
Eternal Sunshine of the Spotless Net: Selective Forgetting in Deep Networks

Aditya Golatkar

UCLA

aditya29@cs.ucla.edu

Alessandro Achille

UCLA

achille@cs.ucla.edu

Stefano Soatto

UCLA

soatto@ucla.edu

Abstract

We explore the problem of selectively forgetting a par-

ticular subset of the data used for training a deep neural

network. While the effects of the data to be forgotten can

be hidden from the output of the network, insights may still

be gleaned by probing deep into its weights. We propose

a method for “scrubbing” the weights clean of information

about a particular set of training data. The method does not

require retraining from scratch, nor access to the data orig-

inally used for training. Instead, the weights are modified so

that any probing function of the weights is indistinguishable

from the same function applied to the weights of a network

trained without the data to be forgotten. This condition is

a generalized and weaker form of Differential Privacy. Ex-

ploiting ideas related to the stability of stochastic gradient

descent, we introduce an upper-bound on the amount of in-

formation remaining in the weights, which can be estimated

efficiently even for deep neural networks.

1. Introduction

Say you are the number ‘6’ in the MNIST handwritten

digit database. You are proud of having nurtured the de-

velopment of convolutional neural networks and their many

beneficial uses. But you are beginning to feel uncomfort-

able with the attention surrounding the new “AI Revolu-

tion,” and long to not be recognized everywhere you ap-

pear. You wish a service existed, like that offered by the

firm Lacuna INC in the screenplay The Eternal Sunshine of

the Spotless Mind, whereby you could submit your images

to have your identity scrubbed clean from handwritten digit

recognition systems. Before you, the number ‘9’ already

demanded that digit recognition systems returned, instead

of a ten-dimensional “pre-softmax” vector (meant to ap-

proximate the log-likelihood of an image containing a num-

ber from 0 to 9) a nine-dimensional vector that excluded the

number ‘9’. So now, every image showing ‘9’ yields an out-

come at random between 0 and 8. Is this enough? It could

be that the system still contains information about the num-

ber ’9,’ and just suppresses it in the output. How do you

know that the system has truly forgotten about you, even

inside the black box? Is it possible to scrub the system so

clean that it behaves as if it had never seen an image of you?

Is it possible to do so without sabotaging information about

other digits, who wish to continue enjoying their celebrity

status? In the next section we formalize these questions to

address the problem of selective forgetting in deep neural

networks (DNNs). Before doing so, we present a summary

of our contributions in the context of related work.

1.1. Related Work

Tampering with a learned model to achieve, or avoid,

forgetting pertains to the general field of life-long learning.

Specifically for the case of deep learning and representation

learning, this topic has algorithmic, architectural and mod-

eling ramifications, which we address in order.

Differential privacy [8] focuses on guaranteeing that

the parameters of a trained model do not leak information

about any particular individual. While this may be relevant

in some applications, the condition is often too difficult to

enforce in deep learning (although see [1]), and not always

necessary. It requires the possible distribution of weights,

given the dataset, P (w|D) to remain almost unchanged af-

ter replacing a sample. Our definition of selective forget-

ting can be seen as a generalization of differential privacy.

In particular, we do not require that information about any

sample in the dataset is minimized, but rather about a partic-

ular subset Df selected by the user. Moreover, we can apply

a “scrubbing” function S(w) that can perturb the weights

in order to remove information, so that P (S(w)|D), rather

than P (w|D), needs to remain unchanged. This less restric-

tive setting allows us to train standard deep neural networks

using stochastic gradient descent (SGD), while still being

able to ensure forgetting.

Deep Neural Networks can memorize details about par-

ticular instances, rather than only shared characteristics

[29, 4]. This makes forgetting critical, as attackers can try to

extract information from the weights of the model. Mem-

bership attacks [28, 15, 24, 14, 26] attempt to determine

whether a particular cohort of data was used for training,

without any constructive indication on how to actively for-

get it. They relate to the ability of recovering data from

9304

the model [10] which exploits the increased confidence of

the model on the training data to reconstruct images used for

training; [23] proposes a method for performing zero-shot

knowledge distillation by adversarially generating a set of

exciting images to train a student network. [25] proposes

a definition of forgetting based on changes of the value of

the loss function. We show that this is not meaningful for-

getting, and in some cases it may lead to the (opposite)

“Streisand effect,” where the sample to be forgotten is actu-

ally made more noticeable.

Stability of SGD. In [13], a bound is derived on the di-

vergence of training path of models trained with the same

random seed (i.e., same initialization and sampling order)

on datasets that differ by one sample (the “stability” of the

training path). This can be considered as a measure of mem-

orization of a sample and, thus, used to bound the general-

ization error. While these bounds are often loose, we intro-

duce a novel bound on the residual information about a set

of samples to be forgotten, which exploits ideas from both

the stability bounds and the PAC-Bayes bounds [22], which

have been successful even for DNNs [9].

Machine Unlearning was first studied by [7] in the con-

text of statistical query learning. [5] proposed an unlearn-

ing method based on dataset sharding and training multiple

models. [11] proposed an efficient data elimination algo-

rithm for k-means clustering. However, none of these meth-

ods can be applied for deep networks. The term “forgetting”

is also used frequently in life-long learning, but often with

different connotations that in our work: Catastrophic for-

getting, where a network trained on a task rapidly loses ac-

curacy on that task when fine-tuned for another. But while

the network can forget a task, the information on the data it

used may still be accessible from the weights. Hence, even

catastrophic forgetting does not satisfy our stronger defini-

tion. Interestingly, however, our proposed solution for for-

getting relates to techniques used to avoid forgetting: [17]

suggests adding an L2 regularizer using the Fisher Informa-

tion Matrix (FIM) of the task. We use the FIM, restricted

to the samples we wish to retain, to compute the optimal

noise to destroy information, so that a cohort can be for-

gotten while maintaining good accuracy for the remaining

samples. Part of our forgetting algorithm can be interpreted

as performing “optimal brain damage” [19] in order to re-

move information from the weights if it is useful only or

mainly to the class to be forgotten.

In this paper we talk about the weights of a network as

containing “information,” even though we have one set of

weights whereas information is commonly defined only for

random variables. While this has caused some confusion

in the literature, [3] proposes a viable formalization of the

notion, which is compatible with our framework. Thus, we

will use the term “information” liberally even when talking

about a particular dataset and set of weights.

In defining forgetting, we wish to be resistant to both

“black-box” attacks, which only have access to the model

output through some function (API), and “white-box” at-

tacks, where the attacker can additionally access the model

weights. Since at this point it is unclear how much infor-

mation about a model can be recovered by looking only at

its inputs and outputs, to avoid unforeseen weaknesses we

characterize forgetting for the stronger case of white-box

attacks, and derive bounds and defense mechanism for it.

1.2. Contributions

In summary, our contributions are, first, to propose a

definition of selective forgetting for trained neural net-

work models. It is not as simple as obfuscating the acti-

vations, and not as restrictive as Differential Privacy. Sec-

ond, we propose a scrubbing procedure that removes in-

formation from the trained weights, without the need to

access the original training data, nor to re-train the entire

network. We compare the scrubbed network to the gold-

standard model(s) trained from scratch without any knowl-

edge of the data to be forgotten. We also prove the optimal-

ity of this procedure in the quadratic case. The approach is

applicable to both the case where an entire class needs to

be forgotten (e.g. the number ‘6’) or multiple classes (e.g.,

all odd numbers), or a particular subset of samples within

a class, while still maintaining output knowledge of that

class. Our approach is applicable to networks pre-trained

using standard loss functions, such as cross-entropy, unlike

Differential Privacy methods that require the training to be

conducted in a special manner. Third, we introduce a com-

putable upper bound to the amount of the retained infor-

mation, which can be efficiently computed even for DNNs.

We further characterize the optimal tradeoff with preserv-

ing complementary information. We illustrate the criteria

using the MNIST and CIFAR-10 datasets, in addition to a

new dataset called “Lacuna.”

1.3. Preliminaries and Notation

Let D = {xi, yi}
N
i=1 be a dataset of images xi, each with

an associated label yi ∈ {1, . . . ,K} representing a class (or

label, or identity). We assume that (xi, yi) ∼ P (x, y) are

drawn from an unknown distribution P .

Let Df ⊂ D be a subset of the data (cohort), whose in-

formation we want to remove (scrub) from a trained model,

and let its complement Dr := D∁
f be the data that we want

to retain. The data to forget Df can be any subset of D,

but we are especially interested in the case where Df con-

sists of all the data with a given label k (that is, we want to

completely forget about a class), or a subset of a class.

Let φw(·) ∈ R
K be a parametric function (model), for

instance a DNN, with parameters w (weights) trained using

D so that the k-th component of the vector φw in response

to an image x approximates the optimal discriminant (log-

9305

posterior), φw(x)k ≃ logP (y = k|x), up to a normalizing

constant.

1.4. Training algorithm and distribution of weights

Given a dataset D, we can train a model — or equiva-

lently a set of weights — w using some training algorithm

A, that is w = A(D), where A(D) can be a stochastic

function corresponding to a stochastic algorithm, for exam-

ple stochastic gradient descent (SGD). Let P (w|D) denote

the distribution of possible outputs of algorithm A, where

P (w|D) will be a degenerate Dirac delta if A is determin-

istic. The scrubbing function S(w) — introduced in the

next section — is also a stochastic function applied to the

weights of a trained network. We denote by P (S(w)|D)
the distribution of possible weights obtained after training

on the dataset D using algorithm A and then applying the

scrubbing function S(w). Given two distributions p(x) and

q(x), their Kullback-Leibler (KL) divergence is defined by

KL
(

p(x) ‖ q(x)
)

:= Ex∼p(x)

[

log
(

p(x)/q(x)
)]

. The KL-

divergence is always positive and can be thought of as a

measure of similarity between distributions. In particular

it is zero if and only if p(x) = q(x). Given two ran-

dom variables x and y, the amount of Shannon Mutual

Information that x has about y is defined as I(x; y) :=
Ex

[

KL
(

p(y|x) ‖ p(y)
)]

.

2. Definition and Testing of Forgetting

Let φw be a model trained on a dataset D = Df ⊔ Dr

Then, a forgetting (or “scrubbing”) procedure consists in

applying a function S(w;Df) to the weights, with the goal

of forgetting, that is to ensure that an “attacker” (algorithm)

in possession of the model φw cannot compute some “read-

out function” f(w), to reconstruct information about Df .

It should be noted that one can always infer some prop-

erties of Df , even without having ever seen it. For example,

if D consists of images of faces, we can infer that images

in Df are likely to display two eyes, even without looking

at the model w. What matters for forgetting is the amount

of additional information f(w) can extract from a cohort

Df by exploiting the weights w, that could not have been

inferred simply by its complement Dr. This can be formal-

ized as follows:

Definition 1. Given a readout function f , an optimal scrub-

bing function for f is a function S(w;Df) — or S(w), omit-

ting the argument Df — such that there is another function

S0(w) that does not depend on Df
1 for which:

KL
(

P (f(S(w))|D) ‖P (f(S0(w))|Dr)
)

= 0. (1)

1 If S0 could depend on Df , we could take S(w) = w to be the

identity, and let S0(w) ignore w and obtain new weights by training from

scratch on D — that is S0(w) = w′ with w′ ∼ p(w|D). This brings the

KL to zero, but does not scrub any information, since S(w) is the identity.

The function S0(w) in the definition can be thought as

a certificate of forgetting, which shows that S(w) is indis-

tinguishable from a model that has never seen Df . Satisfy-

ing the condition above is trivial by itself, e.g., by choosing

S(w) = S0(w) = c to be constant. The point is to do

so while retaining as much information as possible about

Dr, as we will see later when we introduce the Forgetting

Lagrangian in eq. (4). The formal connection between this

definition and the amount of Shannon Information about Df

that a readout function can extract is given by the following:

Proposition 1. Let the forgetting set Df be a random vari-

able, for instance, a random sampling of the data to forget.

Let Y be an attribute of interest that depends on Df . Then,

I(Y ; f(S(w))) ≤

EDf
[KL

(

P (f(S(w))|D) ‖P (f(S0(w))|Dr)
)

]. (2)

Yet another interpretation of eq. (1) arises from noticing

that, if that quantity is zero then, given the output of the

readout function f(w), we cannot predict with better-than-

chance accuracy whether the model w′ = S(w) was trained

with or without the data. In other words, after forgetting,

membership attacks will fail.

In general, we may not know what readout function a

potential attacker will use, and hence we want to be robust

to every f(w). The following lemma is useful to this effect:

Lemma 1. For any function f(w) we have:

KL
(

P (f(S(w))|D) ‖P (f(S0(w))|Dr)
)

≤ KL
(

P (S(w)|D) ‖P (S0(w)|Dr)
)

.

Therefore, we can focus on minimizing the quantity

KL
(

P (S(w)|D) ‖P (S0(w)|Dr)
)

, (3)

which guarantees robustness to any readout function. For

the sake of concreteness, we now give a first simple example

of a possible scrubbing procedure.

Example 1 (Forgetting by adding noise). Assume the

weights w of the model are bounded. Let S(w) = S0(w) =
w + σn, where n ∼ N (0, I), be the scrubbing procedure

that adds noise sampled from a Gaussian distribution. Then,

as the variance σ increases, we achieve total forgetting:

KL
(

P (S(w)|D) ‖P (S0(w)|Dr)
) σ→∞
−−−−→ 0.

While adding noise with a large variance does indeed

help forgetting, it throws away the baby along with the bath

water, rendering the model useless. Instead, we want to for-

get as much as possible about a cohort while retaining the

accuracy of the model. This can be formalized by minimiz-

ing the Forgetting Lagrangian:

L = ES(w)

[

LDr
(w)

]

+ λKL
(

P (S(w)|D) ‖P (S0(w)|Dr)
)

, (4)

9306

where LDr
(w) denotes the loss of the model w on the re-

tained data Dr. Optimizing this first term is relatively easy.

The problem is doing so while also minimizing the second

(forgetting) term: For a DNN, the distribution P (w|D) of

possible outcomes of the training process is complex mak-

ing difficult the estimation of the KL divergence above, a

problem we address in the next section. Nonetheless, the

Forgetting Lagrangian, if optimized, captures the notion of

selective forgetting at the core of this work.

2.1. Stability and Local Forgetting Bound

Given a stochastic training algorithm A(D), we can

make the dependency on the random seed ǫ explicit by writ-

ing A(D, ǫ), where we assume that A(D, ǫ) is now a deter-

ministic function of the data and the random seed. We now

make the following assumptions: (1) the cohort to be forgot-

ten, Df , is a small portion of the overall dataset D, lest one

is better-off re-training than forgetting, and (2) the training

process A(D, ǫ) is stable, i.e., if D and D′ differ by a few

samples, then the outcome of training A(D, ǫ) is close to

A(D′, ǫ). Under stable training, we expect the two distribu-

tions P (S(w)|D) and P (S0(w)|Dr) in eq. (3) to be close,

making forgetting easier. Indeed, we now show how we can

exploit the stability of the learning algorithm to bound the

Forgetting Lagrangian.

Proposition 2 (Local Forgetting Bound). Let A(D, ǫ) be

a training algorithm with random seed ǫ ∼ P (ǫ). Notice

that in this case P (S(w)|D) = Eǫ[P (S(w)|D, ǫ)]. We then

have the bound:

KL
(

P (S(w)|D) ‖P (S0(w)|Dr)
)

≤

Eǫ

[

KL
(

P (S(w)|D, ǫ) ‖P (S0(w)|Dr, ǫ)
)

]

In the local forgetting bound we do not look at the global

distribution of possible outcomes as the random seed varies,

but only at the average of forgetting using a particular ran-

dom seed. To see the value of this bound, consider the fol-

lowing example.

Corollary 1 (Gaussian forgetting). Consider the case where

S(w) = h(w) + n and S0(w) = w + n′, where n, n′ ∼
N (0,Σ) is Gaussian noise and h(w) is a deterministic

function. Since for a fixed random seed ǫ the weights

w = A(D, ǫ) are a deterministic function of the data,

we have P (S(w)|D, ǫ) = N (h(A(D, ǫ)),Σ) and similarly

P (S0(w)|Dr, ǫ) = N (A(Dr, ǫ),Σ). Then, using the previ-

ous bound, we have:

KL
(

P (S(w)|D) ‖P (S0(w)|Dr)
)

≤

1

2
Eǫ

[

(h(w)− w′)TΣ−1(h(w)− w′)
]

(5)

where w = A(D, ǫ) and w′ = A(Dr, ǫ).

1.4 1.2 1.0 0.8 0.6
1.2

1.0

0.8

0.6

0.4

0.2
Before scrubbing KL=103.16

Trained on
Trained on r

1.4 1.2 1.0 0.8 0.6
1.2

1.0

0.8

0.6

0.4

0.2
After scrubbing KL=0.72

Figure 1. (Top) Distributions of weights P (w|D) and P (w|Dr)
before and after the scrubbing procedure is applied to forget the

samples Df . The scrubbing procedure makes the two distribu-

tions indistinguishable, thus preventing an attacker from extract-

ing any information about Df . The KL divergence measures the

maximum amount of information that an attacker can extract. Af-

ter forgetting, less than 1 NAT of information about the cohort

Df is accessible. (Bottom) The effect of the scrubbing procedure

on the distribution of possible classification boundaries obtained

after training. After forgetting the subject on the top left blue clus-

ter, the classification boundaries adjust as if she never existed, and

the distribution mimics the one that would have been obtained by

training from scratch without that data.

That is, we can upper-bound the complex term

KL
(

P (S(w)|D) ‖P (S0(w)|Dr)
)

with a much simpler one

obtained by averaging the results of training and scrubbing

with different random seeds.

Moreover, this suggests three simple but general proce-

dures to forget. Under the stability assumption, we can ei-

ther (i) apply a function h(w) that bring w and w′ closer to-

gether (i.e., minimize h(w)−w′ in eq. (5)), or (ii) add noise

whose covariance Σ is high in the direction h(w) − w′, or

(iii) both. Indeed, this will be the basis of our forgetting

algorithm, which we describe next.

3. Optimal Quadratic Scrubbing Algorithm

In this section, we derive an optimal scrubbing algorithm

under a local quadratic approximation. We then validate the

method empirically in complex real world problems where

the assumptions are violated. We start with strong assump-

tions, namely that the loss is quadratic and optimized in the

limit of small learning rate, giving the continuous gradient

descent optimization

At(D, ǫ) = w0 − (I − e−ηAt)A−1∇wLD(w)|w=w0
,

9307

102 103 104 105

Remaining information (nats)

20%

40%

60%

80%

Te
st

 E
rro

r (
%

)

Figure 2. Trade-off between information remaining about the class

to forget and test error, mediated by the parameter λ in the La-

grangian: We can always forget more, but this comes at the cost of

decreased accuracy.

where A = ∇2LD(w) is the Hessian of the loss. We will

relax these assumptions later.

Proposition 3 (Optimal quadratic scrubbing algorithm).

Let the loss be LD(w) = LDf
(w) + LDr

(w), and assume

both LD(w) and LDr
(w) are quadratic. Assume that the

optimization algorithm At(D, ǫ) at time t is given by the

gradient flow on the loss with random initialization. Con-

sider the scrubbing function

h(w) = w + e−BteAtd+ e−Bt(d− dr)− dr,

where A = ∇2LD(w), B = ∇2LDr
(w), d = A−1∇wLD

and dr = B−1∇wLDr
. Then, h(w) is such that

h(At(D, ǫ)) = At(Dr, ǫ) for all random initializations ǫ
and all times t. In particular, S(w) = h(w) scrubs the

model clean of all information in Df :

KL
(

P (S(w)|D, ǫ) ‖P (w|Dr, ǫ)
)

= 0.

Note that when t → ∞, that is, after the optimization al-

gorithm has converged, this reduces to the simple Newton

update:

S∞(w) = w −B−1∇LDr
(w).

3.1. Robust Scrubbing

Proposition 3 requires the loss to be quadratic, which is

typically not the case. Even if it was, practical optimiza-

tion proceeds in discrete steps, not as a gradient flow. To

relax these assumptions, we exploit the remaining degree of

freedom in the general scrubbing procedure introduced in

Corollary 1, which is the noise.

Proposition 4 (Robust scrubbing procedure). Assume that

h(w) is close to w′ up to some normally distributed error

h(w) − w′ ∼ N(0,Σh), and assume that LDr
(w) is (lo-

cally) quadratic around h(w). Then the optimal scrubbing

procedure in the form S(w) = h(w)+n, with n ∼ N(0,Σ),
that minimizes the Forgetting Lagrangian eq. (4) is obtained

when ΣBΣ = λΣh, where B = ∇2LDr
(w). In particular,

if the error is isotropic, that is Σh = σ2
hI is a multiple of the

identity, we have Σ =
√

λσ2
hB

−1/2.

non 5-specific

noise destroys

5-specific filter

noise leaves

filter intact

non 5-specific

non 5-specific5-specific filter

average '5'

all but '5'

trained with '5's

original network target network

trained w/out '5's

s
c
ru

b
b

in
gfi
lt
e
r

A
fi
lt
e
r

B

Figure 3. Filters of a network trained with the same random seed,

with and without 5’s. Some filters specialize to be 5-specific (filter

A), and differ between the two networks, while others are not 5-

specific (filter B), and remain identical. The scrubbing procedure

brings original and target network closer by destroying 5-specific

filters, effectively removing information about 5’s.

Putting this together with the result in Proposition 3 gives

us the following robust scrubbing procedure:

St(w) = w + e−BteAtd+ e−Bt(d− dr)− dr

+ (λσ2
h)

1

4B−1/4n, (6)

where n ∼ N(0, I) and B, d and dr are as in Proposi-

tion 3. In Figure 1 we show the effect of the scrubbing

procedure on a simple logistic regression problem (which

is not quadratic) trained with SGD (which does not satisfy

the gradient flow assumption). Nonetheless, the scrubbing

procedure manages to bring the value of the KL divergence

close to zero. Finally, when t → ∞ (i.e., the optimization

is near convergence), this simplifies to the noisy Newton

update which can be more readily applied:

St(w) = w −B−1∇LDr
(w) + (λσ2

h)
1

4B−1/4ǫ. (7)

Here λ is a hyperparameter that trades off residual infor-

mation about the data to be forgotten, and accuracy on the

data to be retained. The hyperparameter σh reflect the er-

ror in approximating the SGD behavior with a continuous

gradient flow.

3.2. Forgetting using a subset of the data

Once a model is trained, a request to forget Df may be

initiated by providing that cohort, as in the fictional ser-

vice of Lacuna INC, but in general one may no longer have

available the remainder of the dataset used for training, Dr.

However, assuming we are at a minimum of LD(w), we

have ∇LD(w) = 0. Hence, we can rewrite ∇LDr
(w) =

−∇LDf
(w) and ∇2LDf

(w) = ∇2LD(w) − ∇2LDr
(w).

Using these identities, instead of recomputing the gradients

and Hessian on the whole dataset, we can simply use those

computed on the cohort to be forgotten, provided we cached

the Hessian ∇2LD(w) we obtained at the end of the training

on the original dataset D. Note that this is not a requirement,

9308

although recommended in case the data to be remembered

is no longer available.

3.3. Hessian approximation and Fisher Information

In practice, the Hessian is too expensive to compute for

a DNN. In general, we cannot even ensure it is positive

definite. To address both issues, we use the Levenberg-

Marquardt semi-positive-definite approximation:

∇2LD(w) ≃ Ex∼D,y∼p(y|x)[∇w log pw(y|x)∇w log pw(y|x)
T].

(8)

This approximation of the Hessian coincides with the Fisher

Information Matrix (FIM) [20], which opens the door to

information-theoretic interpretations of the scrubbing pro-

cedure. Moreover, this approximation is exact for some

problems, such as linear (logistic) regression.

4. Deep Network Scrubbing

Finally, we now discuss how to robustly apply the for-

getting procedure eq. (7) to deep networks. We present two

variants. The first uses the FIM of the network. However,

since this depends on the network gradients, it may not be

robust when the loss landscape is highly irregular. To solve

this, we present a more robust method that attempts to min-

imize directly the Forgetting Lagrangian eq. (4) through a

variational optimization procedure.

Fisher forgetting: As mentioned in eq. (8), we approxi-

mate the Hessian with the Fisher Information Matrix. Since

the FIM is too large to store in memory, we can compute

its diagonal, or a better Kronecker-factorized approxima-

tion [21]. In our experiments, we find that the diagonal

is not a good enough approximation of B for a full New-

ton step h(w) = w − B−1∇LDr
(w) in eq. (7). However,

the diagonal is still a good approximation for the purpose

of adding noise. Therefore, we simplify the procedure and

take h(w) = w, while we still use the approximation of

the FIM as the covariance of the noise. This results in the

simplified scrubbing procedure:

S(w) = w + (λσ2
h)

1

4F−1/4,

where F is the FIM (eq. 8) computed at the point w for

the dataset Dr. Here λ is a hyper-parameter that trades off

forgetting with the increase in error, as shown in Figure 2.

Notice that, since h(w) = w, instead of a Newton step, this

procedure relies on w and w′ already being close, which

hinges on the stability of SGD. This procedure may be in-

terpreted as adding noise to destroy the weights that may

have been informative about Df but not Dr (Figure 3).

Variational forgetting: Rather than using the FIM, we

may optimize for the noise in the Forgetting Lagrangian in

eq. (4): Not knowing the optimal direction w − w′ along

which to add noise (see Corollary 1), we may add the max-

imum amount of noise in all directions, while keeping the

increase in the loss to a minimum. Formally, we minimize

the proxy Lagrangian:

L(Σ) = En∼N(0,Σ)

[

LDr
(w + n)

]

− λ log |Σ|.

The optimal Σ may be seen as the FIM computed over a

smoothed landscape. Since the noise is Gaussian, L(Σ) can

be optimized using the local reparametrization trick [16].

5. Experiments

We report experiments on MNIST, CIFAR10 [18],

Lacuna-10 and Lacuna-100, which we introduce and con-

sist respectively of faces of 10 and 100 different celebrities

from VGGFaces2 [6] (see Appendix for details). On both

CIFAR-10 and Lacuna-10 we choose to forget either an en-

tire class, or a hundred images of the class.

For images (Lacuna-10 and CIFAR10), we use a small

All-CNN (reducing the number of layers) [27], to which we

add batch normalization before each non-linearity. We pre-

train on Lacuna-100/CIFAR-100 for 15 epochs using SGD

with fixed learning rate of 0.1, momentum 0.9 and weight

decay 0.0005. We fine-tune on Lacuna-10/CIFAR-10 with

learning rate 0.01. To simplify the analysis, during fine-

tuning we do not update the running mean and variance of

batch normalization, and rather reuse the pre-trained ones.

5.1. Linear logistic regression

First, to validate the theory, we test the scrubbing proce-

dure in eq. (6) on logistic regression, where the task is to

forget data points belonging to one of two clusters compris-

ing the class (see Figure 1). We train using a uniform ran-

dom initialization for the weights and SGD with batch size

10, with early stopping after 10 epochs. Since the problem

is low-dimensional, we easily approximate the distribution

p(w|D) and p(w|Dr) by training 100 times with different

random seeds. As can be seen in Figure 1, the scrubbing

procedure is able to align the two distributions with near

perfect overlap, therefore preventing an attacker form ex-

tracting any information about the forgotten cluster. Notice

also that, since we use early stopping, the algorithm had not

yet converged, and exploiting the time dependency in eq. (6)

rather than using the simpler eq. (7) is critical.

5.2. Baseline forgetting methods

Together with our proposed methods, we experiment

with four other baselines which may intuitively provide

some degree of forgetting. (i) Fine-tune: we fine-tune the

model on the remaining data Dr using a slightly large learn-

ing rate. This is akin to catastrophic forgetting, where fine-

tuning without Df may make the model forget the origi-

nal solution to Df (more so because of the larger learn-

ing rate). (ii) Negative Gradient: we fine-tune on D by

9309

Metrics Original

model

Retrain

(target)

Finetune Neg. Grad. Rand. Lbls. Hiding Fisher

(ours)

Variational

(ours)

Lacuna-10 Error on Dtest (%) 10.2 ±0.5 10.3 ±0.4 10.2 ±0.6 10.0 ±0.4 12.0 ±0.2 18.2 ±0.4 14.5 ±1.6 13.7 ±1.0

Scrub 100 Error on Df (%) 0.0 ±0.0 15.3 ±0.6 0.0 ±0.0 0.0 ±0.0 6.0 ±3.6 100 ±0.0 8.0 ±2.7 8.0 ±3.6

All-CNN Error on Dr (%) 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.1 ±0.1 6.5 ±0.0 4.8 ±2.8 4.8 ±2.4

Info-bound (kNATs) 3.3 ±1.1 3.0 ±0.5

Lacuna-10 Error on Dtest (%) 10.2 ±0.5 18.4 ±0.6 10.0 ±0.6 18.4 ±0.6 18.8 ±0.6 18.2 ±0.4 21.0 ±1.3 20.9 ±0.4

Forget class Error on Df (%) 0.0 ±0.0 100 ±0.0 0.0 ±0.0 100 ±0.2 90.2 ±1.5 100.0 ±0.0 100.0 ±0.0 100.0 ±0.0

All-CNN Error on Dr (%) 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 3.3 ±2.3 2.8 ±1.4

Info-bound (kNATs) 13.2 ±2.8 12.0 ±2.9

CIFAR-10 Error on Dtest (%) 14.4 ±0.6 14.6 ±0.7 13.5 ±0.1 13.4 ±0.1 13.8 ±0.1 21.0 ±0.5 19.8 ±2.8 20.9 ±4.8

Scrub 100 Error on Df (%) 0.0 ±0.0 19.3 ±4.5 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 100.0 ±0.0 23.3 ±2.1 6.3 ±2.5

All-CNN Error on Dr (%) 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 9.9 ±0.1 8.0 ±4.3 8.8 ±5.2

Info-bound (kNATs) 33.4 ±16.7 21.6 ±5.2

CIFAR-10 Error on Dtest (%) 14.4 ±0.7 21.1 ±0.6 14.3 ±0.1 20.2 ±0.1 20.7 ±0.4 21.0 ±0.5 23.7 ±0.9 22.8 ±0.3

Forget class Error on Df (%) 0.0 ±0.0 100 ±0.0 10.0 ±0.4 100 ±0.2 88.1 ±4.6 100.0 ±0.0 100.0 ±0.0 100.0 ±0.0

All-CNN Error on Dr (%) 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 2.6 ±1.8 2.3 ±0.7

Info-bound (kNATs) 458.1 ±172.2 371.5 ±51.3

Table 1. Original model is the model trained on all data D = Df ⊔ Dr . The forgetting algorithm should scrub information from its

weights. Retrain denotes the model obtained by retraining from scratch on Dr , without knowledge of Df . The metric values in the

Retrain column is the optimal value which every other scrubbing procedure should attempt to match. We consider the following forgetting

procedures: Fine-tune denotes fine-tuning the model on Dr . Negative Gradient (Neg. Grad.) denotes fine-tuning on Df by moving in the

direction of increasing loss. Random Label (Rnd. Lbls.) denotes replacing the labels of the class with random labels and then fine-tuning

on all D. Hiding denotes simply removing the class from the final classification layer. Fisher and Variational are our proposed methods,

which add noise to the weights to destroy information about Df following the Forgetting Lagrangian. We benchmark these methods using

several readout functions: errors on Df and Dr after scrubbing, time to retrain on the forgotten samples after scrubbing, distribution of the

model entropy. In all cases, the read-out of the scrubbed model should be closer to the target retrained model than to the original. Note that

our methods also provide an upper-bound to the amount of information remaining. We report mean/std over 3 random seeds.

35 30 25 20 15 10 5 0
Log of Entropy

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Original Model

retain
test
forget

30 25 20 15 10 5 0
Log of Entropy

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Retrain (Target Model)

retain
test
forget

30 25 20 15 10 5 0
Log of Entropy

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Fisher Forgetting

retain
test
forget

17.5 15.0 12.5 10.0 7.5 5.0 2.5 0.0
Log of Entropy

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Random Labels

retain
test
forget

Figure 4. Streisand Effect: Distribution of the entropy of model output (confidence) on: the retain set Dr , the forget set Df , and the

test set. The original model has seen Df , and its prediction on it are very confident (matching the confidence on the train data). On

the other hand, a model re-trained without seeing Df has a lower confidence Df . After applying our scrubbing procedures (Fisher and

Variational) to the original model, the confidence matches more closely the one we would have expected for a model that has never seen

the data (column 3 is more similar to 2 than 1). For an incorrect method of forgetting, like training with random labels, we observe that the

entropy of the forgotten samples is very degenerate and different from what we would have expected if the model had actually never seen

those samples (it is concentrated only around chance level prediction entropy). That is, attempting to remove information about a particular

cohort using this method, may actually end up providing more information about the cohort than the original model.

moving in the direction of increasing loss for samples in

Df , which is equivalent to using a negative gradient for the

samples to forget. This aims to damage features predicting

Df correctly. (iii) Random Labels: fine-tune the model on

D by randomly resampling labels corresponding to images

belonging to Df , so that those samples will get a random

gradient. (iv) Hiding: we simply remove the row corre-

sponding to the class to forget from the final classification

layer of the DNN.

5.3. Readout functions used

Unlike our methods, these baselines do not come with

an upper bound on the quantity of remaining information.

It is therefore unclear how much information is removed.

For this reason, we introduce the following read-out func-

tions, which may be used to gauge how much information

they were able destroy: (i) Error on the test set Dtest (ide-

ally small), (ii) Error on the cohort to be forgotten Df

(ideally the same as a model trained without seeing Df),

(iii) Error on the residual Dr (ideally small), (iv) Re-learn

9310

Orig
ina

l

 Mod
el

Fin
etu

ne

Neg
ati

ve

 Grad
ien

t
Hidin

g

Ran
do

m

 La
be

ls Fis
he

r

Vari
ati

on
al

Retr
ain

(Ta
rge

t

 Mod
el)

0
5

10
15
20
25
30
35

Re
-le

ar
n

tim
e

(in
 e

po
ch

s)

Figure 5. Re-learn time (in epochs) for various forgetting meth-

ods. All the baselines method can quickly recover perfect perfor-

mance on Df , suggesting that they do not actually scrub informa-

tion from the weights. On the other hand, the relearn time for our

methods is higher, and closer to the one of a model that has never

seen the data, suggesting that they remove more information.

time (in epochs) time to retrain the scrubbed model on the

forgotten data (measured by the time for the loss to reach

a fixed threshold, ideally slow). If a scrubbed model can

quickly recover a good accuracy, information about that co-

hort is likely still present in the weights. (v) Model con-

fidence: We plot the distribution of model confidence (en-

tropy of the output prediction) on the retain set Dr, forget

set Df and the test set (should look similar to the confi-

dence of a model that has never seen the data). (vi) Infor-

mation bound: For our methods, we compute the informa-

tion upper-bound about the cohort to be forgotten in NATs

using Proposition 2.

5.4. Results

First, in Table 1 we show the results of scrubbing Df

from model trained on all the data. We test both the case

we want to forget only a subset of 100-images from the

class, and when we want to forget a whole identity. We

test on CIFAR-10 and Lacuna-10 with a network pretrained

on CIFAR-100 and Lacuna-100 respectively.

Retrain denotes the gold standard which every scrubbing

procedure should attempt to match for the error readout

function. From the case where we want to scrub a subset of

a class (first and third row of Retrain) it is clear that scrub-

bing does not mean merely achieving 100% error on Df . In

fact, the reference Retrain has 15.3% and 19.3% error re-

spectively on Df and not 100%. Rather it means removing

the information from the weights so that it behaves identi-

cally to a re-trained model. Forgetting by fine-tuning on Dr,

performs poorly on the error readout function (error on Df

and Dr), suggesting that using catastrophic forgetting is the

not the correct solution to selective forgetting.

The Negative Gradient and Random Labels methods per-

form well on the error readout function, however, when

we use the re-learn time as a readout function (Figure 5)

it becomes clear that very little information is actually re-

moved, as the model relearn Df very quickly. This suggests

that merely scrubbing the activations by hiding or changing

some output is not sufficient for selective forgetting; rather,

information needs to be removed from the weights as antic-

ipated. Moreover, applying an incorrect scrubbing proce-

dure may make the images to forget more noticeable to an

attacker (Streisand effect), as we can see by from the con-

fidence values in Figure 4. The ease of forgetting a learnt

cohort also depends on its size. In particular, in Figure 6

we observe that, for a fixed value of λ in eq. (1), the upper-

bound on the information retained by the model after scrub-

bing increases with the size of the cohort to forget.

6. Discussion

Our approach is rooted in the connection between Dif-

ferential Privacy (which our framework generalizes) and the

stability of SGD. Forgetting is also intrinsically connected

with information: Forgetting may also be seen as minimiz-

ing an upper-bound on the amount of information that the

weights contain about Df [3] and that an attacker may ex-

tract about that particular cohort Df using some readout

function f . We have studied this problem from the point

of view of Shannon Information, which allows for an easy

formalization. However, it also has the drawback of consid-

ering the worst case of an attacker that has full knowledge of

the training procedure and can use arbitrarily complex read-

out functions which may, for example, simulate all possible

trainings of the network to extract the result. Characterizing

forgetting with respect to a viable subset of realistic readout

functions f(w) is a promising area of research. We also

exploit stability of the training algorithm after pretraining.

Forgetting without the pretraining assumption is an interest-

ing challenge, as it has been observed that slight perturba-

tion of the initial critical learning period can lead to large

difference in the final solution [2, 12].

Acknowledgements: We would like to thank the anony-

mous reviewers for their feedback and suggestions.

This work is supported by ARO W911NF-17-1-0304,

ONR N00014-17-1-2072, ONR N00014-19-1-2229, ONR

N00014-19-1-2066.

100 101 102

Number of samples to forget (in log)

1000

2000

3000

4000

5000

6000

Re
m

ai
ni

ng
 In

fo
rm

at
io

n
(n

at
s)

Variational Forgetting
Fisher Forgetting

Figure 6. Difficulty of forgetting increases with cohort size. For

a fixed λ (forgetting parameter), we plot the amount of information

remaining after scrubbing as a function of the cohort size (|Df |).

9311

References

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan

McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep

learning with differential privacy. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communica-

tions Security, pages 308–318. ACM, 2016. 1
[2] Alessandro Achille, Matteo Rovere, and Stefano Soatto.

Critical learning periods in deep neural networks. In Inter-

national Conference of Learning Representations, 2019. 8
[3] Alessandro Achille and Stefano Soatto. Where is the Infor-

mation in a Deep Neural Network? arXiv e-prints, page

arXiv:1905.12213, May 2019. 2, 8
[4] Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David

Krueger, Emmanuel Bengio, Maxinder S Kanwal, Tegan

Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio,

et al. A closer look at memorization in deep networks.

In Proceedings of the 34th International Conference on

Machine Learning-Volume 70, pages 233–242. JMLR. org,

2017. 1
[5] Lucas Bourtoule, Varun Chandrasekaran, Christopher

Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang,

David Lie, and Nicolas Papernot. Machine unlearning. arXiv

preprint arXiv:1912.03817, 2019. 2
[6] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman.

Vggface2: A dataset for recognising faces across pose and

age. In International Conference on Automatic Face and

Gesture Recognition, 2018. 6
[7] Yinzhi Cao and Junfeng Yang. Towards making systems for-

get with machine unlearning. In 2015 IEEE Symposium on

Security and Privacy, pages 463–480. IEEE, 2015. 2
[8] Cynthia Dwork, Aaron Roth, et al. The algorithmic foun-

dations of differential privacy. Foundations and Trends R© in

Theoretical Computer Science, 9(3–4):211–407, 2014. 1
[9] Gintare Karolina Dziugaite and Daniel M Roy. Computing

nonvacuous generalization bounds for deep (stochastic) neu-

ral networks with many more parameters than training data.

arXiv preprint arXiv:1703.11008, 2017. 2
[10] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart.

Model inversion attacks that exploit confidence information

and basic countermeasures. In Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Se-

curity, pages 1322–1333. ACM, 2015. 2
[11] Antonio Ginart, Melody Guan, Gregory Valiant, and

James Y Zou. Making ai forget you: Data deletion in ma-

chine learning. In Advances in Neural Information Process-

ing Systems, pages 3513–3526, 2019. 2
[12] Aditya Sharad Golatkar, Alessandro Achille, and Stefano

Soatto. Time matters in regularizing deep networks: Weight

decay and data augmentation affect early learning dynamics,

matter little near convergence. In Advances in Neural Infor-

mation Processing Systems, pages 10677–10687, 2019. 8
[13] Moritz Hardt, Benjamin Recht, and Yoram Singer. Train

faster, generalize better: Stability of stochastic gradient de-

scent. arXiv preprint arXiv:1509.01240, 2015. 2
[14] Jamie Hayes, Luca Melis, George Danezis, and Emiliano

De Cristofaro. Logan: Membership inference attacks against

generative models. Proceedings on Privacy Enhancing Tech-

nologies, 2019(1):133–152, 2019. 1
[15] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz.

Deep models under the gan: information leakage from col-

laborative deep learning. In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Se-

curity, pages 603–618. ACM, 2017. 1
[16] Durk P Kingma, Tim Salimans, and Max Welling. Vari-

ational dropout and the local reparameterization trick. In

Advances in Neural Information Processing Systems, pages

2575–2583, 2015. 6
[17] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel

Veness, Guillaume Desjardins, Andrei A Rusu, Kieran

Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-

Barwinska, et al. Overcoming catastrophic forgetting in neu-

ral networks. Proceedings of the national academy of sci-

ences, 114(13):3521–3526, 2017. 2
[18] Alex Krizhevsky et al. Learning multiple layers of features

from tiny images. Technical report, Citeseer, 2009. 6
[19] Yann LeCun, John S Denker, and Sara A Solla. Optimal

brain damage. In Advances in neural information processing

systems, pages 598–605, 1990. 2
[20] James Martens. New insights and perspectives on the natural

gradient method. arXiv preprint arXiv:1412.1193, 2014. 6
[21] James Martens and Roger Grosse. Optimizing neural net-

works with kronecker-factored approximate curvature. In

International conference on machine learning, pages 2408–

2417, 2015. 6
[22] David McAllester. A pac-bayesian tutorial with a d ropout

bound. arXiv preprint arXiv:1307.2118, 2013. 2
[23] Paul Micaelli and Amos Storkey. Zero-shot knowledge

transfer via adversarial belief matching. arXiv preprint

arXiv:1905.09768, 2019. 2
[24] Apostolos Pyrgelis, Carmela Troncoso, and Emiliano

De Cristofaro. Knock knock, who’s there? member-

ship inference on aggregate location data. arXiv preprint

arXiv:1708.06145, 2017. 1
[25] Saurabh Shintre and Jasjeet Dhaliwal. Verifying that the in-

fluence of a user data point has been removed from a machine

learning classifier, Mar. 2019. US Patent App. 10/225,277. 2
[26] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov.

Machine learning models that remember too much. In Pro-

ceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security, pages 587–601. ACM, 2017.

1
[27] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas

Brox, and Martin Riedmiller. Striving for simplicity: The

all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

6
[28] Stacey Truex, Ling Liu, Mehmet Emre Gursoy, Lei Yu, and

Wenqi Wei. Demystifying membership inference attacks in

machine learning as a service. IEEE Transactions on Ser-

vices Computing, 2019. 1
[29] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin

Recht, and Oriol Vinyals. Understanding deep learn-

ing requires rethinking generalization. arXiv preprint

arXiv:1611.03530, 2016. 1

9312

