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Abstract

We present a novel, end-to-end learnable, multiview 3D

point cloud registration algorithm. Registration of multi-

ple scans typically follows a two-stage pipeline: the initial

pairwise alignment and the globally consistent refinement.

The former is often ambiguous due to the low overlap of

neighboring point clouds, symmetries and repetitive scene

parts. Therefore, the latter global refinement aims at es-

tablishing the cyclic consistency across multiple scans and

helps in resolving the ambiguous cases. In this paper we

propose, to the best of our knowledge, the first end-to-end

algorithm for joint learning of both parts of this two-stage

problem. Experimental evaluation on well accepted bench-

mark datasets shows that our approach outperforms the

state-of-the-art by a significant margin, while being end-to-

end trainable and computationally less costly. Moreover, we

present detailed analysis and an ablation study that validate

the novel components of our approach. The source code and

pretrained models are publicly available under https:

//github.com/zgojcic/3D_multiview_reg.

1. Introduction

Downstream tasks in 3D computer vision, such as se-

mantic segmentation and object detection typically require

a holistic representation of the scene. The capability of

aligning and fusing individual point cloud fragments, which

cover only small parts of the environment, into a globally

consistent holistic representation is therefore essential and

has several use cases in augmented reality and robotics.

Pairwise registration of adjacent fragments is a well stud-

ied problem and traditional approaches based on geomet-

ric constraints [51, 66, 56] and hand-engineered feature de-

scriptors [37, 27, 54, 59] have shown successful results to

some extent. Nevertheless, in the recent years, research on

local descriptors for pairwise registration of 3D point clouds

is centered on deep learning approaches [67, 38, 21, 64, 19,

28] that succeed in capturing and encoding evidence hidden

to hand-engineered descriptors. Furthermore, novel end-

to-end methods for pairwise point cloud registration were

∗First two authors contributed equally to this work.

Figure 1. Result of our end-to-end reconstruction on the 60 scans

of Kitchen scene from 3DMatch benchmark [67].

recently proposed [62, 42]. While demonstrating good per-

formance for many tasks, pairwise registration of individual

views of a scene has some conceptual drawbacks: (i) low

overlap of adjacent point clouds can lead to inaccurate or

wrong matches, (ii) point cloud registration has to rely on

very local evidence, which can be harmful if 3D scene struc-

ture is scarce or repetitive, (iii) separate post-processing is

required to combine all pair-wise matches into a global rep-

resentation. Compared to the pairwise methods, globally

consistent multiview alignment of unorganized point cloud

fragments is yet to fully benefit from the recent advances

achieved by the deep learning methods. State-of-the art

methods typically still rely on a good initialization of the

pairwise maps, which they try to refine globally in a subse-

quent decoupled step [30, 61, 2, 3, 5, 4, 43, 11]. A general

drawback of this hierarchical procedure is that global noise

distribution over all nodes of the pose graph ends up being

far from random, i.e. significant biases persist due to the

highly correlated initial pairwise maps.

In this paper, we present, to the best of our knowl-

edge, the first end-to-end data driven multiview point cloud

registration algorithm. Our method takes a set of po-

tentially overlapping point clouds as input and outputs a

global/absolute transformation matrix per each of the in-

put scans (c.f . Fig. 1). We depart from a traditional two-

stage approach where the individual stages are detached

from each other and directly learn to register all views of

a scene in a globally consistent manner.

The main contributions of our work are:

• We formulate the traditional two-stage approach in an
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end-to-end neural network, which in the forward pass

solves two differentiable optimization problems: (i)

the Procrustes problem for the estimation of the pair-

wise transformation parameters and (ii) the spectral re-

laxation of the transformation synchronization.

• We propose a confidence estimation block that uses a

novel overlap pooling layer to predict the confidence

in the estimated pairwise transformation parameters.

• We cast the mutliview 3D point cloud registra-

tion problem as an iterative reweighted least squares

(IRLS) problem and iteratively refine both the pairwise

and absolute transformation estimates.

Resulting from the aforementioned contributions, the pro-

posed multiview registration algorithm (i) is very efficient

to compute, (ii) achieves more accurate scan alignments be-

cause the residuals are being fed back to the pairwise net-

work in an iterative manner, (iii) outperforms current state-

of-the-art on pairwise as well as multiview point cloud reg-

istration.

2. Related Work

Pairwise registration The traditional pairwise registra-

tion pipeline consists of two stages: the coarse alignment

stage, which provides the initial estimate of the relative

transformation parameters and the refinement stage that it-

eratively refines the transformation parameters by minimiz-

ing the 3D registration error under the assumption of rigid

transformation.

The former is traditionally performed by using either

handcrafted [54, 59, 58] or learned [67, 38, 21, 20, 64,

28, 16] 3D local features descriptors to establish the point-

wise candidate correspondences in combination with a

RANSAC-like robust estimator [26, 52, 40] or geometric

hashing [24, 8, 32]. A parallel stream of works [1, 57, 44]

relies on establishing correspondences using the 4-point

congruent sets. In the refinement stage, the coarse trans-

formation parameters are often fine-tuned with a variant of

the iterative closest point (ICP) algorithm [6]. ICP-like al-

gorithms [41, 63] perform optimization by alternatively hy-

pothesizing the correspondence set and estimating the new

set of transformation parameters. They are known to not

be robust against outliers and to converge to a global opti-

mum only when starting with a good prealingment [9]. ICP

algorithms are often extended to use additional radiomet-

ric, temporal or odometry constraints [69]. Contemporary

to our work, [62, 42] propose to integrate coarse and fine

pairwise registration stages into an end-to-end learnable al-

gorithm. Using a deep network, [31] formulates the object

tracking as a relative motion estimation of two point sets.

Multiview registration Multiview, global point cloud reg-

istration methods aim at resolving hard or ambiguous cases

that arise in pairwise methods by incorporating cues from

multiple views. The first family of methods employ a mul-

tiview ICP-like scheme to optimize for camera poses as well

as 3D point correspondences [36, 25, 45, 9]. A majority of

these suffer from increased complexity of correspondence

estimation. To alleviate this, some approaches only opti-

mize for motion and use the scans to evaluate the registra-

tion error [69, 56, 7]. Taking a step further, other modern

methods make use of the global cycle-consistency and opti-

mize only over the poses starting from an initial set of pair-

wise maps. This efficient approach is known as synchro-

nization [10, 61, 2, 56, 3, 5, 43, 69, 7, 35]. Global structure-

from-motion [17, 70] aims to synchronize the observed rela-

tive motions by decomposing rotation, translation and scale

components. [23] proposes a global point cloud registration

approach using two networks, one for pose estimation and

another modelling the scene structure by estimating the oc-

cupancy status of global coordinates.

Probably the most similar work to ours is [35], where

the authors aim to adapt the edge weights for the trans-

formation synchronization layer by learning a data driven

weighting function. A major conceptual difference to our

approach is that relative transformation parameters are esti-

mated using FPFH [54] in combination with FGR [69] and

thus, unlike ours, are not learned. Furthermore, in each it-

eration [35] has to convert the point clouds to depth images

as the weighting function is approximated by a 2D CNN.

On the other hand our whole approach operates directly on

point clouds, is fully differentiable and therefore facilitates

learning a global, multiview point cloud registration in an

end-to-end manner.

3. End-to-End Multiview 3D Registration

In this section we derive the proposed multiview 3D reg-

istration algorithm as a composition of functions depending

upon the data. The network architectures used to approxi-

mate these functions are then explained in detail in Sec 4.

We begin with a new algorithm for learned pairwise point

cloud registration, which uses two point clouds as input

and outputs estimated transformation parameters (Sec. 3.1).

This method is extended to multiple point clouds by using

a transformation synchronization layer amenable to back-

propagation (Sec. 3.2). The input graph to this synchroniza-

tion layer encodes, along with the relative transformation

parameters, the confidence in these pairwise maps, which is

also estimated using a novel neural network, as edge infor-

mation. Finally, we propose an IRLS scheme (Sec. 3.3) to

refine the global registration of all point clouds by updating

the edge weights as well as the pairwise poses.

Consider a set of potentially overlapping point clouds

S = {Si ∈ R
N×3, 1 ≤ i ≤ NS} capturing a 3D scene

from different viewpoints (i.e. poses). The task of mul-

tiview registration is to recover the rigid, absolute poses
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{M∗
i ∈ SE(3)}i given the scan collection, where

SE(3) =

{

M ∈ R
4×4 : M =

[

R t

0⊤ 1

]}

, (1)

Ri ∈ SO(3) and ti ∈ R
3. S can be augmented by con-

nectivity information resulting in a finite graph G = (S, E),
where each vertex represents a single point set and the edges

(i, j) ∈ E encode the information about the relative rota-

tion Rij and translation tij between the vertices. These

relative transformation parameters satisfy Rij = RT
ji and

tij = −RT
ijtji as well as the compatibility constraint [4]

Rij ≈ RiR
T
j tij ≈ −RiRj

T tj + ti (2)

In current state-of-the-art [69, 35, 7] edges E of G are initial-

ized with (noisy) relative transformation parameters {Mij},

obtained by an independent, auxiliary pairwise registration

algorithm. Global scene consistency is enforced via a sub-

sequent synchronization algorithm. In contrast, we propose

a joint approach where pairwise registration and transfor-

mation synchronization are tightly coupled as one fully dif-

ferentiable component, which leads to an end-to-end learn-

able, global registration pipeline.

3.1. Pairwise registration of point clouds

In the following, we introduce a differentiable, pairwise

registration algorithm that can easily be incorporated into

an end-to-end multiview 3D registration algorithm. Let

{P,Q} := {Si,Sj |i 6= j} ⊂ S denote a pair of point

clouds where (P)l =: pl ∈ R
3 and (Q)l =: ql ∈ R

3 rep-

resent the coordinate vectors of individual points in point

clouds P ∈ R
NP×3 and Q ∈ R

NQ×3, respectively. The

goal of pairwise registration is to retrieve optimal R̂ij and

t̂ij .

R̂ij , t̂ij = argmin
Rij ,tij

NP
∑

l=1

||Rijpl + tij − φ(pl,Q)||2 (3)

where φ(p,Q) is a correspondence function that maps the

points p to their corresponding points in point cloud Q. The

formulation of Eq. 3 facilitates a differentiable closed-form

solution, which is—subject to the noise distribution—close

to the ground truth solution [55]. However, least square so-

lutions are not robust and thus Eq. 3 will yield wrong trans-

formation parameters in case of high outlier ratio. In prac-

tice, the mapping φ(p,Q) is far from ideal and erroneous

correspondences typically dominate. To circumvent that,

Eq. 3 can be robustified against outliers by introducing a

heteroscedastic weighting matrix [60, 55]:

R̂ij , t̂ij = argmin
Rij ,tij

NP
∑

l=1

wl||Rijpl+ tij −φ(pl,Q)||2 (4)

where wl := (w)l is the weight of the putative corre-

spondence γl ∈ R
6 = {pl, φ(pl,Q)} computed by some

weighting function w = ψinit(Γ), where Γ := {γl} :=
{P, {φ(pl,Q)}l} and ψinit : R

NP×6 7→ R
NP . Assuming

that wl is close to one when the putative correspondence is

an inlier and close to zero otherwise, Eq. 4 will yield the

correct transformation parameters while retaining a differ-

entiable closed-form solution [55]. Hereinafter we denote

this closed-form solution as weighted least squares trans-

formation WLS trans. and for the sake of completeness, its

derivation is provided in the supp. material.

3.2. Differentiable transformation synchronization

Returning to the task of multiview registration, we again

consider the initial set of point clouds S . If no prior con-

nectivity information is given, graph G can be initialized by

forming
(

NS

2

)

point cloud pairs and estimating their rela-

tive transformation parameters as described in Sec. 3.1. The

global transformation parameters can be estimated either

jointly (transformation synchronization) [30, 5, 4, 11] or

by dividing the problem into rotation synchronization [2, 3]

and translation synchronization [34]. Herein, we opt for the

latter approach, which under the spectral relation admits a

differentiable closed-form solution [2, 3, 34].

Rotation synchronization The goal of rotation synchro-

nization is to retrieve global rotation matrices {R∗
i } by solv-

ing the following minimization problem based on their ob-

served ratios {R̂ij}

R∗
i = argmin

Ri∈SO(3)

∑

(i,j)∈E

cij ||R̂ij −RiR
T
j ||

2
F (5)

where the weigths cij := ζinit(Γ) represent the confidence

in the relative transformation parameters M̂ij . Under the

spectral relaxation Eq. 5 admits a closed-form solution,

which is provided in the supp. material [2, 3].

Translation synchronization Similarly, the goal of trans-

lation synchronization is to retrieve global translation vec-

tors {t∗i } that minimize the following least squares problem

t∗i = argmin
ti

∑

(i,j)∈E

cij ||R̂ijti + t̂ij − tj ||
2 (6)

The differentiable closed-form solution to Eq. 6 is again

provided in the supp. material.

3.3. Iterative refinement of the registration

The above formulation (Sec. 3.1 and 3.2) facilitates an

implementation in an iterative scheme, which in turn can

be viewed as an IRLS algorithm. We can start each subse-

quent iteration (k+1) by pre-aligning the point cloud pairs

using the synchronized estimate of the relative transforma-
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Figure 2. Proposed pipeline for end-to-end multiview 3D point cloud registration. For each of the input point clouds Si we extract

FCGF [16] features that are fed to the softNN layer to compute the stochastic correspondences for
(

NS

2

)

pairs. These correspondences are

used as input to the initial registration block (i.e. Reg. init.) that outputs the per-correspondence weights, initial transformation parameters,

and per-point residuals. Along with the correspondences, the initial weights and residuals are then input to the registration refinement

block (i.e. Reg. iter.), whose outputs are used to build the graph. After each iteration of the Transf-Sync layer the estimated transformation

parameters are used to pre-align the correspondences that are concatenated with the weights from the previous iteration and the residuals

and feed anew to Reg. iter. block. We iterate over the Reg. iter. and Transf-Sync layer for four times.

tion parameters M
∗(k)
ij = M

∗(k)
i M

∗(k)−1

j from iteration (k)

such that Q(k+1) := M
∗(k)
ij ⊗ Q, where ⊗ denotes apply-

ing the transformation M
∗(k)
ij to point cloud Q. Addition-

ally, weights w(k) and residuals r(k) of the previous itera-

tion can be used as a side information in the correspondence

weighting function. Therefore, ψinit(·) is extended to

w(k+1) := ψiter(Γ
(k+1),w(k), r(k)), (7)

where Γ(k+1) := {γ
(k+1)
l } := {P, {φ(pl,Q

(k+1))}l}.

Analogously, the difference between the input M̂
(k)
ij and

the synchronized M
∗(k)
ij transformation parameters of the

(k)−th iteration can be used as an additional cue for esti-

mating the confidence c
(k+1)
ij . Thus, ζinit(·) can be extended

to

c
(k+1)
ij := ζiter(Γ

(k+1), M̂
(k)
ij ,M

∗(k)
ij ). (8)

4. Network Architecture

We implement our proposed multiview registration al-

gorithm as a deep neural network (Fig. 2). In this sec-

tion, we first describe the architectures used to aproximate

φ(·), ψinit(·), ψiter(·), ζinit(·) and ζiter(·), before integrating

them into one fully differentiable, end-to-end trainable al-

gorithm.

Learned correspondence function Our approximation

of the correspondence function φ(·) extends a recently pro-

posed fully convolutional 3D feature descriptor FCGF [16]

with a soft assignment layer. FCGF operates on sparse ten-

sors [15] and computes 32 dimensional descriptors for each

point of the sparse point cloud in a single pass. Note that

the function φ(·) could be approximated with any of the re-

cently proposed learned feature descriptors [38, 20, 21, 28],

but we choose FCGF due to its high accuracy and low com-

putational complexity.

Let FP and FQ denote the FCGF embeddings of point

clouds P and Q obtained using the same network weights,

respectively. Pointwise correspondences {φ(·)} can then be

established by a nearest neighbor (NN) search in this high

dimensional feature space. However, the selection rule of

such hard assignments is not differentiable. We therefore

form the NN-selection rule in a probabilistic manner by

computing a probability vector s of the categorical distri-

bution [49]. The stochastic correspondence of the point p

in the point cloud Q is then defined as

φ(p,Q) := sTQ, (s)l :=
exp(−dl/t)

∑NQ

l=1 exp(−dl/t)
(9)

where dl := ||fp − (FQ)l||2, fp is the FCGF embedding

of the point p and t denotes the temperature parameter. In

the limit t → 0 the φ(p,Q) converges to the deterministic

NN-search [49].

We follow [16] and supervise the learning of φ(·) with

a correspondence loss Lc, which is defined as the hardest

contrastive loss and operates on the FCGF embeddings

Lc =
1

NFCGF

∑

(i,j)∈P

{

[

d(fi, fj)−mp

]2

+
/|P|

+ 0.5
[

mn − min
k∈N

d(fi, fk)
]2

+
/|Ni|

+ 0.5
[

mn − min
k∈N

d(fj , fk)
]2

+
/|Nj |

}

where P is a set of all the positive pairs in a FCGF mini

batch NFCGF and N is a random subset of all features that

is used for the hardest negative mining. mp = 0.1 and

mn = 1.4 are the margins for positive and negative pairs
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respectively. The detailed network architecture of φ(·) as

well as the training configuration and parameters are avail-

able in the supp. material.

Deep pairwise registration Despite the good perfor-

mance of the FCGF descriptor, several putative correspon-

dences Γ′ ⊂ Γ will be false. Furthermore, the distribution

of inliers and outliers does not resemble noise but rather

shows regularity [53]. We thus aim to learn this regularity

from the data using a deep neural network. Recently, several

networks representing a complex weighting function for fil-

tering of 2D [46, 53, 68] or 3D [29] feature correspondences

have been proposed.

Herein, we propose extending the 3D outlier filtering

network [29] that is based on [46] with the order-aware

blocks proposed in [68]. Specifically, we create a pairwise

registration block fθ : RNP×6 7→ R
NP that takes the co-

ordinates of the putative correspondences Γ as input and

outputs weights w := ψinit(Γ) := tanh(ReLU(fθ(Γ)))
that are fed, along with Γ, into the closed form so-

lution of Eq. 4 to obtain R̂ij and t̂ij . Motivated by

the results in [53, 68] we add another registration block

ψiter(·) to our network and append the weights w and the

pointwise residuals r to the original input s.t. w(k) :=
ψiter(cat([Γ

(k),w(k−1), r(k−1)])) (see Sec. 3.3). The

weights w(k) are then, again fed together with the initial

correspondences Γ to the closed form solution of Eq. 4 to

obtain the refined pairwise transformation parameters. In

order to ensure permutation-invariance of fθ(·) a PointNet-

like [50] architecture that operates on individual correspon-

dences is used in both registration blocks. As each branch

only operates on individual correspondences, the local 3D

context information is gathered in the intermediate lay-

ers using symmetric context normalization [65] and order-

aware filtering layers [68]. The detailed architecture of the

registration block is available in the supp. material. Training

of the registration network is supervised using the registra-

tion loss Lreg defined for a batch with Nreg examples as

Lreg = αregLclass + βregLtrans (10)

loss, where Lclass denotes the binary cross entropy loss and

Ltrans =
1

Nreg

∑

(i,j)

1

NP

NP
∑

l=1

||M̂ij⊗pl−MGT
ij ⊗pl||2 (11)

is used to penalize the deviation from the ground truth trans-

formation parameters MGT
ij . αreg and βreg are used to con-

trol the contribution of the individual loss functions.

Confidence estimation block Along with the estimated

relative transformation parameters M̂ij , the edges of the

graph G encode the confidence cij in those estimates. Con-

fidence encoded in each edge of the graph consist of (i) the

local confidence clocal
ij of the pairwise transformation esti-

mation and (ii) the global confidence cglobal
ij derived from

the transformation synchronization. We formulate the esti-

mation of clocal
ij as a classification task and argue that some

of the required information is encompassed in the features

of the second-to-last layer of the registration block. Let

Xconf
ij = f

(−2)
θ (·) denote the output of the second-to-last

layer of the registration block, we propose an overlap pool-

ing layer foverlap that extracts a global feature xconf
ij by per-

forming the weighted average pooling as

xconf
ij = wT

ijX
conf
ij . (12)

The obtained global feature is concatenated with the ratio

of inliers δij (i.e., the number of correspondences whose

weights are higher than a given threshold) and fed to the

confidence estimation network with three fully connected

layers (129− 64− 32− 1), followed by a ReLU activation

function. The local confidence can thus be expressed as

clocalij := ζinit(Γ) := MLP(cat([xconf
ij , δij ])) (13)

The training of the confidence estimation block is su-

pervised with the confidence loss function Lconf =
1
N

∑

(i,j) BCE(clocalij , cGT
ij ) (N denotes the number of cloud

pairs), where BCE refers to the binary cross entropy

and the ground truth confidence cGT
ij labels are com-

puted on the fly by thresholding the angular error τa =

arccos (
Tr(R̂T

ijR
GT
ij )−1

2 ).

The ζinit(·) incorporates the local confidence in the rel-

ative transformation parameters. On the other hand, the

output of the transformation synchronization layer provides

the information how the input relative transformations agree

globally with the other edges. In fact, traditional synchro-

nization algorithms [13, 4, 34] only use this global infor-

mation to perform the reweighting of the edges in the itera-

tive solutions, because they do not have access to the local

confidence information. Global confidence in the relative

transformation parameters cglobal
ij can be expressed with the

Cauchy weighting function [33, 4]

cglobal
ij = 1/(1 + r∗ij/b) (14)

where r∗ij = ||M̂ij − M∗
iM

∗
T

j ||F and following [33, 4]

b = 1.482 γ med(|r∗ − med(r∗)|) with med(·) denoting

the median operator and r∗ the vectorization of residuals

r∗ij . Since local and global confidence provide complemen-

tary information about the relative transformation parame-

ters, we combine them into a joined confidence cij using

their harmonic mean:

cij := ζiter(c
local
ij , cglobal

ij ) :=
(1 + β2)cglobal

ij · clocal
ij

β2cglobal
ij + clocal

ij

(15)
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3DMatch CGF PPFNet 3DR 3DSN FCGF Ours

[67] [38] [21] [22] [28] [16] 1-iter 4-iter

Kitchen 0.85 0.72 0.90 0.80 0.96 0.95 0.96 0.98
Home 1 0.78 0.69 0.58 0.81 0.88 0.91 0.92 0.93
Home 2 0.61 0.46 0.57 0.70 0.79 0.72 0.70 0.73
Hotel 1 0.79 0.55 0.75 0.73 0.95 0.93 0.95 0.97
Hotel 2 0.59 0.49 0.68 0.67 0.83 0.88 0.90 0.90
Hotel 3 0.58 0.65 0.88 0.94 0.92 0.81 0.89 0.89
Study 0.63 0.48 0.68 0.70 0.84 0.86 0.86 0.92
MIT Lab 0.51 0.42 0.62 0.62 0.76 0.82 0.78 0.78
Average 0.67 0.56 0.71 0.75 0.86 0.86 0.87 0.89

Table 1. Registration recall on 3DMatch data set. 1-iter and 4-iter

denote the result of the pairwise registration network and input to

the 4th Trasnf-Sync laser, respectively. Best results, except for 4-

iter that is informed by the global information, are shown in bold.

where the β balances the contribution of the local and global

confidence estimates and is learned during training.

End-to-end multiview 3D registration The individual

parts of the network are connected into an end-to-end multi-

view 3D registration algorithm as shown in Fig. 22. We pre-

train the individual sub-networks (training details available

in the supp. material) before fine-tuning the whole model

in an end-to-end manner on the 3DMatch data set [67] us-

ing the official train/test data split. In fine-tuning we use

NFCGF = 4 to extract the FCGF features and randomly

sample feature vectors of 2048 points per fragment. These

features are used in the soft assignment (softNN) to form

the putative correspondences of
(

NS

2

)

point clouds pairs3,

which are fed to the pairwise registration network. The out-

put of the pairwise registration is used to build the graph,

which is input to the transformation synchronization layer.

The iterative refinement of the transformation parameters is

performed four times. We supervise the fine tuning using

the joint multiview registration loss

L = Lc + Lreg + Lconf + Lsync (16)

where the transformation synchronization Lsync loss reads

Lsync =
1

N

∑

(i,j)

(‖R∗
ij −RGT

ij ‖F + ‖t∗ij − tGT
ij ‖2). (17)

We fine-tune the whole network for 2400 iterations using

Adam optimizer [39] with a learning rate of 5× 10−6.

5. Experiments

We conduct the evaluation of our approach on the pub-

licly available benchmark datasets 3DMatch [67], Red-

wood [14] and ScanNet [18]. First, we evaluate the per-

formance, efficiency, and the generalization capacity of the

proposed pairwise registration algorithm on 3DMatch and

2The network is implemented in Pytorch [47]. A pseudo-code of the

proposed approach is provided in the supp. material.
3We assume a fully connected graph during training but are able to

consider the connectivity information, if provided.

Per fragment pair Whole scene

NN search Model estimation Total time

[s] [s] [s]

RANSAC 0.38 0.23 1106.3
Ours (softNN) 0.10 0.01 80.3

Table 2. Average run-time for estimating the pairwise transforma-

tion parameters of one fragment pair on 3DMatch dataset.Note,

the GPU implementation of the soft assignments is faster than the

CPU based kd-tree NN search.

Redwood dataset respectively (Sec. 5.1). We then evalu-

ate the whole pipeline on the global registration of the point

cloud fragments generated from RGB-D images, which are

part of the ScanNet dataset [18].

5.1. Pairwise registration performance

We begin by evaluating the pairwise registration part of

our algorithm on a traditional geometric registration task.

We compare the results of our method to the state-of-the-art

data-driven feature descriptors 3DMatch [67], CGF [38],

PPFNet [21], 3DSmoothNet (3DS) [28], and FCGF [16],

which is also used as part of our algorithm, as well as to

a recent network based registration algorithm 3DR [22].

Following the evaluation procedure of 3DMatch [67] we

complement all the descriptor based methods with the

RANSAC-based transformation parameter estimation. For

our approach we report the results after the pairwise reg-

istration network (1-iter in Tab. 1) as well as the the out-

put of the ψiter(·) in the 4th iteration (4-iter in Tab. 1). The

latter is already informed with the global information and

serves primarily as verification that with the iterations our

input to the Transf-Sync layer improves. Consistent with the

3DMatch evaluation procedure, we report the average recall

per scene as well as for the whole dataset in Tab. 1.

The registration results show that our approach reaches

the highest recall among all the evaluated methods. More

importantly, it indicates that using the same features

(FCGF), our method can outperform RANSAC-based es-

timation of the transformation parameters, while having a

much lower time complexity (Tab. 2). The comparison of

the results of 1-iter and 4-iter also confirms the intuition

that feeding the residuals and weights of the previous esti-

mation back to the pairwise registration block helps refining

the estimated pairwise transformation parameters.

Generalization to other domains In order to test if our

pairwise registration model can generalize to new datasets

and unseen domains, we perform a generalization evalua-

tion on a synthetic indoor dataset Redwood indoor [14]. We

follow the evaluation protocol of [14] and report the aver-

age registration recall and precision across all four scenes.

We compare our approach to the recent data driven ap-

proaches 3DMatch [67], CGF [38]+FGR [69] or CZK [14],

RelativeNet (RN) [22], 3DR [22] and traditional methods

CZK [14] and Latent RANSAC (LR) [40]. Fig. 3 shows
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Methods Rotation Error Translation Error (m)

3◦ 5◦ 10◦ 30◦ 45◦ Mean/Med. 0.05 0.1 0.25 0.5 0.75 Mean/Med.

Pairwise
(All)

FGR [69] 9.9 16.8 23.5 31.9 38.4 76.3◦/- 5.5 13.3 22.0 29.0 36.3 1.67/-

Ours (1st iter.) 32.6 37.2 41.0 46.5 49.4 65.9◦/48.8◦ 25.1 34.1 40.0 43.4 46.8 1.37/0.94

Edge Pruning

(All)
Ours (4th iter.) 34.3 38.7 42.2 48.2 51.9 62.3◦/37.0◦ 26.7 35.7 41.8 45.5 49.4 1.26/0.78

Ours (After Sync.) 40.7 45.7 50.8 56.2 58.4 52.2◦/9.0◦ 29.3 42.1 50.9 54.7 58.3 0.96/0.20

FGR
(Good)

FastGR [69] 12.4 21.4 29.5 38.6 45.1 68.8◦/- 7.7 17.6 28.2 36.2 43.4 1.43/-

GeoReg (FGR) [14] 0.2 0.6 2.8 16.4 27.1 87.2◦/- 0.1 0.7 4.8 16.4 28.4 1.80/-

EIGSE3 (FGR) [4] 1.5 4.3 12.1 34.5 47.7 68.1◦/- 1.2 4.1 14.7 32.6 46.0 1.29/-

RotAvg (FGR [12]) 6.0 10.4 17.3 36.1 46.1 64.4◦/- 3.7 9.2 19.5 34.0 45.6 1.26/-

L2Sync (FGR) [35] 34.4 41.1 49.0 58.9 62.3 42.9◦/- 2.0 7.3 22.3 36.9 48.1 1.16/-

Ours
(Good)

EIGSE3 [4] 63.3 70.2 75.6 80.5 81.6 23.0◦/1.7◦ 42.2 58.5 69.8 76.9 79.7 0.45/0.06

Ours (1st iter.) 57.7 65.5 71.3 76.5 78.1 28.3◦/1.9◦ 44.8 60.3 69.6 73.1 75.5 0.57/0.06

Ours (4th iter.) 60.6 68.3 73.7 78.9 81.0 24.2◦/1.8◦ 47.1 63.3 72.2 76.2 78.7 0.50/0.05

Ours (After Sync) 65.8 72.8 77.6 81.9 83.2 20.3◦/1.6◦ 48.4 67.2 76.5 79.7 82.0 0.42/0.05

Table 3. Multiview registration evaluation on ScanNet [18] dataset. We report the ECDF values for rotation and translation errors. Best

results are shown in bold.

that our approach can achieve ≈ 4 percentage points higher

recall than state-of-the-art without being trained on syn-

thetic data and thus confirming the good generalization ca-

pacity of our approach. Note that while the average pre-

cision across the scenes is low for all the methods, several

works [14, 38, 22] show that the precision can easily be in-

creased using pruning without almost any loss in the recall.

5.2. Multiview registration performance

We finally evaluate the performance of our complete

method on the task of multiview registration using the Scan-

Net [18] dataset. ScanNet is a large RGBD dataset of indoor

scenes. It provides the reconstructions, ground truth camera

poses and semantic segmentations for 1513 scenes. To en-

sure a fair comparison, we follow [35] and use the same 32
randomly sampled scenes for evaluation. For each scene we

randomly sample 30 RGBD images that are 20 frames apart

and convert them to point clouds. The temporal sequence of

the frames is discarded. In combination with the large tem-

poral gap between the frames, this makes the test setting

extremely challenging. Different to [35], we do not train

our network on ScanNet, but rather perform direct general-

ization of the network trained on the 3DMatch dataset.

Evaluation protocol We use the standard evaluation pro-

tocol [13, 35] and report the empirical cumulative distribu-

tion function (ECDF) for the angular ae and translation te
deviations defined as

ae = arccos(
Tr(R∗

T

ij RGT

ij )−1

2 ) te = ‖tGT
ij − t∗ij‖2 (18)

The ground truth rotations RGT and translations tGT are

provided by the authors of ScanNet [18]. In Tab. 3 we re-

port the results for three different scenarios. ”FGR (Good)”

and ”Ours (Good)” denote the scenarios in which we fol-

low [35] and use the computed pairwise registrations to

prune the edges before the transformation synchronization

if the median point distance in the overlapping4 region af-

ter the transformation is larger than 0.1m (FGR) or 0.05m

(ours). The EIGSE3 in ”Ours (Good)” is initialized using

our pairwise estimates. On the other hand, ”all” denotes

the scenario in which all
(

NS

2

)

pairs are used to build the

graph. In all scenarios we prune the edges of the graph if

the confidence estimation in the relative transformation pa-

rameters of that edge clocal
ij drops below τp = 0.85. This

threshold was determined on 3DMatch dataset and its effect

on the performance of our approach is analyzed in detail in

the supp. material. If during the iterations the pruning of

the edges yields a disconnected graph we simply report the

last valid values for each node before the graph becomes

disconnected. A more sophisticated handling of the edge

pruning and disconnected graphs is left for future work.

Analysis of the results As shown in Tab. 3 our approach

can achieve a large improvement on the multiview registra-

tion tasks when compared to the baselines. Not only are

the initial pairwise relative transformation parameters esti-

mated using our approach more accurate than the ones of

FGR [69], but they can also be further improved in the sub-

sequent iterations. This clearly confirms the benefit of the

feed-back loop of our algorithm. Furthermore even when

directly considering all input edges our approach still proves

dominant, even when considering the results of the scenario

”Good” for our competitors. More qualitative results of

the multiview registration evaluation, including the failure

cases, are available in the supp. material.

Computational complexity Low computational costs of

pairwise and multiview registration is important for various

fields like augmented reality or robotics. We first compare

computation time of our pairwise registration component to

RANSAC. In Tab. 2 we report the average time needed to

register one fragment pair of the 3DMatch dataset as well

4The overlapping regions are defined as parts, where after transforma-

tion, the points are less than 0.2m away from the other point cloud. [35]
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Figure 3. Registration results on the Redwood indoor dataset.

as one whole scene. All timings were performed on a stan-

dalone computer with Intel(R) Core(TM) i7-7700K CPU

@ 4.20GHz, GeForce GTX 1080, and 32 GB RAM. Aver-

age time of performing softNN for a fragment pair is about

0.1s, which is a approxiately four times faster than tradi-

tional nearest neighbor search (implemented using scikit-

learn [48]). An even larger speedup (about 23 times) is

gained in the model estimation stage, where our approach

requires a single forward pass (constant time) compared to

up to 50000 iterations of RANSAC when the inlier ratio

is 5% and the desired confidence 0.995. This results in

an overall run-time of about 80s for our entire multiview

approach (including the feature extraction and transforma-

tion synchronization) for the Kitchen scene with 1770 frag-

ment pairs. In contrast, feature extraction and pairwise es-

timation of transformation parameters with RANSAC takes

> 1100s. This clearly shows the efficiency of our method,

being > 13 times faster to compute (for a scene with 60
fragments).

5.3. Ablation study

To get a better intuition how much the individual novel-

ties in our approach contribute to the final performance, we

carry out an ablation study on the ScanNet [18] dataset. In

particular, we analyze the proposed edge pruning scheme

based on the confidence estimation block and Cauchy func-

tion as well as the impact of the iterative refinement of the

relative transformation parameters.6 The results of the ab-

lation study are presented in Fig. 4.

Benefit from the iterative refinement We motivate the

iterative refinement of the transformation parameters that

are input to the Transf-Sync layer with a notion that the

weights and residuals provide additional ques for their es-

timation. Results in Fig. 4 confirm this assumption. The

input relative parameters in the 4-th iteration are approxi-

mately 2 percentage points better that the initial estimate.

On the other hand, Fig. 4 shows that at the high presence of

5We use the CPU-based RANSAC implementation that is provided in

the original evaluation code of 3DMatch dataset [67].
6Additional results of the ablation study are included in the supp. ma-

terial.
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Figure 4. Ablation study on the ScanNet dataset.

outliers or inefficient edge pruning (see e.g., the results w/o

edge pruning) the weights and the residuals actually provide

a negative bias and worsen the results.

Edge pruning scheme There are several possible ways to

implement the pruning of the presumable outlier edges. In

our experiments we prune the edges based on the output

of the confidence estimation block (w-conf.). Other op-

tions are to realize this step using the global confidence,

i.e. the Cauchy weights defined in (14) (w-Cau.) or not

performing this at all (w/o). Fig. 4 clearly shows the advan-

tage of using our confidence estimation block (gain of more

than 20 percentage points). Even more, due to preserving

a large amount of outliers, alternative approaches preform

even worse than the pairwise registration.

6. Conclusions

We have introduced an end-to-end learnable, multiview

point cloud registration algorithm. Our method departs

from the common two-stage approach and directly learns to

register all views in a globally consistent manner. We aug-

ment the 3D descriptor FCGF [16] by a soft correspondence

layer that pairs all the scans to compute initial matches,

which are fed to a differentiable pairwise registration block

resulting in transformation parameters as well as weights.

A pose graph is constructed and a novel, differentiable iter-

ative transformation synchronization layer globally refines

weights and transformations. Experimental evaluation on

common benchmark datasets show that our method outper-

forms state-of-the-art by more than 25 percentage points on

average regarding the rotation error statistics. Moreover,

our approach is > 13 times faster than RANSAC-based

methods in a multiview setting of 60 scans, and generalizes

better to new scenes (≈ 4 percentage points higher recall on

Redwood indoor compared to state-of-the-art).
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