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Abstract

Graph convolution operators bring the advantages of

deep learning to a variety of graph and mesh processing

tasks previously deemed out of reach. With their continued

success comes the desire to design more powerful architec-

tures, often by adapting existing deep learning techniques

to non-Euclidean data. In this paper, we argue geometry

should remain the primary driving force behind innovation

in the emerging field of geometric deep learning. We relate

graph neural networks to widely successful computer graph-

ics and data approximation models: radial basis functions

(RBFs). We conjecture that, like RBFs, graph convolution

layers would benefit from the addition of simple functions to

the powerful convolution kernels. We introduce affine skip

connections, a novel building block formed by combining

a fully connected layer with any graph convolution opera-

tor. We experimentally demonstrate the effectiveness of our

technique, and show the improved performance is the con-

sequence of more than the increased number of parameters.

Operators equipped with the affine skip connection markedly

outperform their base performance on every task we evalu-

ated, i.e., shape reconstruction, dense shape correspondence,

and graph classification. We hope our simple and effective

approach will serve as a solid baseline and help ease future

research in graph neural networks.

1. Introduction

The graph formalism has established itself as the lingua

franca of non-Euclidean deep learning, as graphs provide

a powerful abstraction for very general systems of interac-

tions. In the same way that classical deep learning developed

around the Convolutional Neural Networks (CNNs) and their

ability to capture patterns on grids by exploiting local corre-

lation and to build hierarchical representations by stacking

multiple convolutional layers, most of the work on graph

neural networks (GNNs) has focused on the formulation of

convolution-like local operators on graphs.

∗Authors contributed equally.
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Figure 1: The comparison made in this paper between

learned graph convolution kernels and RBF interpolation sug-

gests augmenting graph convolution operators with additive

affine transformations, implemented as parametric connec-

tions between layers. Our affine skip connections improve

the network’s ability to represent certain transformations,

and enable better use of the vertex features.

In computer vision and graphics, early attempts at apply-

ing deep learning to 3D shapes were based on dense voxel

representations [42] or multiple planar views [48]. These

methods suffer from three main drawbacks, stemming from

their extrinsic nature: high computational cost of 3D convolu-

tional filters, lack of invariance to rigid motions or non-rigid

deformations, and loss of detail due to rasterisation.

A more efficient way of representing 3D shapes is model-

ing them as surfaces (two-dimensional manifolds). In com-

puter graphics and geometry processing, a popular type of

efficient and accurate discretisation of surfaces are meshes

or simplicial complexes (see, e.g., [8, 10, 25, 7, 37, 21, 14]),

which can be considered as graphs with additional structure

(faces). Geometric deep learning [9] seeks to formulate in-

trinsic analogies of convolutions on meshes accounting for

these structures.

As a range of effective graph and mesh convolution op-

erators are now available, the attention of the community is

turning to improving the basic GNN architectures used in

111415



graph and mesh processing to match those used in computer

vision. Borrowing from the existing literature, extensions of

successful techniques such as residual connections [22] and

dilated convolutions [52] have been proposed [38, 39, 51],

some with major impact in accuracy [29]. We argue, how-

ever, that due to the particularities of meshes and to their

non-Euclidean nature, geometry should be the foundation

for architectural innovations in geometric deep learning.

Contributions In this work, we provide a new perspective

on the problem of deep learning on meshes by relating graph

neural networks to Radial Basis Function (RBF) networks.

Motivated by fundamental results in approximation, we intro-

duce geometrically principled connections for graph neural

networks, coined as affine skip connections, and inspired

by thin plate splines. The resulting block learns the sum of

any existing graph convolution operator and an affine func-

tion, allowing the network to learn certain transformations

more efficiently. Through extensive experiments, we show

our technique is widely applicable and highly effective. We

verify affine skip connections improve performance on shape

reconstruction, vertex classification, and graph classification

tasks. In doing so, we achieve best in class performance

on all three benchmarks. We also show the improvement in

performance is significantly higher than that provided by

residual connections, and verify the connections improve

representation power beyond a mere increase in trainable

parameters. Visualizing what affine skip connections learn

further bolsters our theoretical motivation.

Notations Throughout the paper, matrices and vectors are

denoted by upper and lowercase bold letters (e.g., X and

(x), respectively. I denotes the identity matrix of compatible

dimensions. The ith column of X is denoted as xi. The

sets of real numbers is denoted by R. A graph G = (V, E)
consists of vertices V = {1, . . . , n} and edges E ⊆ V × V .

The graph structure can be encoded in the adjacency matrix

A, where aij = 1 if (i, j) ∈ E (in which case i and j are

said to be adjacent) and zero otherwise. The degree matrix

D is a diagonal matrix with elements dii =
∑n

j=1 aij . The

neighborhood of vertex i, denoted by N (i) = {j : (i, j) ∈
E}, is the set of vertices adjacent to i.

2. Related work

Graph and mesh convolutions The first work on deep

learning on meshes mapped local surface patches to pre-

computed geodesic polar coordinates; convolution was per-

formed by multiplying the geodesic patches by learnable

filters [33, 5]. The key advantage of such an architecture is

that it is intrinsic by construction, affording it invariance to

isometric mesh deformations, a significant advantage when

dealing with deformable shapes. MoNet [35] generalized

the approach using a local system of pseudo-coordinates

uij to represent the neighborhood N (i) and a family of

learnable weighting functions w.r.t. u, e.g., Gaussian kernels

wm(u) = exp
(

− 1
2 (u− µm)TΣ−1

k (u− µm)
)

with learn-

able mean µm and covariance Σm. The convolution is

x
(k)
i =

M
∑

m=1

θm
∑

j∈N (i)

wm(uij)x
(k−1)
j (1)

where x
(k−1)
i and x

(k)
i denotes the input and output features

at vertex i, respectively, and θ is the vector of learnable filter

weights. MoNet can be seen as a Gaussian Mixture Model

(GMM), and as a more general form of the Graph Attention

(GAT) model [45]. Local coordinates were re-used in the

Spline Convolutional Network [18], which represents the

filters in a basis of smooth spline functions. Another popular

attention-based operator is FeaStNet [46], that learns a soft

mapping from vertices to filter weights, and has been applied

to discriminative [46] and generative models [32]:

x
(k)
i = b+

1

|N (i)|

M
∑

m=1

∑

j∈N (i)

qm(x
(k−1)
i ,x

(k−1)
j )Wmx

(k−1)
j

(2)

where Wm a matrix of learnable filters weights for the m-th

filter, qm is a learned soft-assignment of neighbors to filter

weights, and b the learned bias of the layer.1

ChebNet [15] accelerates spectral convolutions by ex-

panding the filters on the powers of the graph Laplacian

using Chebychev polynomials. Throughout this paper, we

will refer to the n-order expansion as ChebNet-n. in particu-

lar the first order expansion ChebNet-1 reads

X(k) = −D− 1

2AD− 1

2X(k−1)Θ1 +X(k−1)Θ0 (3)

with L = −D− 1

2AD− 1

2 the normalised symmetric graph

Laplacian, A is the graph adjacency matrix, and D is the

degree matrix. In computer graphics applications, ChebNet

has seen some success in mesh reconstruction and generation

[40]. However, due to the fact that spectral filter coefficients

are basis dependent, the spectral construction is limited to a

single domain. We therefore do not evaluate the performance

of ChebNet on correspondence tasks. We refer to [28, 16] for

constructing compatible orthogonal bases across different

domains. The Graph Convolutional Network (GCN) model

[27] further simplifies (3) by considering first-order polyno-

mials with dependent coefficients, resulting in

X(k) = L̃X(k−1)Θ, (4)

where L̃ = D̃− 1

2 ÃD̃− 1

2 = I + D− 1

2AD− 1

2 . By virtue

of this construction, GCN introduces self-loops. GCN is

perhaps the simplest graph neural network model combining

vertex-wise feature transformation (right-side multiplication

by Θ) and graph propagation (left-side multiplication by L̃).

1It is tacitly assumed here that i ∈ N (i).
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For this reason, it is often a popular baseline choice in the

literature, but it has never applied successfully on meshes.

Recently, models based on the simple consistent enu-

meration of a vertex’s neighbors have emerged. SpiralNet

[31] enumerates the neighbors around a vertex in a spiral

order and learns filters on the resulting sequence with a neu-

ral network (MLP or LSTM). The recent SpiralNet++ [20]

improves on the original model by enforcing a fixed order

to exploit prior information about the meshes in the com-

mon case of datasets of meshes that have the same topology,

e.g., [3, 4, 40]. The SpiralNet++ [20] operator is written

x
(k)
i = γ(k)

(

||j∈S(i,M) x
(k−1)
j

)

with γ(k) an MLP, || the

concatenation, and S(i,M) the spiral sequence of neighbors

of i of length (i.e. kernel size) M .

Finally, we include the recently proposed Graph Isomor-

phism Network (GIN) [50] with the update formula

x
(k)
i = γ(k)



(1 + ǫ(k)) · x
(k−1)
i +

∑

j∈N (i)

x
(k−1)
j



 . (5)

This model is designed for graph classification and was

shown [50] to be as powerful as the Weisfeiler-Lehman graph

isomorphism test.

Skip connections and GNNs Highway Networks [43, 44]

present shortcut connections with data-dependant gating

functions, which are amongst the first architectures that pro-

vided a means to effectively train deep networks. However,

highway networks have not demonstrated improved perfor-

mance due to the fact that the layers in highway networks act

as non-residual functions when a gated shortcut is ”closed”.

Concurrent with this work, pure identity mapping [22] made

possible the training of very deep neural networks, and en-

abled breakthrough performance on many challenging image

recognition, localization, and detection tasks. They improve

gradient flow and alleviate the vanishing gradient problem.

DenseNets [24] can be seen as a generalization of [22] and

connect all layers together. Early forms of skip connections

in GNNs actually predate the deep learning explosion and

can be traced back to the Neural Network for Graphs (NN4G)

model [34], where the input of any layer is the output of the

previous layer plus a function of the vertex features [49,

section V.B]. 2 In [29], the authors propose direct graph

equivalents for residual connections and dense connections,

provide an extensive study of their methods, and show major

improvements in the performance of the DGCNN architec-

ture [47] with very deep models.

3. Motivation: Radial Basis Interpolation

The main motivation of this paper comes from the field

of data interpolation. Interpolation problems appear in many

2We refer to [29, section 2.1] for a summary of subsequent approaches.

machine learning and computer vision tasks. In the general

setting of scattered data interpolation, we seek a function

f̂ whose outputs f̂(xi) on a set of scattered data points xi

equals matching observations yi, i.e., ∀i, f(xi) = yi. In the

presence of noise, one typically solves an approximation

problem potentially involving regularization, i.e.

min
f

∑

i

d(f̂(xi),yi) + λL(f̂), (6)

where d measures the adequation of the model f̂ to the ob-

servations, λ is a regularization weight, and L encourages

some chosen properties of the model. For the sake of the dis-

cussion, we take d(x,y) = ||x− y||. In computer graphics,

surface reconstruction and deformation (e.g. for registration

[13]) can be phrased as interpolation problems.

In this section, we draw connections between graph con-

volutional networks and a classical popular choice of inter-

polants: Radial Basis Functions (RBFs).

Radial basis functions An RBF is a function of the form

x 7→ φ(||x−ci||), with ||.|| a norm, and ci some pre-defined

centers. By construction, the value of an RBF only depends

on the distance from the centers. While an RBF function’s

input is scalar, the function can be vector-valued.

In interpolation problems, the centers are chosen to be

the data points (ci = xi) and the interpolant is defined as a

weighted sum of radial basis functions centered at each xi:

f̂(x) =

N
∑

i=1

wiφ(||x− xi||). (7)

Interpolation assumes equality, so the problem boils down to

solving the linear system Φwi = bj , with Φj,i = φ(||xi −
xj ||) the matrix of the RBF kernel (note that the diagonal

is φ(0) ∀i). The kernel matrix encodes the relationships

between the points, as measured by the kernel.

Relaxing the equality constraints can be necessary, in

which case we solve the system in the least squares sense

with additional regularization. We will develop this point

further to introduce our proposed affine skip connections.

Relations to GNNs An RBF function can be seen as a sim-

ple kind of one layer neural network with RBF activations

centered around every points (i.e. an RBF network [11, 36]).

The connection to graph neural networks is very clear: while

the RBF matrix encodes the relationships and defines a

point’s neighborhood radially around the point, graph neural

networks rely on the graph connectivity to hard-code spatial

relationships. In the case of meshes, this encoding is all-the-

more relevant, as a notion of distance is provided either by

the ambient space (the graph is embedded) or directly on the

Riemannian manifold. The latter relates to the RBFs with

geodesic distance of [41].
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Most GNNs used on meshes fall into the message passing

framework [19]:

x
(k)
i =

γ(k)

(

x
(k−1)
i , �

j∈N (i)
φ(k)

(

x
(k−1)
i ,x

(k−1)
j , e

(k−1)
ij

)

)

,

(8)

where � denotes a differentiable permutation-invariant func-

tion, (e.g. max or
∑

), φ a differentiable kernel function,

γ is an MLP, and xi and eij are features associated with

vertex i and edge (i, j), respectively. This equation defines

a compactly supported, and possibly non-linear, function

around the vertex. For the MoNet equation (1) the connection

to RBFs is direct. Contrary to RBFs, the filters of modern

GNNs do not have to be radial. In fact, anisotropic filters

[5, 6] have been shown to perform better than isotropic ones

[33, 40]. The other major differences are:

1. The filters are learned functions, not pre-defined; this

allows for better inductive learning and task-specificity

2. The filters apply to any vertex and edge features

3. Some operators support self-loops, but diag(Φ) =
φ(0) irrespective of the features xi

We note that the compact support of (8) is a design de-

cision: early GNNs built on the graph Fourier transform

lacked compactly-supported filters [23]. In RBF interpola-

tion, global support is sometimes desired as it is a necessary

condition for maximal fairness of the interpolated surfaces

(i.e. maximally smooth), but also induces computational

complexity and numerical challenges as the dense kernel ma-

trices grow and become ill-conditioned [1]. This motivated

the development of fast methods to fit locally supported

RBFs [2]. In [23] the authors argue compactly-supported

kernels are desirable in graph neural networks for computa-

tional efficiency, and to promote learning local patterns. This

especially justified for meshes, for which the graph structure

is very sparse. Additionally, stacking convolutional layers

is known to increase the receptive field, including in graph

neural networks [49]. The composition of locally supported

filters can therefore yield globally supported mappings.

RBFs and polynomials A common practice with RBFs is

to add low-order polynomial terms to the interpolant:

f̂(x) =

N
∑

i=1

wiφ(||x− xi||) + P (x). (9)

The practical motivation is to ensure polynomial map-

pings of some order can be represented exactly and to avoid

unwanted oscillations when approximating flat functions,

e.g. affine transformations of an image should be exactly

affine. One can show [1] this is equivalent to ensuring the

RBF weights lie in the null space of the polynomial basis,

also known as the vanishing moments condition.

However, polynomials appear organically when the RBF

kernel is derived to be optimal for a chosen roughness mea-

sure, typically expressed in terms of the integral of a squared

differential operator D (below in one dimension):

||Df ||2 =

∫

|Df(x)|2dx, (10)

e.g., D = d2

dx2 . In other words, when the kernel is sought to

be optimal for a given regularization functional. Differential

operators are very naturally expressed on meshes in terms

of finite difference approximations. In this case, we identify

D with its corresponding stencil matrix. The interpolation

problem becomes the minimization of (10) subject to the

interpolation constraints.

It can be shown [1] that for such problems the RBF kernel

is the Green’s function of the squared differential operator,

and that for an operator of order m, polynomials of order

m− 1 span the null space. Therefore, the complete solution

space is the direct sum3 of the space of polynomials of order

m− 1 (the null space of the operator) and the space spanned

by the RBF kernel basis4.

Thin Plate Splines (TPS) An important special case is

the RBF interpolant for a surface z(x), x = [x y]T that

minimizes the bending energy
∫ ∫

∂2f
∂x2 +

∂2f
∂x∂y

+ ∂2f
∂y2 dxdy =

||∆2f ||. The solution is the well-known biharmonic spline,

or thin plate spline, φ(r) = r2 log r, r = ||x− xi||, with

a polynomial of degree 1 (i.e. an affine function)

f̂(x) =
∑

i

wiφ(||x− xi||) +Ax+ b. (11)

Generalizations to higher dimensions yield polyharmonic

splines. These splines maximize the surface fairness. From

(11) it is also clear the polynomial doesn’t depend on the

structure of the point set and is common for all points.

4. Geometrically Principled Connections

In Section 3, we highlighted key similarities and differ-

ences between continuous RBFs and discrete graph con-

volution kernels . We then exposed how adding low-order

polynomials to RBFs kernels is both beneficial to enable

efficient fitting of flat functions, and deeply connected to

regularization of the learned functions, and noted the poly-

nomial component does not depend on spatial relationships.

Based on these observations, we conjecture that graph con-

volution operators could, too, benefit from the addition of

3Hence the vanishing moment condition.
4This result comes from phrasing the problem as regularization in a

Reproducing Kernel Hilbert Space. To keep the discussion short in this

manuscript, we refer the reader to relevant resources such as [1, Section 7].
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Figure 2: Our block learns the sum of one graph convolution

and a shortcut equipped with an affine transformation.

a low-order polynomial to ensure they can represent flat

functions exactly, and learn functions of a vertex’s features

independently from its neighbours. We introduce a simple

block that achieves both goals.

Inspired by equation (11), we propose to augment a

generic graph convolution operator with affine skip connec-

tions, i.e., inter-layer connections with an affine transforma-

tion implemented as a fully connected layer. The output of

the block is the sum of the two paths, as shown in Figure 2.

Our block is designed to allow the fully connected layer to

learn an affine transformation of the current feature map, and

let the convolution learn a residue from a vertex’s neighbors.

For message passing, we obtain:

x
(k)
i =

γ(k)

(

x
(k−1)
i , �

j∈N (i)
φ(k)(x

(k−1)
i ,x

(k−1)
j , e

(k−1)
i,j )

)

+A(k)x
(k−1)
i + b(k).

(12)

The fully connected layer could be replaced by an MLP

to obtain polynomial connections, however, we argue the

stacking of several layers creates sufficiently complex map-

pings by composition to not require deeper sub-networks in

each block: a balance must be found between expressive-

ness and model complexity. Additionally, the analogy with

TPS appears well-motivated for signals defined on surfaces.

As a matter of notation, we refer to our block based on

operator Conv with affine skip connections as Aff -Conv.

In equations (9), (11) and (12), the polynomial part does

not depend on a vertex’s neighbors, but solely on the feature

at that vertex. This is similar to PointNet [12] that learns

a shared MLP on all points with no structural prior. In our

block, the geometric information is readily encoded in the

graph, while the linear layer is applied to all vertices in-

dependently, thus learning indirectly from the other points

regardless of their proximity.

Residual blocks with projections In [22, Eq. (2)], the

authors introduced a variation of residual blocks with a pro-

jection implemented as a linear layer. Their motivation is to

handle different input and output sizes. We acknowledge the

contribution of residual connections and will demonstrate

our block provides the same benefits and more for GNNs.

5. Experimental evaluation

Our experiments are designed to highlight different prop-

erties of affine skip connections when combined. We present

the individual experiments, then draw conclusions based on

their entirety. All implementation details (model architecture,

optimizers, losses, etc.), and details about the datasets (num-

ber of samples, training/test split) are provided in Appendix

A of the supplementary material.

5.1. Experimental design

Mesh reconstruction The task is to reconstruct meshes

with an auto-encoder architecture, and relates the most to

interpolation. To validate the proposed approach, we firstly

show the performance of attention-based models, MoNet

and FeaStNet, on shape reconstruction on CoMA[40] for dif-

ferent values of M . For a kernel size of M , we compare the

vanilla operators (MoNet, FeaStNet), the blocks with resid-

ual skip connections (Res-MoNet, Res-FeaStNet), the blocks

with affine skip connections (Aff -MoNet, Aff -FeaStNet), and

the vanilla operators with kernel size M+1 (MoNet+, FeaSt-

Net+)5. We evaluated kernel sizes 4, 9, and 14. We report the

mean Euclidean vertex error and its standard deviation, and

the median Euclidean error. Results with SplineCNN [17]

are shown in Appendix B of the supplementary material.

Mesh correspondence The experimental setting is mesh

correspondence, i.e., registration formulated as classification.

We compare MoNet, FeaStNet and their respective blocks

on the FAUST [3] dataset. We purposefully do not include

SpiralNet++ and ChebNet on this problem: the connectivity

of FAUST is fixed and vertices are in correspondence already.

These methods assume a fixed topology and therefore have

an unfair advantage. We report the percentage of correct

correspondences as a function of the geodesic error.

Mesh correspondence with GCN The GCN [27] model

is arguably the most popular graph convolution operator,

and has been widely applied to problems on generic graphs

thanks to its simplicity. However, its performance degrades

quickly on meshes, which makes the entry bar higher for

prototyping graph-based approaches in 3D vision. We in-

vestigate whether affine skip connections can improve the

performance of GCN, and by how much. We choose the 3D

shape correspondence task, in order to allow for comparison

with the other models already included in this study. As de-

tailed in the supplementary material, the network used in this

experiment is relatively deep, with three convolution layers.

In [27, Appendix B] the authors add residual connections to

GCNs deeper than two layers to alleviate vanishing gradients.

In order to prove affine skip connections have a geometric

meaning, we must eliminate the possibility that better per-

5Increasing the kernel size by 1, and adding an affine skip connection

lead to the same number of weight matrices.
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M=4 M=9 M=14

method mean error median # param mean error median # param mean error median # param

ChebNet† 0.659 ± 0.783 0.391 92.5k 4.329 ± 3.591 3.453 154.9k 4.348 ± 3.587 3.469 217.3k

ChebNet 0.520 ± 0.655 0.294 92.5k 0.438 ± 0.562 0.244 154.9k 0.407 ± 0.523 0.227 217.3k

Res-ChebNet 0.531 ± 0.668 0.299 92.5k 0.444 ± 0.570 0.275 154.9k 0.412 ± 0.530 0.229 217.3k

SpiralNet++† 0.554 ± 0.674 0.320 92.5k 0.430 ± 0.542 0.239 154.9k 0.385 ± 0.491 0.214 217.3k

SpiralNet++ 0.578 ± 0.705 0.333 92.5k 0.426 ± 0.538 0.238 154.9k 0.383 ± 0.489 0.212 217.3k

Res-SpiralNet++ 0.575 ± 0.703 0.331 92.5k 0.432 ± 0.541 0.243 154.9k 0.395 ± 0.496 0.223 217.3k

FeaStNet 0.599 ± 0.730 0.342 93.8k 0.524 ± 0.646 0.297 157.9k 0.488 ± 0.599 0.279 221.9k

FeaStNet+ 0.587 ± 0.723 0.333 106.6k 0.517 ± 0.635 0.292 170.7k 0.477 ± 0.594 0.268 234.8k

Res-FeaStNet 0.565 ± 0.701 0.314 93.8k 0.483 ± 0.602 0.266 157.9k 0.441 ± 0.554 0.279 221.9k

Aff -FeaStNet 0.543 ± 0.676 0.303 106.3k 0.470 ± 0.585 0.261 170.4k 0.431 ± 0.543 0.237 234.4k

MoNet 0.671 ± 0.760 0.450 92.7k 0.528 ± 0.604 0.354 155.4k 0.480 ± 0.551 0.321 218.1k

MoNet+ 0.627 ± 0.693 0.429 105.2k 0.528 ± 0.587 0.366 167.9k 0.480 ± 0.540 0.329 230.6k

Res-MoNet 0.540 ± 0.612 0.335 92.7k 0.426 ± 0.479 0.271 155.4k 0.374 ± 0.417 0.238 218.1k

Aff -MoNet 0.499 ± 0.579 0.298 105.2k 0.406 ± 0.455 0.251 167.9k 0.347 ± 0.386 0.218 230.5k

Table 1: 3D shape reconstruction experiments results in the CoMA [40] dataset. Errors are in millimeters. All the experiments

were ran with the same network architecture. We show the results of each operator for different kernel sizes (i.e., # of weight

matrices). Aff- denotes the operators equipped with the proposed affine skip connections, Res- denotes the operators with

standard residual connections, and † indicates we remove the separate weight for the center vertex.

(a) Addition (MoNet, FeaStNet) (b) Ablation (ChebNet, SpiralNet++)

Figure 3: Sample reconstructions: addition of affine skip

connections and ablation of the center vertex weights.

formance comes solely from improved gradient flow. We

include in this study a GCN block with vanilla residual con-

nections (Res-GCN), in order to isolate the gradient flow

improvements from the geometric improvements. Overall,

we compare vanilla GCN, Res-GCN, and our Aff -GCN.

Graph classification We compare MoNet, FeaStNet, and

their respective residual and affine skip connection blocks

on graph classification on Superpixel MNIST [35, 18]. The

Superpixel MNIST dataset used in [35] and [18] represents

the MNIST images as graphs. We use 75 vertices per image.

All models use a kernel size of 25. We include GIN (built

with a 2-layer MLP) for the similarity of its update rule

with our block, in the GIN-0 (ǫ = 0) variant for its superior

performance as observed in [50]. We compare GIN with

GCN, Res-GCN, and Aff -GCN. Here, graph connectivity is

not fixed. We report the classification accuracy.

Ablation: separate weights for the centre vertex To

show the inclusion of the center vertex is necessary, we

perform an ablation study of ChebNet, and SpiralNet++ on

shape reconstruction on CoMA. From equation (3), we see

the zero order term XΘ0 is an affine function of the vertex

Figure 4: Example reconstructed faces obtained by passing

samples (top) through a trained autoencoder built on the

Aff -MoNet block. The middle row shows reconstructions

produced by the full autoencoder. The bottom row shows

the result of passing through the affine skip connections only

in the decoder at inference. The connections learn a smooth

component common to the samples - across identities and

expressions, as expected from the motivation.

features. We remove it from the expansion of ChebNet-(M+
1) to obtain ChebNet-M†: X(k) = L(M+1)X(k−1)ΘM+1 +
. . .+ LX(k−1)Θ1. Both models have identical numbers of

weight matrices, but ChebNet-M learns from the vertices

alone at order 0. For SpiralNet++, the center vertex is the first

in the sequence {vertex||neighbors}. We rotate the filter

(i.e. move it one step down the spiral) to remove the weight

on the center vertex while keeping the same sequence length.

We obtain SpiralNet++†. The number of weight matrices is

constant. All models have kernel size 9.

Ablation: self-loops vs. affine skip connections We also

compare FeaStNet with and without self-loops (FeaStNet†),
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Figure 5: Shape correspondence experiments on the FAUST humans dataset. Per-vertex heatmap of the geodesic error for

three variants of the GCN operator. Geodesic error is measured according to [26].
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Figure 6: Shape correspondence accuracy: the x axis dis-

plays the geodesic error in % of the mesh diameter, and the y

axis shows the percentage of correspondences that lie within

a given radius around the correct vertex. All experiments

were ran with the same architecture. Aff -GCN only has 1%

more parameters than GCN.

and the matching blocks, on all experiments.

5.2. Results and discussion

Based on the evidence collected, we draw conclusions

about specific properties of our affine skip connections.

Parameter specificity The results of varying the kernel

size on shape reconstruction can be found in Table 1 along

with the corresponding number of parameters for control.

Increasing the kernel size by 1 (MoNet+, FeaStNet+) pro-

vides only a minor increase in performance, e.g., for M = 9
and M = 14, MoNet and MoNet+ have the same mean

Euclidean error and the median error of MoNet with M = 9
actually increases by 3.4%. In contrast, the affine skip con-

nections always drastically reduce the reconstruction error,

for the same number of additional parameters. In particular,

the mean Euclidean error of MoNet decreased by 25.6% for

M = 4, and by 23.1% for M = 9. We conclude our affine

skip connections have a specific different role and augment

the representational power of the networks beyond simply

increasing the number of parameters. Our block with MoNet

achieves the new state of the art performance on this task.

What do affine skip connections learn? In Figure 4, we

observe the linear layers in the connections learned infor-

mation common to all shapes. This result strengthens our

Method Acc. (%) Kernel Size # Param

GIN-0 57.75 - 25k

GCN 31.21 - 15.9k

Res-GCN 42.32 - 15.9k

Aff -GCN 58.96 - 22.1k

FeaStNet 11.35 25 166k

Res-FeaStNet 58.09 25 166k

Aff -FeaStNet 59.50 25 172k

Pseudo-Coord. Degree Position - -

MoNet 53.10 96.57 25 164k

Res-MoNet 53.75 96.82 25 164k

Aff -MoNet 72.00 97.14 25 170k

Table 2: Classification accuracy of different operators and

blocks on the Superpixel MNIST dataset with 75 superpixels.

For MoNet, we report performance using pseudo-coordinates

computed from the vertex positions, or from the connectivity

only (vertex degrees).

analogy with the polynomial terms in RBF interpolation:

the coefficients of the polynomial function are learned from

all data points and shared among them. In one dimension,

this can be pictured as learning the trend of a curve. Our

visualizations are consistent with this interpretation.

Vertex-level representations We report the mesh corre-

spondence accuracy as a function of the geodesic error for

FeaStNet, MoNet, and the blocks in Figure 6a. We observe

consistent performance improvements for both operators.

The performance difference is remarkable for MoNet: for a

geodesic error of 0, the accuracy improved from 86.61% to

94.69%. Aff -MoNet is the new state of the art performance

on this problem6. We conclude affine skip connections im-

prove vertex-level representations.

Laplacian smoothing and comparison to residuals We

show the performance of GCN and its residual and affine

blocks in Figure 6b. The accuracy of vanilla GCN is only

around 20%. We can hypothesize this is due to the equiva-

lence of GCN with Laplacian smoothing [30] - blurring the

features of neighboring vertices and losing specificity - or

6Excluding methods that learn on a fixed topology.
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method mean error median # param M

FeaStNet 0.524 ± 0.646 0.297 157.9k 9

Aff -FeaStNet 0.470 ± 0.585 0.261 170.4k 9

FeaStNet† 0.519 ± 0.634 0.297 157.9k 9

Aff -FeaStNet† 0.463 ± 0.577 0.256 170.4k 9

(a) Shape Reconstruction:

acc. (%) # param. M

93.14 1.91M 10

94.29 1.92M 10

93.72 1.91M 10

94.36 1.92M 10

(b) Correspondence

acc. (%) # param. M

11.35 166k 25

59.50 172k 25

11.35 166k 25

60.07 172k 25

(c) Classification

Table 3: Ablations: affine skip connection vs. self-loop. We show the performances of FeaStNet under the settings of with

and without self-loop (denoted with †) and with and without affine skip connections regarding the tasks of shape reconstruction

on CoMA, shape correspondence on FAUST, and classification on MNIST with 75 superpixels. M denotes the kernel size (i.e.

# weight matrices). For correspondence, test accuracy is the ratio of the correct correspondence prediction at geodesic error 0.

to the vanishing gradient problem. Our block outperforms

vanilla residuals by a large margin: the classification rate

of Aff -GCN is nearly 79% while Res-GCN only reaches

61.27%. Visually (Figure 5), Res-GCN provides marked im-

provements over GCN, and Aff -GCN offers another major

step-up. A similar trend is seen in Table 1 and Table 2. In [22]

the authors observed a minor performance increase between

vanilla residuals and residual connections with projection,

that they attributed to the higher number of parameters. The

differences we observe are not consistent with such marginal

improvements. This shows not only our approach provides

all the benefits of residuals in solving the vanishing gradient

problem, it achieves more on geometric data, and that the im-

provements are not solely due to more trainable parameters

or improved gradient flow. In particular, with affine skip con-

nections, Eq. 4 of [30] becomes σ(L̃H(l)Θ(l) +H(l)W(l)),
with L̃ the augmented symmetric Laplacian, and W(l) the

parameters of the affine skip connection. Thus, the Aff -GCN

block is no longer equivalent to Laplacian smoothing.

Discriminative power Our results on Superpixel MNIST

are presented in Table 2. Our affine skip connections improve

the classification rate across the board. GCN with affine skip

connections outperform GIN-0 by over 1 percentage point,

with 12% fewer trainable parameters. This result shows Aff -

GCN offers competitive performance with a smaller model,

and suggests the augmented operator is significantly more

discriminative than GCN. Assuming the terminology of [50],

FeaStNet employs a mean aggregation function, a choice

known [50] to significantly limit the discriminative power

of GNNs and which could explain its very low accuracy in

spite of its large (166k) number of parameters. In contrast,

Aff -FeaStNet is competitive with Aff -GCN and outperforms

GIN-0. As GIN is designed to be as powerful of the WL test,

these observations suggest affine skip connections improve

the discriminative power of graph convolution operators. As

a result, Aff -MoNet outperformed the current state of the art,

for coordinate-based and degree-based pseudo-coordinates.

Role of the center vertex As seen in the first six rows

of Table 1, the performance of the models is higher with

weights for the center vertex, especially for ChebNet. Note

the comparison is at identical numbers of parameters. Fig-

ure 3 provides sample ablation and addition results. This

shows convolution operators need to learn from the center

vertices. We found that removing self-loops in FeaStNet ac-

tually increased the performance for both the vanilla and the

block operators. Table 3 shows results on all experiments.

The affine skip connection consistently improved the perfor-

mance of models regardless of the self-loops. We conclude

graph convolution operators should be able to learn specif-

ically from the center vertex of a neighborhood, indepen-

dently from its neighbors. A similar observation was made

in [50] where independent parameters for the center vertex

are shown to be required for graph convolution operators to

be as discriminative as the WL test.

6. Conclusion

By relating graph neural networks to the theory of ra-

dial basis functions, we introduce geometrically principled

connections that are both easily implemented, applicable

to a broad range of convolution operators and graph or

mesh learning problems, and highly effective. We show our

method extends beyond surface reconstruction and registra-

tion, and can dramatically improve performance on graph

classification with arbitrary connectivity. Our MoNet block

achieves state of the art performance and is more robust

to topological variations than sequence (SpiralNet++) or

spectrum-based (ChebNet) operators. We further demon-

strate our blocks improve on vanilla residual connections for

graph neural networks. We believe our approach is therefore

interesting to the broader community. Future work should

study whether affine skip connections have regularization

effects on the smoothness of the learned convolution kernels.
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Michael Bronstein. Learning shape correspondence with

anisotropic convolutional neural networks. Advances in Neu-

ral Information Processing Systems, pages 3197–3205, 2016.

2, 4

[6] Giorgos Bouritsas, Sergiy Bokhnyak, Stylianos Ploumpis,

Michael Bronstein, and Stefanos Zafeiriou. Neural 3D Mor-

phable Models: Spiral Convolutional Networks for 3D Shape

Representation Learning and Generation. In The IEEE In-

ternational Conference on Computer Vision (ICCV), 2019.

4

[7] Alexander M Bronstein, Michael M Bronstein, Leonidas J

Guibas, and Maks Ovsjanikov. Shape google: Geometric

words and expressions for invariant shape retrieval. ACM

Transactions on Graphics (TOG), 30(1):1–20, 2011. 1

[8] Alexander M Bronstein, Michael M Bronstein, and Ron Kim-

mel. Generalized multidimensional scaling: a framework for

isometry-invariant partial surface matching. Proceedings of

the National Academy of Sciences, 103(5):1168–1172, 2006.

1

[9] Michael M Bronstein, Joan Bruna, Yann Lecun, Arthur Szlam,

and Pierre Vandergheynst. Geometric Deep Learning: Going

beyond Euclidean data. IEEE Signal Processing Magazine,

34(4):18–42, 2017. 1

[10] Michael M Bronstein and Iasonas Kokkinos. Scale-invariant

heat kernel signatures for non-rigid shape recognition. In 2010

IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pages 1704–1711. IEEE, 2010. 1

[11] Dave Broomhead and David Lowe. Multivariable functional

interpolation and adaptive networks. Complex Systems, 2:321–

355, 1988. 3

[12] R. Qi Charles, Hao Su, Mo Kaichun, and Leonidas J Guibas.

PointNet: Deep Learning on Point Sets for 3D Classification

and Segmentation. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 77–85. IEEE,

jul 2017. 5

[13] Yucong Chen, Junli Zhao, Qingqiong Deng, and Fuqing Duan.

3D craniofacial registration using thin-plate spline transform

and cylindrical surface projection. PLoS ONE, 2017. 3

[14] Yoni Choukroun, Gautam Pai, and Ron Kimmel. Sparse

approximation of 3d meshes using the spectral geometry of

the hamiltonian operator. Journal of Mathematical Imaging

and Vision, 60(6):941–952, 2018. 1
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