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Abstract

Event cameras are novel sensors that output brightness

changes in the form of a stream of asynchronous “events”

instead of intensity frames. They offer significant advan-

tages with respect to conventional cameras: high dynamic

range (HDR), high temporal resolution, and no motion blur.

Recently, novel learning approaches operating on event

data have achieved impressive results. Yet, these methods

require a large amount of event data for training, which is

hardly available due the novelty of event sensors in com-

puter vision research. In this paper, we present a method

that addresses these needs by converting any existing video

dataset recorded with conventional cameras to synthetic

event data. This unlocks the use of a virtually unlimited

number of existing video datasets for training networks de-

signed for real event data. We evaluate our method on two

relevant vision tasks, i.e., object recognition and semantic

segmentation, and show that models trained on synthetic

events have several benefits: (i) they generalize well to real

event data, even in scenarios where standard-camera im-

ages are blurry or overexposed, by inheriting the outstand-

ing properties of event cameras; (ii) they can be used for

fine-tuning on real data to improve over state-of-the-art for

both classification and semantic segmentation.

Multimedia Material

This project’s code is available at

https://github.com/uzh-rpg/rpg_vid2e.

Additionally, qualitative results are available in this video:

https://youtu.be/uX6XknBGg0w

1. Introduction

Event cameras, such as the Dynamic Vision Sensor [22]

(DVS), are novel sensors that work radically differently

from conventional cameras. Instead of capturing intensity

∗Equal contribution

Figure 1. Our method converts any large scale, high quality video

dataset, to a synthetic event camera dataset. This unlocks the

great wealth of existing video datasets for event cameras, enabling

new and exciting applications, and addressing the shortage of high

quality event camera datasets. Networks trained on these synthetic

events generalize surprisingly well to real events. By leveraging

the high dynamic range and lack of motion blur of event cameras

these networks can generalize to situations where standard video

frames over exposed or blurred. Best viewed in color.

images at a fixed rate, they measure changes of intensity

asynchronously at the time they occur. This results in a

stream of events, which encode the time, location, and po-

larity (sign) of brightness changes.

Event cameras possess outstanding properties when

compared to conventional cameras. They have a very high

dynamic range (140 dB versus 60 dB), do not suffer from

motion blur, and provide measurements with a latency on

the order of microseconds. Thus, they are a viable alterna-

tive, or complementary sensor, in conditions that are chal-

lenging for standard cameras, such as high-speed and high-

dynamic-range (HDR) scenarios [19, 36, 42, 33].1 How-

ever, because the output of event cameras is asynchronous,

existing computer vision algorithms developed for standard

cameras cannot be directly applied to these data but need to

be specifically tailored to leverage event data (for a survey

on event cameras and the field of event-based vision, we

1https://youtu.be/0hDGFFJQfmA
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refer the reader to [12]).

Recently, novel learning approaches operating on event

data have achieved impressive results in scenarios where

networks operating on standard cameras fail [26, 41, 1,

42, 33, 15, 34]. Notably, in [34] it was shown that a net-

work trained to reconstruct grayscale intensity frames solely

from events can synthesize high framerate videos (> 5, 000
frames per second) of high-speed phenomena (e.g., a bul-

let shot by gun hitting an object) and can as well render

HDR video in challenging lighting conditions (e.g., abrupt

transition from dark to bright scene). It was also shown

that off-the-shelf deep learning algorithms trained on large-

scale standard camera datasets can be applied to these syn-

thesized HDR, high-framerate videos and that, by doing so,

they consistently outperforms algorithms that were specif-

ically trained only on event data.2 These results highlight

that the event data contain all the visual information that is

needed to carry out the same tasks that can be accomplished

with standard cameras and that it should be possible to de-

sign efficient learning algorithms that process the event data

end to end without passing through intermediate image rep-

resentations.

Unfortunately, the design of efficient, end-to-end learn-

ing methods requires a large amount of event data for train-

ing, which is hardly available because of the novelty of

event sensors: event cameras were first commercialized in

2008 and research on event-based vision has made most

progress only in the past five years.

A viable alternative to the lack of large scale datasets are

event camera simulators [32]; however, an open research

question is how well neural networks trained on synthetic

events will generalize to real event cameras. Moreover, sim-

ulated scenarios still suffer from lack of realism.

To address these issues, we propose a method to gener-

ate synthetic, large-scale event-camera data from existing

real-world, video datasets recorded with conventional cam-

eras. On the one hand, our method addresses the shortage of

event-camera data by leveraging the virtually unlimited sup-

ply of existing video datasets and democratizing this data

for event camera research. The availability of these new

datasets can unlock new and exciting research directions

for event cameras and spark further research in new fields,

previously inaccessible for event cameras. On the other

hand, since our method directly relies on video sequences

recorded in real-world environments, we show that models

trained on synthetic events generated from video general-

ize surprisingly well to real event data, even in challenging

scenarios, such as HDR scenes or during fast motions. To

conclude, our contributions are:

• We present a framework for converting existing video

datasets to event datasets, thus enabling new applica-

2https://youtu.be/eomALySSGVU

tions for event cameras.

• We show that models trained on these synthesized

event datasets generalize well to real data, even in sce-

narios where standard images are blurry or overex-

posed, by inheriting the outstanding properties of event

cameras.

• We evaluate our method on two relevant vision tasks,

i.e., object recognition and semantic segmentation, and

show that models trained on synthetic events can be

used for fine-tuning on real data to improve over state

of the art.

Our work is structured as follows: First, we review rel-

evant literature in event camera research and deep learning

techniques as well as available datasets in Sec. 2. We then

present the method for converting video datasets to events

in Sec. 3. Section 4.1 validates and characterizes the re-

alism of events generated by our approach in the setting of

object recognition (Sec. 4.1). Finally, we apply our method

to the challenging task of per-pixel semantic segmentation

in Sec. 4.2.

2. Related Work

2.1. Event Camera Datasets for Machine Learning

The number of event camera datasets tailored to bench-

marking of machine learning algorithms is limited. The ear-

liest such datasets are concerned with classification and are

counterparts of their corresponding image-based datasets.

Both Neuromorphic (N)-MNIST and N-Caltech101 [31]

were generated by mounting an event camera on a pan-and-

til unit in front of a monitor to reproduce the saccades for

generating events from a static image. Later, Sironi et al.

[38] introduced N-CARS, a binary classification dataset but

with events from dynamic scenes rather than static images.

The most recent classification dataset [4], termed Ameri-

can Sign Language (ASL)-DVS, features 24 handshapes for

american sign language classification. Closely related to

neuromorphic classification is neuromorphic action recog-

nition. This task has been targeted by the DVS-Gesture

dataset [2] which contains 11 different gestures recorded by

the DVS128 event camera.

The first and so far only neuromorphic human pose dataset,

DAVIS Human Pose Dataset(DHP19), has been recently in-

troduced by [7]. It features four event cameras with resolu-

tion of 260× 346 recording 33 different movements simul-

taneously from different viewpoints.

The DAVIS Driving Dataset (DDD17) [5] and Multi-

Vehicle Stereo Event Camera (MVSEC) dataset [40] are

two driving datasets. The former provides data about ve-

hicle speed, position, steering angle, throttle and brake be-

sides a single event camera. The latter dataset features
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multiple vehicles in different environments and also pro-

vides ego-motion and LIDAR data together with frames and

events from a stereo DAVIS setup. A subset of DDD17 was

later extended [1] with approximate semantic labels to in-

vestigate semantic segmentation with event cameras.

2.2. Deep Learning with Event Cameras

The applicability of deep learning to event camera data

was first explored in the context of classification. Neil et al.

[28] designed a novel recurrent neural network architecture

applied to classification on the N-MNIST dataset. Later,

Maqueda et al. [26] proposed an event-frame representa-

tion and designed a CNN architecture for steering angle re-

gression on the DDD17 dataset. The same dataset has been

modified by Alonso et al. [1] to perform semantic segmen-

tation. The availability of MVSEC has spurred research in

optical flow [41, 42, 15] and depth estimation [42, 39]. In

contrast to aforementioned work, [33, 34] trained a convolu-

tional recurrent neural network entirely on simulated events

to perform image reconstruction.

2.3. Synthetic Events

This section reviews work in the domain of generative

modeling for events from event cameras. Early work in this

domain has been performed by Kaiser et al. [18]. They gen-

erate events simply by applying a threshold on the image

difference. Depending on the pixel’s intensity difference a

positive or negative event is generated. Pix2NVS [3] com-

putes per-pixel luminance from conventional video frames.

The technique generates synthetic events with inaccurate

timestamps clustered to frame timestamps. To the best of

our knowledge, the two first simulators attempting to gen-

erate events accurately are [27] and [21]. Both works ren-

der images at high frame-rate and linearly interpolate the

intensity signals to generate events. Rebecq et al. [32] addi-

tionally introduces an adaptive sampling scheme based on

the maximum displacement between frames. This leads to

improved accuracy for very fast motion and lower compu-

tation in case of slow motion. The generative model used in

[27, 32] has been formalized in previous work [22, 13, 14].

3. Methodology

In this section, we describe our method for converting

video to synthetic events. This conversion can be split into

two steps: event generation and frame upsampling, covered

in Sec. 3.1 and Sec. 3.2, respectively. Fig. 2 illustrates

these individual steps. In a first step, we leverage a recent

frame interpolation technique [17] to convert low frame rate

to high frame rate video using an adaptive upsampling tech-

nique. This video is then used to generate events using the

generative model by leveraging a recent event camera simu-

lator (ESIM) [32]. To facilitate domain adaptation between

synthetic and real events, we further introduce two domain

adaptation techniques. Finally, we make use of [15] to con-

vert the sparse and asynchronous events to tensor-like rep-

resentations, which enables learning with traditional convo-

lutional neural network (CNN) architectures.

3.1. Event Generation Model

Event cameras have pixels that are independent and re-

spond to changes in the continuous log brightness signal

L(u, t). An event ek = (xk, yk, tk, pk) is triggered when

the magnitude of the log brightness at pixel u = (xk, yk)
T

and time tk has changed by more than a threshold C since

the last event at the same pixel.

∆L(u, tk) = L(u, tk)− L(u, tk −∆tk) ≥ pkC. (1)

Here, ∆tk is the time since the last triggered event, pk ∈
{−1,+1} is the sign of the change, also called polarity of

the event. Equation (1) describes the generative event model

for an ideal sensor [14, 12].

3.2. Frame Upsampling

While the event generative model provides a tool for gen-

erating events for a given brightness signal, it requires that

this signal be known at high temporal resolution. In par-

ticular for event cameras this timescale is on the order of

microseconds. Event camera simulators, such as ESIM, can

address this problem by adaptively rendering virtual scenes

at arbitrary temporal resolution (Section 3.1 of [32]). How-

ever, video sequences typically only provide intensity mea-

surements at fixed and low temporal resolution on the order

of milliseconds.

We therefore seek to recover the full intensity profile

I(u, t) given a video sequence of N frames {I(u, ti)}
N
i=0

captured at times {ti}
N
i=0. A subproblem using only two

consecutive frames has been well studied in frame interpo-

lation literature. We thus turn to [17], a recent technique

for frame interpolation which is finding wide spread use in

smart-phones. Compared to other frame interpolation tech-

niques such as [23, 24, 29, 30] the method in [17] allows to

reconstruct frames at arbitrary temporal resolution, which

is ideal for the posed task. The number of intermediate

frames, must be chosen carefully since too low values lead

to aliasing of the brightness signal (illustrated in [32], Fig.

3) but too high values impose a computational burden. The

following adaptive sampling strategy, inspired by [32], uses

bidirectional optical flow (as estimated internally by [17])

to compute the number of intermediate samples. Given two

consecutive frames I(ti) and I(ti+1) at times ti and ti+1,

we generate Ki equally spaced intermediate frames. Ki is

chosen such that the relative displacement between interme-

diate frames is at most 1 pixel for all pixels:

Ki = max
u

max{‖Fi→i+1(u)‖, ‖Fi+1→i(u)‖} − 1, (2)
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Figure 2. Overview of the method. Low frame-rate video is first adaptively upsampled using the method proposed in [17]. This upsampled

video is fed to the event camera simulator (ESIM) [32] which produces asynchronous and sparse events with high temporal resolution.

where Fi→j(u) is the optical flow from frame i to j at pixel

location u. We use this strategy to adaptively upsample be-

tween pairs of video frames, resulting in an adaptively up-

sampled video sequence (Fig. 2 middle).

3.3. Event Generation from High Frame Rate Video

The next step is to generate events from the high frame

rate video sequence generated in Sec. 3.2. We gener-

ate events by employing the algorithm described in [32]

(Sec 3.1). For each pixel the continuous intensity signal

in time is approximated by linearly interpolating between

video frames. Events are generated at each pixel whenever

the magnitude of the change in intensity exceeds the con-

trast threshold, C (defined in (1)) which is a parameter of

ESIM. Since the contrast threshold in (1) is typically not

known for real sensors and can vary from sensor to sensor

and between positive and negative events, we propose to

randomize it at train-time. Before generating a sequence of

events we randomly sample contrast thresholds for positive

and negative events, Cp, Cn from the uniform distribution

∼ U(Cmin, Cmax). A similar procedure was used in [33, 34]

where randomization was shown to improve domain adap-

tation between simulated and real data. In this work we

chose Cmin =0.05 and Cmax =0.5.

3.4. Event Representation and Learning

As a next step, The synthetic events and original labels

are used to train a network. To do this, we consider a win-

dow of events leading up to the time stamped ground truth

label and train a model to predict it. Note that this works

for general datasets with precisely timestamped images and

labels. We take advantage of existing CNN architectures de-

signed for standard images by converting the asynchronous

and sparse event streams into tensor-like representation. We

chose the Event Spike Tensor (EST) [15] since it was shown

to outperform existing representations on both high- and

low-level tasks. The EST is generated by drawing the events

with positive and negative polarity into two separate spatio-

temporal grids of dimensions H×W×C and stacking them

along the channel dimension. Here H and W are the sensor

resolution and C is a hyper-parameter which controls the

number of temporal bins used to aggregate events. In this

work we chose C = 15.

4. Experiments

In this section, we present an evaluation of the method

described in 3 on two tasks: object classification (Sec. 4.1)

and semantic segmentation (Sec. 4.2). In each case we

show that models that are trained on synthetic events have

the following benefits: (i) they generalize well from syn-

thetic to real events (ii), can be used to fine tune on real

event data, leading to accelerated learning and improve-

ments over the state of the art, and (iii) can generalize to sce-

narios where standard frames are blurry or underexposed.

4.1. Object Recognition

Object recognition using standard frame-based cameras

remains challenging due to their low dynamic range, high

latency and motion blur. Recently, event-based object

recognition has grown in popularity since event cameras

address all of these challenges. In this section we evalu-

ate the event generation method proposed in 3 in this sce-

nario. In particular, we provide an analysis of each compo-

nent of the method, frame upsampling and event generation.

In our evaluation we use N-Caltech101 (Neuromorphic-

Caltech101) [31], the event-based version of the popular

Caltech101 dataset [11] which poses the task of multi class

recognition. This dataset remains challenging due to a large

class imbalance. The dataset comprises 8,709 event se-

quences from from 101 object classes each lasting for the

duration of 300 ms. Samples from N-Caltech101 were

recorded by placing an event camera in front of a screen

and projecting various examples from Caltech101, while

the event camera underwent three saccadic movements.

4.1.1 Implementation

To evaluate our method we convert the samples of Cal-

tech101 to event streams, thus generating a replica (sim-

N-Caltech101) of the N-Caltech101 dataset. We then
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aim at quantifying how well a network trained on sim-

N-Caltech101 generalizes to events in the real dataset, N-

Caltech101. To convert samples from Caltech101 to event

streams we adopt the strategy for converting still images to

video sequences outlined in [33, 34]. We map the still im-

ages onto a 2D plane and simulate an event camera moving

in front of this plane in a saccadic motion, as was done for

the original N-Caltech101 dataset [31]. Note that, since the

camera is moved virtually, video frames can be rendered at

arbitrary temporal resolution, making it possible to simu-

late video cameras with different frame rates. Once a high

frame rate video is rendered, we use this video to generate

events. In a first step we fix the contrast threshold in ESIM

to 0.06 but randomize this value later. Some examples from

sim-Caltech101 as well as corresponding samples from N-

Caltech101 and Caltech101 are shown in Fig. 4.

In a next step we train a classifier on data from sim-N-

Caltech101. We chose an off-the-shelf classifier based on

ResNet-34 [16] which has been pretrained on RGB images

from ImageNet [37]. We choose a batch size of 4 and a

learning rate of 10−6 and trained the network to conver-

gence. We then compute the test score of this network on a

held out set on the real dataset which is reported in the first

row of Tab. 2. As a baseline we compare against a network

which was trained on real data and evaluated on the same

held out test set. We can observe that the network trained

on synthetic events leads to a lower score (75.1%) than one

trained on real events (86.3%) leading to a gap of 11.2%. To

address this gap we apply a form of domain randomization

by randomly sampling the contrast threshold during train-

ing, as was described in 3.3. This is done for two reasons:

On the one hand this step helps to add robustness to the

network by exposing it to a larger variety of event streams,

which benefits generalizability. On the other hand the true

contrast threshold it typically not known during training, so

randomization eliminates the need for hand tuning this pa-

rameter. By employing this technique we achieve an im-

proved result of 78.2% reducing the gap to 8.1%.

We propose to further generalizability through dataset

extension. It is well known that Caltech101 is unbalanced.

For example, while the most common class (airplanes) has

800 samples, the least common class (inline skate) has only

31 samples. To address this imbalance, we exploit the fact

that our method does not require real events. We down-

loaded images from the Internet (google images) to find ad-

ditional examples for each class. We filtered wrong sam-

ples by using a ResNet-34 classifier [16], pretrained on

Caltech101 images. By employing this strategy without

contrast threshold randomization we achieve a test score

of 76.9% and if we include both techniques we achieve a

score of 80.7%, effectively reducing the gap to real to 5.6%.

While this gap still remains, this result shows that the syn-

thetic events generated by our method effectively capture

most of the visual appearance of the real event stream thus

achieve a high level of realism.

Fine Tuning In this section we show that a network pre-

trained on simulated data described in the previous section

can be used to fine tune on real data, which leads to a large

performance increase. We fine tune the best model obtained

in the previous experiment network obtained by training on

real events from N-Caltech101 with a reduced learning rate

of 10−7 and train until convergence. The test score is re-

ported in Tab. 2 where we see that fine tuning has a large im-

pact on network performance. Not only does the test score

surpass baseline on real data, it also beats existing state of

the art event-based approaches, summarized in Tab. 3, such

as [38, 15, 33] and approaches state of the art methods using

standard images [25] with 94.7%.

4.1.2 Effect of Frame Upsampling

In this section we present an ablation study which aims at

characterizing the effect of frame upsampling on the gen-

erated events. This is crucial since our method relies on

video sequences, which typically only record visual infor-

mation at low temporal resolution. In particular, we show

that adaptive frame upsampling leads to improvements in

the events in the case of low frame rate video. To under-

stand this relationship we propose the following controlled

experiment, illustrated in Fig. 3. We first generate a refer-

ence dataset from Caltech101 samples by rendering video

frames at 530 Hz (Fig. 3 a), for 300 ms, such that the

maximal displacement between consecutive frames is be-

low 1 pixel (0.13 pixel). We simulate the low frame rate of

conventional video cameras by downsampling these frames

by factors of (4, 16, and 80) leading to maximal pixel dis-

placements of 0.55, 2.11 and 9.4 respectively (Fig. 3 c). To

recover high frame rate video we apply the frame interpo-

lation technique described in [17], which results in frames

at the same temporal resolution as the original video. To

understand the effect of video quality on events we gener-

ate datasets for each of these three cases, fixing the settings

for event generation, and varying the downsampling factor.

This way changes in the events are reflected by the changes

in video quality. To assess these differences we train three

classifiers with the same training and network parameters

as described in the previous section, and compare their test

scores on events generated from the original high frame rate

video. The test scores for different downsampling factors is

reported in Tab. 1. While a network trained on events from

high frame rate video (Tab. 1 top row) achieves a high score

of 88.6% on this test set, we see that reducing the framerate

(Tab. 1 second row) by a factor of 80, drastically reduces

this score to 61.8%. In fact, artifacts caused by the low

frame rate become apparent at these low frame rates. One

such artifact is called ghosting and is caused when there is
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Figure 3. Evaluation of the effect of frame interpolation on event

quality. We render a high frame rate video of a Caltech101 [11]

image (a) by sliding a virtual camera in front of a 2d planes, fol-

lowing three saccadic movements as described in [31] which we

use to generate ground truth events (b). We then downsample the

video (c) which leads to a distortion of the event stream (d). By

applying the interpolation technique in [17] we can reconstruct the

original video (e) which leads to improved event quality. To quan-

tify this quality, we train three classifiers, one on each dataset, and

compare test scores on the ground truth events.

video
downsampling factor

1 4 16 80

original 0.887 -

downsampled 0.887 0.882 0.867 0.618

interpolated 0.887 0.881 0.877 0.687

average interframe

displacement [px]
0.13 0.55 2.11 9.4

Table 1. Ablation study on the effect of downsampling. Test

score of networks trained on events generated from different video

streams and evaluated on events from high frame rate video.

a large displacement between consecutive frames. In this

case linear interpolation of the intensity values over time

results in the appearance and disappearance of parts of the

scene which cause events to be generated in an unrealistic

fashion. By using frame interpolation we reduce these ef-

fects, as indicated by the increased performance (68.7%).

4.2. Semantic Segmentation

Semantic segmentation is a recognition task which aims

at assigning a semantic label to each pixel in an image.

It has numerous applications, including street lane and

pedestrian detection for autonomous driving. Nonetheless,

semantic segmentation using standard images remains

challenging especially in edge-case scenarios, where their

quality is greatly reduced due to motion blur or over- and

under-exposure. Event-based segmentation promises to

address these issues by leveraging the high dynamic range,

lack of motion blur and low latency of the event camera.

(a) preview (b) real events (c) synthetic events
Figure 4. A side-by-side comparison of a samples from Caltech101

(a), N-Caltech101 (b) and our synthetic examples from (c) sim-

N-Caltech101. While the real events were recorded by moving

an event camera in front of a projector, the synthetic events were

generated using ESIM by moving a virtual camera in front of a 2D

projection of the sample in (a).

contrast threshold

randomization

dataset

extension

fine tuning

on real
test score

0.751

✓ 0.769

✓ 0.782

✓ ✓ 0.807

✓ 0.856

✓ ✓ 0.852

✓ ✓ 0.904

✓ ✓ ✓ 0.906

real data 0.863

images [25] 0.947

Table 2. Effect of randomization on test accuracy. For comparison

we report the test scores when trained on real events and also the

state of the art [25] on the original Caltech101 images.

Method Training Data Test Score

HATS [38] real 0.642

HATS+ResNet-34 [38] real 0.691

RG-CNN [4] real 0.657

EST [15] real 0.817

E2VID [33] real 0.866

ours synthetic 0.807

ours synthetic + real 0.906

Table 3. Comparison of classification accuracy for state of the art

classification methods on N-Caltech101 [31]. Our method uses a

ResNet-34[16] architecture.

In this section we evaluate our method for semantic

segmentation by generating a large scale synthetic event

dataset from the publicly available DAVIS Driving Dataset

(DDD17) [5]. It features grayscale video with events from

the Dynamic and Activate Vision Sensor (DAVIS) [6] and

semantic annotations provided by [1] for a selection of se-

quences. In [1] a network trained on Cityscapes [9] was

used to generate labels for a total of 19840 grayscale im-
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ages (15950 for training and 3890 for testing). The combi-

nation of grayscale video and events allows us to generate

synthetic events and evaluate against real events from the

event camera. We show that training solely on synthetic

events generated by our method yields competitive perfor-

mance with respect the state of the art trained on real events.

Furthermore, we improve on the state of the art [1] by train-

ing on synthetic events and fine tuning on real events.

4.2.1 Implementation

The annotated version of DDD17 [1] provides segmenta-

tion labels which are synchronized with the frames and thus

appear at 10-30 Hz intervals. For each label we use the

events that occurred in a 50 ms time window before the label

for prediction, as was done in [1]. We consider two event-

based input representations: the EST, which was already

used in Sec. 4.1 and the 6-channel representation proposed

by [1]. In [1] a six channel tensor is constructed from the

events, with three channels for both the positive and neg-

ative events. The first channel is simply the histogram of

events; that is the number of events received at each pixel

within a certain time interval. The second channel is the

mean timestamp of the events while the third channel is the

standard deviation of the timestamps.

We use the network architecture proposed in [1] which

consists of a U-Net architecture [35] with an Xception

encoder [8] and a light decoder architecture. We use a

batchsize of 8 and use ADAM [20] with a learning rate of

10−3 and train until convergence.

4.2.2 Quantitative Results

As was done in [1], we use the following two evalua-

tion metrics: Accuracy and Mean Intersection over Union

(MIoU). Given predicted semantic labels ŷ, ground-truth la-

bels y, N the number of pixels and C the number of classes,

accuracy is defined as

Accuracy =
1

N

N∑

n=1

δ(yn, ŷn) (3)

and simply measures the overall proportion of correctly la-

belled pixels. MIoU, defined as

MIoU =
1

C

C∑

c=1

∑N

n=1
δ(yn,c, 1)δ(yn,c, ŷn,c)∑N

n=1
max(1, δ(yn,c, 1) + δ(ŷn,c, 1))

(4)

is an alternative metric that takes into account class imbal-

ance [10] in an image through normalization and is thus a

more robust metric compared to accuracy.

We train two neural networks on synthetic events gener-

ated from video, one using the event representation in [1]

and one using the EST [15]. We evaluate these networks on

the test set, and vary the size of the window of events be-

tween 10, 50 and 250 ms which was also done in [1]. The

results from this experiment are summarized in Tab. 4. We

compare against the state of the art method in [1], repre-

sented in the last row. Tab. 4 indicates that the overall ac-

curacy (on 50 ms) for both representations remains within

4% of the 89.8% correctly classified pixels. The difference

on the MIoU metric is slightly larger with 45.5% for EST

and 48.2% for Alonso et al.’s representation compared to

54.8% if trained on real events. These results indicate that

training only on synthetic events yields good generalization

to real events, though slightly lower than training on real

event data directly. In the next step we want to quantify the

gain in when we fine tune on real data.

In a next step we fine tune these models on real data.

We do this with a lower learning rate of 10−4, and after

only two epochs of training we observe large improvements

leading to state of the art performance, as captured in Tab.

4. In fact, our method outperforms existing approaches con-

sistently by an average of 1.2%. In addition, we see that our

method remains moderately robust even with large varia-

tions on the event window size.

4.2.3 Edge-Cases

In previous sections we have demonstrated that event

datasets generated using our method generalize well to real

data and networks trained on these datasets can be fine

tuned on real data to enhance performance above state of

the art. In this section we investigate how networks trained

on synthetic events alone generalize to scenarios in which

traditional frames corrupted due to motion blur or over-

and under-exposure. In this experiment we use the model

trained with EST inputs from synthetic events. Fig. 5 il-

lustrates two edge cases where frame-based segmentation

fails, due to over-exposure (top row) and low contrast (bot-

tom row). We see that in the first case the segmentation net-

work only predicts the background class (top right) since

the image is overexposed. In the second case the frame-

based segmentation wrongly classifies a person as vegeta-

tion which is due to the low contrast in the lower left part

of the image. The network using events handles both cases

gracefully thanks to the high contrast sensitivity of the event

camera. It is important to note that the network never saw

real events during training, yet generalizes to edge-case sce-

narios. This shows that networks trained on synthetic events

can generalize beyond the data they were trained with, and

do this by inheriting the outstanding properties of events.

5. Known Limitations

One apparent shortcoming is the occurrence of blurry

frames in a video dataset. Blurr typically persists in interpo-

lated frames and thus yields suboptimal results when used

3592



(a) events (b) prediction from events (c) DAVIS frame (d) prediction from frame
Figure 5. Edge cases for semantic segmentation (violet: street; green: vegetation; red: person; blue: car; yellow: object; gray: background).

The first row depicts a scenario in which the conventional camera is over-exposed. This results in deteriorated frame-based segmentation

performance. In contrast, the event-based segmentation network is able to predict the road labels accurately. The second row showcases a

scenario in which frame-based segmentation wrongly classifies a person as vegetation. This is due to the low contrast in the lower left part

of the image. The event camera gracefully handles this case thanks to its superior contrast sensitivity. Best viewed in color.

Representation Fine tuned Acc. [50 ms] MIoU [50 ms] Acc. [10 ms] MIoU [10 ms] Acc. [250 ms] MIoU [250 ms]

Alonso et al. [1] 86.03 48.16 77.25 31.76 84.24 40.18

EST [15] 85.93 45.48 81.11 30.70 84.49 40.66

Alonso et al. ✓ 89.36 55.17 86.06 39.93 87.20 47.85

EST ✓ 90.19 56.01 87.20 45.82 88.64 51.61

Alonso et al. trained on real 89.76 54.81 86.46 45.85 87.72 47.56

Table 4. Semantic segmentation performance of different input representations on the test split of [1]. Accuracy and MIoU (Mean Inter-

section over Union). The models are trained on representations of 50 milliseconds (ms) of events and evaluated with a representations of

10 ms and 250 ms of events. The results reported in the last row are taken from [1]. This model was trained directly on the real events.

Figure 6. Interpolation artefacts and events in three scenarios

(rows). Interpolated frames (left column), real events (middle)

and synthetic events (right). Positive and negative events colored

in green and red respectively. Row 1 & 2: At high optic flows

repetitive structures are copied instead of interpolated, leading to

missing/wrong events. Row 3: Car tire is incorrectly interpolated

(collapses to linear interpolation) due to large optical flow. Best

viewed in PDF format.

in combination with the generative model. Furthermore, the

generative model does not account for noise that exists in

real event cameras. We consider noise modelling an inter-

esting direction of future work that could be incorporated

into the proposed framework. Finally, this work builds on

frame interpolation methods. While they also have limi-

tations, see Fig. 6, it is an active area of research. Con-

sequently, the proposed method can directly benefit from

future improvements in frame interpolation techniques.

6. Conclusion

Over the years, the computer vision community has col-

lected a large number of extensive video datasets for bench-

marking novel algorithms. This stands in contrast to the rel-

atively few datasets available to researchers on event-based

vision. This work offers a simple, yet effective solution to

this problem by proposing a method for converting video

datasets into event datasets. The availability of these new

synthetic dataset offers the prospect of exploring previously

untouched research fields for event-based vision.

The proposed method utilizes a combination of neural

network based frame interpolation and widely used genera-

tive model for events. We highlight the generalization capa-

bility of models trained with synthetic events in scenarios

where only real events are available. On top of that, we

show that finetuning models (trained with synthetic events)

with real events consistently improves results in both object

recognition and semantic segmentation.
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