 2019 Yes 90.2
L2G-AE [27] 2019 Yes 90.6
GraphTER Yes 92.0

which are labeled with fewer than six parts. We employ
12,137 models for training the auto-encoder and the classi-
fier, and 2, 874 models for testing.

We treat points in each point cloud as nodes in a graph,
and the (z,y, z) coordinates of points as graph signals. A
kNN graph is then constructed on the graph signals to guide
graph convolution.

Next, we introduce our node-wise graph signal transfor-
mation. In experiments, we sample a portion of nodes with
a sampling rate r from the entire graph to perform node-
wise transformations, including 1) Global sampling: ran-
domly sample r% of points from all the points in a 3D point
cloud; 2) Local sampling: randomly choose a point and
search its k£ nearest neighbors in terms of Euclidean dis-
tance, forming a local set of % of points.

Then, we apply three types of node-wise transformations
to the coordinates of point clouds, including 1) Transla-
tion: randomly translate each of three coordinates of a point
by three parameters in the range [—0.2, 0.2]; 2) Rotation:
randomly rotate each point with three rotation parameters
all in the range [—5°, 5°]; 3) Shearing: randomly shear the
x-, Y-, z-coordinates of each point with the six parameters
of a shearing matrix in the range [—0.2,0.2]. We consider
two strategies to transform the sampled nodes: Isotrop-
ically or Anisotropically, which applies transformations
with node-invariant or node-variant parameters.

5.2. Point Cloud Classification

First, we evaluate the GraphTER model on the Model-
Net40 [47] dataset for point cloud classification.

5.2.1 Implementation Details

In this task, the auto-encoder network is trained via the
SGD optimizer with a batch size of 32. The momentum
and weight decay rate are set to 0.9 and 10~4, respectively.

The initial learning rate is 0.1, and then decayed using a co-
sine annealing schedule [29] for 512 training epochs. We
adopt the cross entropy loss to train the classifier.

We deploy eight EdgeConv layers as the encoder, and the
number k of nearest neighbors is set to 20 for all EdgeConv
layers. Similar to [44], we use shortcut connections for the
first five layers to extract multi-scale features, where we
concatenate features from these layers to acquire a 1, 024-
dimensional node-wise feature vector. After the encoder,
we employ three consecutive EdgeConv layers as the de-
coder — the output feature representations of the Siamese en-
coder first go through a channel-wise concatenation, which
are then fed into the decoder to estimate node-wise trans-
formations. The batch normalization layer and LeakyReLU
activation function with a negative slope of 0.2 is employed
after each convolutional layer.

During the training procedure of the classifier, the first
five EdgeConv layers in the encoder are used to represent
input cloud data by node-wise concatenating their output
features with the weights frozen. After the five EdgeConv
layers, we apply three fully-connected layers node-wise to
the aggregated features. Then, global max pooling and av-
erage pooling are deployed to acquire the global features,
after which three fully-connected layers are used to map the
global features to the classification scores. Dropout with a
rate of 0.5 is adopted in the last two fully-connected layers.

5.2.2 Experimental Results

Tab. 1 shows the results for 3D point cloud classifica-
tion, where the proposed model applies isotropic node-
wise shearing transformation with a global sampling rate
of r = 25%. We compare with two classes of methods:
unsupervised approaches and supervised approaches. The
GraphTER model achieves 92.0% of classification accu-
racy on the ModelNet40 dataset, which outperforms the
state-of-the-art unsupervised methods. In particular, most
of the compared unsupervised models combine the ideas
of both GAN and AED, and map 3D point clouds to un-
supervised representations by auto-encoding data, such as
FoldingNet [48], MAP-VAE [15] and L2G-AE [27]. Re-
sults show that the GraphTER model achieves significant
improvement over these methods, showing the superiority
of the proposed node-wise AET over both the GAN and
AED paradigms.

Moreover, the unsupervised GraphTER model also
achieves comparable performance with the state-of-the-art
fully supervised results. This significantly closes the gap
between unsupervised approaches and the fully supervised
counterparts in literature.

5.2.3 Ablation Studies

Further, we conduct ablation studies under various exper-
imental settings of sampling and transformation strategies
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Table 2. Unsupervised classification accuracy (%) on ModelNet40
dataset with different sampling and transformation strategies.
Global Sampling | Local Sampling
Iso. Aniso. Iso. Aniso.
Translation | 90.15 90.15 8991  89.55 89.94
Rotation 91.29 90.24 90.48  89.87 | 90.47
Shearing 92.02 90.32 91.65 89.99 | 90.99
91.15 90.24 90.68  89.80
90.70 90.24

Mean

Mean

Table 3. Unsupervised classification accuracy (%) on ModelNet40
dataset applying translation at different node sampling rates.

Sampling | Global Sampling Local Sampling

Rate Iso. Aniso. Iso. Aniso.

25% 90.15 90.15 8991 8955 | 89.94

50% 90.03 89.63 89.95 8947 | 89.77

75% 91.00 89.67 9141  89.75 | 90.46

100% 89.67 89.99 89.67 89.99 | 89.83

Mean

on the ModelNet40 dataset.

First, we analyze the effectiveness of different node-wise
transformations under global or local sampling. Tab. 2
presents the classification accuracy with three types of
node-wise transformation methods. We see that the shear-
ing transformation achieves the best performance, improv-
ing by 1.05% on average over translation, and 0.52% over
rotation. This shows that the proposed GraphTER model is
able to learn better feature representations under more com-
plex transformations.

Moreover, we see that the proposed model achieves an
accuracy of 90.70% on average under global sampling,
which outperforms local sampling by 0.46%. This is be-
cause global sampling better captures the global structure of
graphs, which is crucial in such a graph-level task of classi-
fying 3D point clouds. Meanwhile, under the two sampling
strategies, the classification accuracy from isotropic trans-
formations is higher than that from the anisotropic one. The
reason lies in the intrinsic difficulty of training the transfor-
mation decoder with increased complexity of more param-
eters when applying anisotropic transformations.

Moreover, we evaluate the effectiveness of different sam-
pling rates r under the translations as reported in Tab. 3.
The classification accuracies under various sampling rates
are almost the same, and the result under » = 25% is com-
parable to that under » = 100%. This shows that the perfor-
mance of the proposed model is insensitive to the variation
of sampling rates, i.e., applying node-wise transformations
to a small number of nodes in the graph is sufficient to learn
intrinsic graph structures.

5.3. Point Cloud Segmentation

We also apply the GraphTER model to 3D point cloud
part segmentation on ShapeNet part dataset [49].

5.3.1 Implementation Details

We also use SGD optimizer to train the auto-encoding trans-
formation network. The hyper-parameters are the same as
in 3D point cloud classification except that we train for 256
epochs. We adopt the negative log likelihood loss to train
the node-wise classifier for segmenting each point in the
clouds.

The auto-encoding architecture is similar to that of the
classification task, where we employ five EdgeConv layers
as the encoder. However, the first two EdgeConv blocks
consist of two MLP layers with the number of neurons {64,
64} in each layer. We use shortcut connections to concate-
nate features from the first four layers to a 512-dimensional
node-wise feature vector.

As for the node-wise classifier, we deploy the same ar-
chitecture as in [44]. The output features from the encoder
are concatenated node-wise with globally max-pooled fea-
tures, followed by four fully-connected layers to classify
each node. During the training procedure, the weights of the
first four EdgeConv blocks in the encoder are kept frozen.

5.3.2 Experimental Results

We adopt the Intersection-over-Union (IoU) metric to eval-
uate the performance. We follow the same evaluation pro-
tocol as in the PointNet [32]: the IoU of a shape is com-
puted by averaging the IoUs of different parts occurring in
that shape, and the IoU of a category is obtained by aver-
aging the IoUs of all the shapes belonging to that category.
The mean IoU (mloU) is finally calculated by averaging the
IoUs of all the test shapes.

We also compare the proposed model with unsuper-
vised approaches and supervised approaches in this task,
as listed in Tab. 4. We achieve a mloU of 81.9%, which
significantly outperforms the state-of-the-art unsupervised
method MAP-VAE [15] by 13.9%.

Moreover, the unsupervised GraphTER model also
achieves the comparable performance to the state-of-the-art
fully supervised approaches, greatly pushing closer towards
the upper bound set by the fully supervised counterparts.

5.3.3 Visualization Results

Fig. 5 visualizes the results of the proposed unsupervised
model and two state-of-the-art fully supervised methods:
DGCNN [44] and RS-CNN [28]. The proposed model pro-
duces better segmentation on the “table” model in the first
row, and achieves comparable results on the other mod-
els. Further, we qualitatively compare the proposed method
with the state-of-the-art unsupervised method MAP-VAE
[15], as illustrate in Fig. 6. The proposed model leads to
more accurate segmentation results than MAP-VAE, e.g.,
the engines of planes and the legs of chairs.
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Table 4. Part segmentation results on ShapeNet part dataset. Metric is mloU(%) on points.

Unsup. | Mean | Aero Bag Cap Car Chair PE(?;C Guitar Knife Lamp Laptop Motor Mug  Pistol Rocket ;l;:f_z Table

Samples 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
PointNet [32] No 83.7 834 787 825 749 896 730 915 859 80.8 953 652 93.0 812 579 728 80.6
PointNet++ [33] No 85.1 824 790 8.7 773 908 71.8 91.0 859 837 953 716 941 813 587 764 826
KD-Net [21] No 823 80.1 746 743 703 886 735 902 872 810 949 574 867 781 51.8 699 803
PCNN [2] No 85.1 824 80.1 8.5 795 908 732 913 860 8.0 957 732 948 833 510 750 818
PointCNN [25] No 86.1 84.1 865 8.0 808 906 797 923 884 8.3 961 772 953 842 642 80.0 83.0
DGCNN [44] No 85.2 840 834 867 778 906 747 912 875 828 957 663 949 81.1 635 745 826
RS-CNN [28] No 86.2 835 848 8.8 796 912 81.1 91.6 884 8.0 960 737 941 834 605 777 83.6
LGAN [1] Yes 57.0 541 487 626 432 684 583 743 684 534 826 186 751 547 372 467 664
MAP-VAE [15] Yes 68.0 627 671 730 585 771 673 848 771 609 908 358 877 642 450 604 748
GraphTER Yes 81.9 817 681 837 746 881 689 906 866 80.0 956 563 90.0 808 552 70.7 79.1

(a) Ground-truth  (b) DGCNN (c) RS-CNN (d) GraphTER

Figure 5. Visual comparison of point cloud part segmentation
with supervised methods. Our unsupervised GraphTER learn-
ing achieves comparable results with the state-of-the art fully su-
pervised approaches.
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(a) MAP-VAE
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(b) GraphTER

Figure 6. Visual comparison of point cloud part segmentation
with the state-of-the-art unsupervised method MAP-VAE. We
achieve more accurate segmentation even in tiny parts and transi-
tion regions.

5.3.4 Ablation Studies

Similar to the classification task, we analyze the effective-
ness of different node-wise transformations under global or
local sampling, as presented in Tab. 5. The proposed model
achieves the best performance under the shearing transfor-
mation, improving by 1.23% on average over translation,

Table 5. Unsupervised segmentation results on ShapeNet part
dataset with different transformation strategies. Metric is mloU
(%) on points.

Global Sampling  Local Sampling
Iso. Aniso. Iso. Aniso. Mean
Translation | 79.83 79.88 80.05 79.85 79.90
Rotation 80.20 80.29 80.87  80.02 | 80.35
Shearing 81.88 80.28 81.89 80.48 | 81.13
Mean 80.64 80.15 80.94 80.12
80.39 80.53

and 0.78% over rotation, which demonstrates the benefits
of GraphTER learning under complex transformations.

Further, the proposed model achieves a mIoU of 80.53%
on average under local sampling, which outperforms global
sampling by 0.14%. This is because local sampling of nodes
captures the local structure of graphs better, which is crucial
in node-level 3D point cloud segmentation task.

6. Conclusion

In this paper, we propose a novel paradigm of learn-
ing graph transformation equivariant representation (Graph-
TER) via auto-encoding node-wise transformations in an
unsupervised fashion. We allow it to sample different
groups of nodes from a graph globally or locally and
then perform node-wise transformations isotropically or
anisotropically, which enables it to characterize morphable
structures of graphs at various scales. By decoding these
node-wise transformations, GraphTER enforces the en-
coder to learn intrinsic representations that contain suffi-
cient information about structures under applied transfor-
mations. We apply the GraphTER model to classification
and segmentation of graphs of 3D point cloud data, and
experimental results demonstrate the superiority of Graph-
TER over the state-of-the-art unsupervised approaches, sig-
nificantly closing the gap with the fully supervised counter-
parts. We will apply the general GraphTER model to more
applications as future works, such as node classification of
citation networks.
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