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Abstract

We introduce the first method for automatic image gen-

eration from scene-level freehand sketches. Our model al-

lows for controllable image generation by specifying the

synthesis goal via freehand sketches. The key contribution

is an attribute vector bridged Generative Adversarial Net-

work called EdgeGAN, which supports high visual-quality

object-level image content generation without using free-

hand sketches as training data. We have built a large-

scale composite dataset called SketchyCOCO to support

and evaluate the solution. We validate our approach on the

tasks of both object-level and scene-level image generation

on SketchyCOCO. Through quantitative, qualitative results,

human evaluation and ablation studies, we demonstrate the

method’s capacity to generate realistic complex scene-level

images from various freehand sketches.

1. Introduction

In recent years Generative Adversarial Networks

(GANs) [16] have shown significant success in modeling

high dimensional distributions of visual data. In partic-

ular, high-fidelity images could be achieved by uncondi-

tional generative models trained on object-level data (e.g.,

animal pictures in [4]), class-specific datasets (e.g., in-

door scenes [33]), or even a single image with repeated

textures [32]. For practical applications, automatic im-

age synthesis which can generate images and videos in

response to specific requirements could be more useful.

This explains why there are increasingly studies on the

adversarial networks conditioned on another input signal

like texts [37, 20], semantic maps [2, 21, 6, 34, 27], lay-

outs [2, 20, 38], and scene graphs [2, 23]. Compared to

these sources, a freehand sketch has its unique strength in

expressing the user’s idea in an intuitive and flexible way.

∗Corresponding author.

Specifically, to describe an object or scene, sketches can

better convey the user’s intention than other sources since

they lessen the uncertainty by naturally providing more de-

tails such as object location, pose and shape.

In this paper, we extend the use of Generative Adversar-

ial Networks into a new problem: controllably generating

realistic images with many objects and relationships from

a freehand scene-level sketch as shown in Figure 1. This

problem is extremely challenging because of several fac-

tors. Freehand sketches are characterized by various lev-

els of abstractness, for which there are a thousand differ-

ent appearances from a thousand users, which even express

the same common object, depending on the users’ depictive

abilities, thereby making it difficult for existing techniques

to model the mapping from a freehand scene sketch to re-

alistic natural images that precisely meet the users’ inten-

tion. More importantly, freehand scene sketches are often

incomplete and contain a foreground and background. For

example, users often prefer to sketch the foreground ob-

ject, which are most concerned, with specific detailed ap-

pearances and they would like the result to exactly satisfy

this requirement while they leave blank space and just draw

the background objects roughly without paying attention to

their details, thereby requiring the algorithm to be capable

of coping with the different requirements of users.

To make this challenging problem resolvable, we decom-

pose it into two sequential stages, foreground and back-

ground generation, based on the characteristics of scene-

level sketching. The first stage focuses on foreground gen-

eration where the generated image content is supposed to

exactly meet the user’s specific requirement. The second

stage is responsible for background generation where the

generated image content may be loosely aligned with the

sketches. Since the appearance of each object in the fore-

ground has been specified by the user, it is possible to gener-

ate realistic and reasonable image content from the individ-

ual foreground objects separately. Moreover, the generated

foreground can provide more constraints on the background
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Figure 1: The proposed approach allows users to controllably generate realistic scene-level images with many objects from

freehand sketches, which is in stark contrast to unconditional GAN and conditional GAN in that we use scene sketch as

context (a weak constraint) instead of generating from noise [4] or with harder condition like semantic maps [2, 28] or edge

maps [21]. The constraints of input become stronger from left to right.

generation, which makes background generation easier, i.e.,

progressive scene generation reduces the complexity of the

problem.

To address the data variance problem caused by the ab-

stractness of sketches, we propose a new neural network ar-

chitecture called EdgeGAN. It learns a joint embedding to

transform images and the corresponding various-style edge

maps into a shared latent space in which vectors can rep-

resent high-level attribute information (i.e., object pose and

appearance information) from cross-domain data. With the

bridge of the attribute vectors in the shared latent space,

we are able to transform the problem of image generation

from freehand sketches to the one from edge maps without

the need to collect foreground freehand sketches as training

data, and we can address the challenge of modeling one-to-

many correspondences between an image and infinite free-

hand sketches.

To evaluate our approach, we build a large-scale com-

posite dataset called SketchyCOCO based on MS COCO

Stuff [5]. The current version of this dataset includes 14K+

pairwise examples of scene-level images and sketches,

20K+ triplet examples of foreground sketches, images, and

edge maps which cover 14 classes, 27K+ pairwise examples

of background sketches and image examples which cover 3

classes, and the segmentation ground truth of 14K+ scene

sketches. We compare the proposed EdgeGAN to existing

sketch-to-image approaches. Both qualitative and quantita-

tive results show that the proposed EdgeGAN achieves sig-

nificantly superior performance.

We summarize our contributions as follows:

• We propose the first deep neural network based frame-

work for image generation from scene-level freehand

sketches.

• We contribute a novel generative model called Edge-

GAN for object-level image generation from freehand

sketches. This model can be trained in an end-to-end

manner and does not require sketch-image pairwise

ground truth for training.

• We construct a large scale composite dataset called

SketchyCOCO based on MS COCO Stuff [5]. This

dataset will greatly facilitate related research.

2. Related Work

Sketch-Based Image Synthesis. Early sketch-based

image synthesis approaches are based on image retrieval.

Sketch2Photo [7] and PhotoSketcher [15] synthesize real-

istic images by compositing objects and backgrounds re-

trieved from a given sketch. PoseShop [8] composites im-

ages of people by letting users input an additional 2D skele-

ton into the query so that the retrieval will be more precise.

Recently, SketchyGAN [9] and ContextualGAN [26] have

demonstrated the value of variant GANs for image gen-

eration from freehand sketches. Different from Sketchy-

GAN [9] and ContextualGAN [26], which mainly solve the

problem of image generation from object-level sketches de-

picting single objects, our approach focuses on generating

images from scene-level sketches.

Conditional Image Generation. Several recent studies

have demonstrated the potential of variant GANs for scene-

level complex image generation from text [37, 20], scene

graph [23], semantic layout map [20, 38]. Most of these

methods use a multi-stage coarse-to-fine strategy to infer

the image appearances of all semantic layouts in the input

or intermediate results at the same time. We instead take an-

other way and use a divide-and-conquer strategy to sequen-

tially generate the foreground and background appearances

of the image because of the unique characteristics of free-

hand scene sketches where foreground and background are

obvious different.
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Figure 2: Workflow of the proposed framework.

On object-level image generation, our EdgeGAN is

in stark contrast to unconditional GANs and conditional

GANs in that we use a sketch as context (a weak constraint)

instead of generating from noise like DCGAN [29], Wasser-

stein GANs [1], WGAN-GP [17] and their variants, or with

hard condition such as an edge map [10, 11, 24, 21], se-

mantic map [2, 21, 6, 34, 27], while providing more precise

control than those using text [37, 20], layout [2, 20, 38] and

scene graph [2, 23] as context.

3. Method

Our approach mainly includes two sequential modules:

foreground generation and background generation. As il-

lustrated in Fig. 2, given a scene sketch, the object instances

are first located and recognized by leveraging the sketch

segmentation method in [40]. After that image content is

generated for each foreground object instance (i.e., sketch

instances belonging to the foreground categories) individu-

ally in a random order by the foreground generation mod-

ule. By taking background sketches and the generated fore-

ground image as input, the final image is achieved by gen-

erating the background image in a single pass. The two

modules are trained separately. We next describe the details

of each module.

3.1. Foreground Generation

Overall Architecture of EdgeGAN. Directly modeling the

mapping between a single image and its corresponding

sketches, such as SketchyGAN [9], is difficult because of

the enormous size of the mapping space. We therefore in-

stead address the challenge in another feasible way instead:

we learn a common representation for an object expressed

by cross-domain data. To this end, we design an adversar-

ial architecture, which is shown in Fig. 3(a), for EdgeGAN.

Rather than directly inferring images from sketches, Edge-

GAN transfers the problem of sketch-to-image generation

to the problem of generating the image from an attribute

vector that is encoding the expression intent of the freehand

sketch. At the training stage, EdgeGAN learns a common

attribute vector for an object image and its edge maps by

feeding adversarial networks with images and their various-

drawing-style edge maps. At the inference stage (Fig. 3 (b)),

EdgeGAN captures the user’s expression intent with an at-

tribute vector and then generates the desired image from it.

Structure of EdgeGAN. As shown in Fig. 3(a), the pro-

posed EdgeGAN has two channels: one including genera-

tor GE and discriminator DE for edge map generation, the

other including generator GI and discriminator DI for im-

age generation. Both GI and GE take the same noise vector

together with an one-hot vector indicting a specific category

as input. Discriminators DI and DE attempt to distinguish

the generated images or edge maps from real distribution.

Another discriminator DJ is used to encourage the gener-

ated fake image and the edge map depicting the same object

by telling if the generated fake image matches the fake edge

map, which takes the outputs of both GI and GE as input

(the image and edge map are concatenated along the width

dimension). The Edge Encoder is used to encourage the

encoded attribute information of edge maps to be close to

the noise vector fed to GI and GE through a L1 loss. The

classifier is used to infer the category label of the output of

GI , which is used to encourage the generated fake image to

be recognized as the desired category via a focal loss [25].

The detailed structures of each module of EdgeGAN are il-

lustrated in Fig. 3(c).

We implement the Edge Encoder with the same encoder

module in bicycleGAN [39] since they play a similar role

functionally, i.e., our encoder encodes the “content” (e.g.,

the pose and shape information), while the encoder in bicy-

cleGAN encodes properties into latent vectors. For Classi-

fier, we use an architecture similar to the discriminator of

SketchyGAN while ignoring the adversarial loss and only

using the focal loss [25] as the classification loss. The ar-

chitecture of all generators and discriminators are based on

WGAP-GP [17]. Objective function and more training de-

tails can be found in the supplementary materials.

3.2. Background Generation

Once all of the foreground instances have been synthe-

sized, we train pix2pix [21] to generate the background.

The major challenge of the background generation task

is that the background of most scene sketches contains

both the background instance and the blank area within the

area(as shown in Fig. 2), which means some area belong-

ing to the background is uncertain because of the lack of

sketch constraint. By leveraging pix2pix and using the gen-

erated foreground instances as constraints, we can allow the

network to generate a reasonable background matching the

synthesized foreground instances. Taking Fig. 2 as an ex-

ample, the region below the zebras of the input image con-

tains no background sketches for constraints, and the output

image shows that such a region can be reasonably filled in

with grass and ground.

4. SketchyCOCO Dataset

We initialize the construction by collecting instance

freehand sketches covering 3 background classes and 14

foreground classes from the Sketchy dataset [31], Tuber-

lin dataset [12], and QuickDraw dataset [18] (around 700
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Figure 3: Structure of the proposed EdgeGAN. It contains four sub-networks: two generators GI and GE , three discrimi-

nators DI , DE , and DJ , an edge encoder E and an image classifier C. EdgeGAN learns a joint embedding for an image

and various-style edge maps depicting this image into a shared latent space where vectors can encode high-level attribute

information from cross-modality data.
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Figure 4: Representative sketch-image pairwise examples from 14 foreground and 3 background categories in SketchyCOCO.

The data size of each individual category, splitting to training/test, is shown on the top.

sketches for each foreground class). For each class, we split

these sketches into two parts: 80% for the training set, and

the remaining 20% for the test set. We collect 14081 natural

images from COCO Stuff [5] containing at least one of 17

categories and split them into two sets, 80% for training and

the remaining 20% for test. Using the segmentation masks

of these natural images, we place background instance

sketches (clouds, grass, and tree sketches) at random posi-

tions within the corresponding background regions of these

images. This step produces 27, 683(22, 171 + 5, 512) pairs

of background sketch-image examples (shown in Fig. 4).

After that, for each foreground object in the natural im-

age, we retrieve the most similar sketch with the same

class label as the corresponding foreground object in the

image. This step employs the sketch-image embedding

method proposed in the Sketchy database [31]. In addi-

tion, in order to obtain more data for training object gen-

eration model, we collect foreground objects from the full

COCO Stuff dataset. With this step and the artificial se-

lection, we obtain 20, 198(18, 869 + 1, 329) triplets exam-

ples of foreground sketches, images and edge maps. Since

all the background objects and foreground objects of natu-

ral images from COCO Stuff have category and layout in-

formation, we therefore obtain the layout (e.g., bounding

boxes of objects) and segmentation information for the syn-

thesized scene sketches as well. After the construction of

both background and foreground sketches, we naturally ob-

tain five-tuple ground truth data (Fig. 5). Note that in the

above steps, scene sketches in training and test set can only

be made up by instance sketches from the training and test

sets, respectively.

5. Experiments

5.1. Object­level Image Generation

Baselines. We compare EdgeGAN with the general image-

to-image model pix2pix [21] and two existing sketch-to-

image models, ContextualGAN [26] and SketchyGAN[9],

on the collected 20,198 triplets {foreground sketch, fore-

ground image, foreground edge maps} examples. Unlike

SketchyGAN and pix2pix which may use both edge maps

and freehand sketches for training data, EdgeGAN and Con-

textualGAN take as input only edge maps and do not use

any freehand sketches for training. For fair and thorough

evaluation, we set up several different training modes for

SketchyGAN, pix2pix, and ContextualGAN. We next intro-

duce these modes for each model.

• EdgeGAN: we train a single model using foreground

images and only the extracted edge maps for all 14

foreground object categories.

• ContextualGAN [26]: we use foreground images and

their edge maps to separately train a model for each

foreground object category, since the original method

cannot use a single model to learn the sketch-to-image

correspondence for multiple categories.
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Figure 5: Illustration of five-tuple ground truth data of SketchyCOCO, i.e., (a) {foreground image, foreground sketch, fore-

ground edge maps} (training: 18,869, test: 1,329), (b) {background image, background sketch} (training: 11,265, test:

2,816), (c) {scene image, foreground image & background sketch} (training: 11,265, test: 2,816), (d) {scene image, scene

sketch} (training: 11,265, test: 2,816), and (e) sketch segmentation (training: 11,265, test: 2,816).

• SketchyGAN [9]: we train the original Sketchy-

GAN in two modes. The first mode denoted as

SketchyGAN-E uses foreground images and only their

edge maps for training. Since SketchyGAN may use

both edge maps and freehand sketches for training data

in their experiments, we also train SketchyGAN in an-

other mode: using foreground images and {their edge

maps + sketches} for training. In this training mode

called SketchyGAN-E&S, we follow the same train-

ing strategy as SketchyGAN did to feed edge maps to

the model first and then fine-tune it with sketches.

• pix2pix [21]: we train the original pix2pix architec-

ture in four modes. The first two modes are denoted as

pix2pix-E-SEP and pix2pix-S-SEP, in which we sep-

arately train 14 models by using only edge maps or

sketches from the 14 foreground categories, respec-

tively. The other two modes are denoted as pix2pix-

E-MIX and pix2pix-S-MIX, in which we train a single

model respectively using only edge maps or sketches

from all 14 categories.

Qualitative results. We show the representative results of

the four comparison methods in Fig 6. In general, Edge-

GAN provides much more realistic results than Contextu-

alGAN. In terms of the faithfulness (i.e., whether the in-

put sketches can depict the generated images), EdgeGAN is

also superior than ContextualGAN. This can be explained

by the fact that EdgeGAN uses the learned attribute vec-

tor, which captures reliable high-level attribute information

from the cross-domain data for the supervision of image

generation. In contrast, ContextualGAN uses a low-level

sketch-edge similarity metric for the supervision of image

generation, which is sensitive to the abstractness level of

the input sketch.

Compared to EdgeGAN which produces realistic im-

ages, pix2pix and SketchyGAN which just colorize the in-

put sketches and do not change the original shapes of the

input sketches when the two models are trained with only

edge maps (e.g., see Fig. 6 (b1), (c1), and (c2)). This may

be because the outputs of both SketchyGAN and pix2pix

are strongly constrained by the input (i.e., one-to-one corre-

spondence provided by the training data). When the input is

a freehand sketch from another domain, these two models

are weak to produce realistic results since they only see edge

maps during the training. In contrast, the output of Edge-

GAN is relatively weakly constrained by the input sketch

since its generator takes as input the attribute vector learnt

from cross-domain data rather than the input sketch. There-

fore, EdgeGAN can achieve better results than pix2pix and

SketchyGAN because it is relatively insensitive to cross-

domain input data.

By augmenting or changing the training data with free-

hand sketches, both SketchyGAN and pix2pix can produce

realistic local patches for some categories but fail to pre-

serve the global shape information, as we can see that the

shapes of the results in Fig. 6 (b2), (c3), and (c4) are dis-

torted.

OursInput (a) (b1) (b2) (c1) (c2) (c3) (c4)

Figure 6: From left to right: input sketches, results from

EdgeGAN, ContextualGAN (a), two training modes of

SketchyGAN (i.e., SketchyGAN-E (b1) and SketchyGAN-

E&S) (b2), four training modes of pix2pix, i.e, pix2pix-

E-SEP (c1), pix2pix-E-MIX (c2),pix2pix-S-MIX(c3), and

pix2pix-S-SEP(c4)

Quantitative results. We carry out both realism and faith-

fulness evaluations for quantitative comparison. We use

FID [19] and Accuracy [2] as the realism metrics. Lower

FID value and higher accuracy value indicate better image

realism. It is worth mentioning that the Inception Score [30]

metric is not suitable for our task, as several recent re-

searches including [3] find the Inception Score is basically

only reliable for the models trained on ImageNet. We mea-

sure the faithfulness of the generated image by computing

the extent of the similarity between the edge map of the gen-

erated image and the corresponding input sketch. Specifi-

cally, we use Shape Similarity (SS), which is the L2 Ga-
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Table 1: The results of quantitative experiments and human

evaluation.

Model (object) FID Acc.
SS

(e+04)

Real-

ism

Faith-

fulness

Ours 87.6 0.887 2.294 0.637 0.576

ContextualGAN 225.2 0.377 2.660 0.038 0.273

SketchyGAN-E 141.5 0.277 1.996 0.093 0.945

SketchyGAN-E&S 137.9 0.127 2.315 0.023 0.691

pix2pix-E-SEP 143.1 0.613 2.136 0.071 0.918

pix2pix-E-MIX 128.8 0.499 2.103 0.058 0.889

pix2pix-S-MIX 163.3 0.223 2.569 0.047 0.353

pix2pix-S-SEP 196.0 0.458 2.527 0.033 0.310

Model (scene) FID SSIM
FID

(local)

Real-

ism

Faith-

fulness

Ashual et al. [2]-layout 123.1 0.304 183.6 0.083 1.874

Ashual et al. [2]-scene graph 167.7 0.280 181.9 0.118 1.570

GauGAN-semantic map 80.3 0.306 123.0 0.208 2.894

GauGAN-semantic sketch 215.1 0.285 239.5 0.000 1.210

Ours 164.8 0.288 112.0 0.591 2.168

bor feature [14] distance between the input sketch and the

edge map generated by the canny edge detector from the

generated image, to measure the faithfulness (lower value

indicates higher faithfulness).

The quantitative results are summarized as Table 1 where

we can see that the proposed EdgeGAN achieves the best re-

sults in terms of the realism metrics. However, in terms of

the faithfulness metric, our method is better than most of the

competitors but is not as good as pix2pix-E-SEP, pix2pix-E-

MIX, SketchyGAN-E. This is because the results generated

by these methods look more like a colorization of the in-

put sketches whose shapes are almost the same as the input

sketch (see Fig. 6 (b1), (c1), (c2)), rather than being realis-

tic. The quantitative results basically confirm our observa-

tions in the qualitative study.

5.2. Scene­level Image Generation

Baselines. There is no existing approach which is specifi-

cally designed for image generation from scene-level free-

hand sketches. SketchyGAN was originally proposed for

object-level image generation from freehand sketches. The-

oretically, it can also be used for the scene-level freehand

sketches. pix2pix [21] is a popular general image-to-image

model which is supposed to be applied in all the image

translation tasks. We therefore use SketchyGAN [9] and

pix2pix [21] as the baseline methods.

Since we have 14081 pairs of {scene sketch, scene im-

age} examples, it is intuitive to directly train the pix2pix

and SketchyGAN models to learn the mapping from

sketches to images. We therefore conducted the experi-

ments on the entities with lower resolutions, e.g., 128×128.

We found that the training of either pix2pix or Sketchy-

GAN was prone to mode collapse, often after 60 epochs

(80 epochs for SketchyGAN), even all the 14081 pairs of

{scene sketch, scene image} examples from the Sketchy-

COCO dataset were used. The reason may be that the data

variety is too huge to be modeled. Even the size of 14K

pairs is still insufficient to complete a successful training.

However, even with 80% the 14081 pairs of {foreground

image & background sketch, scene image} examples, we

can still use the same pix2pix model for background gen-

eration without any mode collapse. This may be because

the pix2pix model in this case avoids the challenging map-

ping between the foreground sketches and the correspond-

ing foreground image contents. More importantly, the train-

ing can converge fast because the foreground image pro-

vides sufficient prior information and constraints for back-

ground generation.

Comparison with other systems. We also compare our

approach with the advanced approaches which generate im-

ages using constraints from other modalities.

• GauGAN [28]: The original GauGAN model takes the

semantic maps as input. We found that the GauGAN

model can also be used as a method to generate im-

ages from semantic sketches where the edges of the

sketches have category labels as shown in the 7th col-

umn of Fig. 7. In our experiments, we test the public

model pre-trained on the dataset COCO Stuff. In addi-

tion, we trained a model by taking as input the seman-

tic sketches on our collected SketchyCOCO dataset.

The results are shown in Fig. 7 columns 6 and 8.

• Ashual et al. [2]: the approach proposed by Ashual et

al. can use either layouts or scene graphs as input. We

therefore compared both of the two modes with their

pre-trained model. To ensure fairness, we test only the

categories included in the SketchyCOCO dataset and

set the parameter of the minimal object number to 1.

The results are shown in Fig. 7 columns 2 and 4.

Qualitative results. From Fig. 7, we can see the images

generated by freehand sketches are much more realistic than

those generated from scene graphs or layouts by Ashual et

al. [2], especially in the foreground object regions. This is

because freehand sketches provide a harder constraint com-

pared to scene graphs or layouts (it provides more informa-

tion including the pose and shape information than scene

graphs or layouts). Compared to GauGAN with semantic

sketches as input, our approach generally produce more re-

alistic images. Moreover, compared to the GauGAN model

trained using semantic maps, our approach also achieves

better results, evidence of which can be found in the gen-

erated foreground object regions (the cows and elephants

generated by GauGAN have blurred or unreasonable tex-

tures).

In general, our approach can produce much better results

in terms of the overall visual quality and the realism of the

foreground objects than both GauGAN and Ashual et al.’s

method. The overall visual quality of the whole image is

also comparative to the state-of-the-art system.
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Figure 7: Scene-level comparison. Please see the text in Section 5.2 for the details.

Quantitative results. We adopt three metrics to evaluate

the faithfulness and realism of the generated scene-level

images. Apart from FID, the structural similarity metric

(SSIM) [35] is another metric used to quantify how simi-

lar the generated images and the ground truth images are.

Higher SSIM value means closer. The last metrics, called

FID (local), is used to compute the FID value of the fore-

ground object regions in the generated images. From Ta-

ble 1 we can see most comparison results confirm our obser-

vations and conclusions in the qualitative study except for

the comparisons with the GauGAN-semantic map model

and the Ashual et al. [2]-layout model in some metrics.

There are several reasons why the GauGAN model

trained using semantic maps is superior to our model in

terms of FID and SSIM. Apart from the inherent advantages

offered by the semantic map data as a tighter constraint,

the GauGAN model trained using the semantic maps con-

tains all the categories in the COCO Stuff dataset, while our

model sees only 17 categories in the SketchyCOCO dataset.

Therefore, the categories and number of instances in the im-

age generated by GauGAN are the same with ground truth,

while our results can contain only a part of them. The

Ashual et al. [2]-layout model is superior to ours in terms

of FID and SSIM. This may be because the input layout

information can provide a more explicit spatial constraint

than sketches when generating the background. However,

our method has greater advantages on the metric of FID

(local), which confirms our observation in the qualitative

result analysis-that is, our method can generate more realis-

tic foreground images. Because our approach takes as input

the freehand sketches, which may be much more accessi-

ble than the semantic maps used by GauGAN, we believe

that our approach might still be a competitive system for an

image-generation tool compared to the GauGAN model.

5.3. Human Evaluation

We carry out a human evaluation study for both object-

level and scene-level results. As shown in Table 1, we eval-

uate the realism and faithfulness of the results from eight

object-level and five scene-level comparison models. We

select 51 sets of object-level test samples and 37 sets of

scene-level test samples, respectively. In the realism evalu-

ation, 30 participants are asked to pick out the resulting im-

age that they think is most “realistic” from the images gen-

erated by the comparison models for each test sample. For

the faithfulness evaluation, we conduct the evaluation fol-

lowing SketchyGAN [9] for eight object-level comparison

models. Specifically, with each sample image, the same 30

participants see six random sketches of the same category,

one of which is the actual input/query sketch. The partici-

pants are asked to select the sketch that they think prompts

the output image. For five scene-level comparison models,

the 30 participants are asked to rate the similarity between

the GT image and the resulting images on a scale of 1 to 4,

with 4 meaning very satisfied and 1 meaning very dissatis-

fied. In total, 51× 8× 30 = 12, 240 and 51× 30 = 1, 530
trails are respectively collected for object-level faithfulness

and realism evaluations, and 37 × 5 × 30 = 5, 550 and

37× 30 = 1, 110 trails are respectively collected for scene-

level faithfulness and realism evaluations.

The object-level statistic results in Table 1 generally con-

firm the quantitative results of faithfulness. The scene-level

evaluation shows that our method has the best score on re-

alism, which is not consistent with the quantitative results

measured by FID. This may be because the participants care

more about the visual quality of foreground objects than that

of background regions. In terms of scene-level faithfulness,

GauGAN is superior to our method because the input se-

mantic map generated from the ground truth image provides

more accurate constraints.

5.4. Ablation Study

We conduct comprehensive experiments to analyze each

component of our approach, which includes: a) whether the
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encoder E has learnt the high level cross-domain attribute

information, b) how the joint discriminator DJ works, and

c) which GAN model suits our approach the most, and d)

whether multi-scale discriminators can be used to improve

the results. Due to the limited space, in this section we only

present our investigation towards the most important study,

i.e., study a) and put the other studies into the supplemen-

tary materials.

Figure 8: Results from edges or sketches with different

style. Column 1 to 4: different freehand sketches. Col-

umn 5 to 9: edges from canny, FDoG [22], Photocopy (PC),

Photo-sketch [13] and XDoG. [36]

We test different styles of drawings, including sketches

and edge maps generated by various filters as input. We

show the results in Fig. 8. We can see that our model works

for a large variety of line drawing styles although some of

them are not included in the training dataset. We believe

that the attribute vector from the Encoder E can extract the

high-level attribute information of the line drawings no mat-

ter what styles they are.

6. Discussion and Limitation

(a) (b) (c) (d) (e)

Figure 9: From top to bottom: input sketches, and the im-

ages generated by our approach.

Background generation. We study the controllability and

robustness of background generation. As shown in Fig. 9

(a) to (c), we progressively add background categories to

the blank background. As a result, the output images are

changed reasonably according to the newly added back-

ground sketches, which indicates these sketches do control

the generation of different regions of the image. It can be

seen that although there is a large unconstrained blank in

the background, the output image is still reasonable. We

study our approach’s capability of producing diverse re-

sults. As shown in Fig. 9 (c) to (e), we change the location

15% 13% 27% 4%4%3% 24% 10%
front left front left left back back right back right right front 

Figure 10: Statistical results of the view angles of fore-

ground objects in SketchyCOCO.

and size of the foreground object in the scene sketch while

keeping the background unchanged. As a result, there are

significant changes in the background generation. Taking

the foreground as a constraint for background training, the

foreground and background blend well. We can see the ap-

proach even generates shadow under the giraffe.

Dataset Bias. In the current version of SketchyCOCO, all

the foreground images for object-level training are collected

from the COCO-Stuff dataset. We discard only the fore-

ground objects with major parts occluded from COCO-Stuff

in the data collection phrase. To measure the view diversity

of the foreground objects, we randomly sample 50 examples

from each class in the training data and quantify the views

into eight ranges according to the view angles on the x-y

plane. This result is shown in Fig. 10. As we can see, there

are some dominant view angles, such as the side views. We

are considering augmenting SketchyCOCO to create a more

balanced dataset.

Sketch Segmentation. We currently employ the instance

segmentation algorithm in [40] in the instance segmenta-

tion step of the scene sketch. Our experiment finds that

the adopted segmentation algorithm may fail to segment

some objects in the scene sketches in which the object-level

sketches are too abstract. To address this problem, we are

considering tailoring a more effective algorithm for the task

of scene sketch segmentation in the future.

7. Conclusion

For the first time, this paper has presented a neural net-

work based framework to tackle the problem of generating

scene-level images from freehand sketches. We have built

a large scale composite dataset called SketchyCOCO based

on MS COCO Stuff for the evaluation of our solution. Com-

prehensive experiments demonstrate the proposed approach

can generate realistic and faithful images from a wide range

of freehand sketches.
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