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Abstract

Automatically reasoning about future human behaviors

is a difficult problem but has significant practical applica-

tions to assistive systems. Part of this difficulty stems from

learning systems’ inability to represent all kinds of behav-

iors. Some behaviors, such as motion, are best described

with continuous representations, whereas others, such as

picking up a cup, are best described with discrete repre-

sentations. Furthermore, human behavior is generally not

fixed: people can change their habits and routines. This

suggests these systems must be able to learn and adapt con-

tinuously. In this work, we develop an efficient deep gener-

ative model to jointly forecast a person’s future discrete ac-

tions and continuous motions. On a large-scale egocentric

dataset, EPIC-KITCHENS, we observe our method gener-

ates high-quality and diverse samples while exhibiting bet-

ter generalization than related generative models. Finally,

we propose a variant to continually learn our model from

streaming data, observe its practical effectiveness, and the-

oretically justify its learning efficiency.

1. Introduction

A key requirement for intelligent systems to safely in-

teract with humans is the ability to predict plausible human

behaviors. Additionally, they must be able to adapt to vari-

ability in behavior over time. However, forecasting a per-

son’s behaviors is generally difficult due to the immense set

of possible behaviors that humans showcase. This makes

it challenging to choose a unified representation for human

behavior. Some behaviors are better modeled as continuous

representations, for instance, a person’s future trajectory.

Other behaviors are more succinctly represented discretely,

such as interacting with an object. Our goal is to develop

an efficient predictive model for joint discrete-continuous
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Figure 1. Generative hybrid activity forecasting. Our model

generates possible future trajectories and actions with past trajec-

tory and images as context. A point cloud is recovered with ORB-

SLAM. Histograms show the possibilities of top 5 action classes.

spaces, which takes rich sensory information from egocen-

tric videos as input to forecast a person’s future behaviors.

For many applications based on a predictive model of fu-

ture human behavior, it is important that the model is able to

characterize the uncertainty of its predictions. A generative

model can naturally represent uncertainty and is also well-

suited for modeling a hybrid representation of human be-

havior. Thus, we propose a generative model that can repre-

sent the joint distribution of discrete and continuous behav-

iors by leveraging recent success in generative modeling.

Unlike some popular generative models (e.g. GANs [12]

and variational autoencoders [21]), our method can com-

pute exact likelihoods, which makes it possible to precisely

evaluate the model’s predictions of future behaviors. It is

part of a family of methods known as invertible generative

models [5, 13, 20]. We learn a generative model of discrete

actions by applying the Gumbel-Softmax trick [29], and

condition this model on continuous samples produced by an

invertible generative trajectory model [36]. We show how

we can jointly learn both models efficiently. The results

on a large-scale egocentric dataset, EPIC-KITCHENS [4],

demonstrate the advantage of our model in joint trajectory-
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action forecasting over other generative models and dis-

criminative models. To enable our model to learn optimally

from streaming data we employ online learning theories

[43]. In particular, we apply a modified objective to fine-

tune a subset of the model’s parameters using a no-regret

online learning algorithm. We prove our method’s effec-

tiveness theoretically, and observe its online performance

matches these theoretical expectations. Example predic-

tions of our method are shown in 1.

We present the following contributions:

1. Generative hybrid representations: We propose

a generative approach to egocentric forecasting that

jointly models trajectory and action distributions. Our

experiments on the EPIC-KITCHENS dataset show

that our method outperforms both discriminative and

generative baselines.

2. Exact learning and evaluation: Our model can com-

pute the probability density function (PDF) exactly and

also enables optimization of model sample-based met-

rics (e.g., reverse cross entropy), which renders learn-

ing and inference of people’s future trajectory and ac-

tion more efficient.

3. Theoretically justified no-regret online fine-tuning:

We extend our model to learn online with a simple, yet

effective fine-tuning process. We demonstrate that it

is theoretically efficient, which enables the model to

learn from data that arrives continuously and the aver-

age regret will approach to zero with time elapsing.

2. Related Work

We propose a generative model to jointly forecast future

trajectories and actions under the first-person vision setting.

We begin by discussing work related to our data domain,

task, and model.

First-person vision: As wearable cameras become more

accessible in our daily lives, a growing body of work is us-

ing them for understanding human behaviors [7, 26, 42, 27,

32, 51]. The rich visual information encoded in first-person

videos can also be used to predict the subject’s attention

[27, 53] and their interactions with the environment.

Trajectory Forecasting: Third-person trajectory forecast-

ing has enjoyed significant research attention recently.

The approach in [25] predicts future trajectories of wide-

receivers from surveillance video. A large body of work has

also used surveillance video to predict future pedestrian tra-

jectories [49, 28, 2, 22]. Deterministic trajectory modeling

has been used for vehicle [17] and pedestrian [1, 37, 50] tra-

jectory prediction. Due to the uncertain nature of future tra-

jectories, modeling stochasticity can help explain multiple

plausible trajectories with the same initial context. Several

approaches have tried to forecast distributions over trajecto-

ries [24, 9]. [36] proposed a generative approach to model

vehicle trajectories. A relative small amount of work has

investigated trajectory forecasting from first-person videos.

[44] predicts the future trajectories of the camera wearer by

constructing an EgoRetinal map.

These approaches employed continuous representations

in the batch learning setting, while our model uses both dis-

crete and continuous representations in both the batch and

online learning settings.

Action Forecasting: Classification-based approaches [16,

23, 41, 40] are popular in action forecasting. Many ac-

tivities are best represented as categories. [10] proposed

an encoder-decoder LSTM model to predict future actions.

Other work has also tried to forecast more generalized ac-

tion such as gaze [55], user-object interactions [8] and the

position of hands and objects [6]. In [35], online inverse

reinforcement learning (IRL) is used to model a person’s

goals and future trajectories. IRL has also been applied to

forecast the behaviors of robots [33], taxis [57], and pedes-

trians [22]. Some work has investigated non-discriminative

modeling of future actions. [45] devised a deep multi-modal

regressor to allow multiple future predictions. [6] uses a

variational autoencoder (VAE) to model the distribution of

possible future actions. Whereas prior activity forecasting

approaches reason about actions only, our method reasons

jointly about actions and trajectories.

Generative Models: Deep generative models, e.g. [12, 21],

are a powerful unsupervised modeling approach. To enable

efficient learning of deep generative models of categorical

distributions, [29] proposed the Gumbel-Softmax trick to

backpropagate gradients through these distributions. There

has been work that uses generative models to address the

uncertainty in both trajectory [24, 9, 36, 52, 48, 54] and

action forecasting [6, 45]. Unlike the prior approaches, our

method jointly generates the future trajectories and actions.

Online Learning: The field of online learning studies how

to learn effectively from streaming data [43], but these ap-

proaches are rarely used in computer vision problems. In

[35], online inverse reinforcement learning is performed

with visual data. In contrast, our approach is based on im-

itation learning without reward modeling. In [39, 38], in-

teractive imitation learning is framed as a online learning

problem. Our approach, while a form of imitation learn-

ing, is not interactive. It observes expert behavior (human

behaviors) and makes predictions that the human does not

interact with.

3. Generative Hybrid Activity Forecasting

3.1. Problem Formulation

Our goal is to model the true joint distribution p(x, a|φ)
of a person’s future trajectory x ∈ R

T×3 in 3D and actions

a ∈ {0, 1}T×Ca×2 from egocentric videos with a learned

joint distribution q(x, a|φ), where φ is the context informa-
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Figure 2. Our proposed model. ORB-SLAM [30] is used to extract positions from videos. Trajectory simulator fπ takes past positions

and noise sequence from Gaussian distribution to generate future trajectory. Action simulator hκ takes past images and positions as well

noise sequence from Gumbel distribution to produce future actions.

tion, T is the forecasting horizon, and Ca is the number of

action classes (with each class modeled with 2 values using

a one-hot encoding). The context information φ includes

past egocentric video frames V−P :0 and positions x−P :0,

where P is the observation horizon.

As x and a use different representations (continuous vs.

discrete), we further factorize the joint distribution by con-

ditioning a on x i.e. q(x, a|φ) = q(x|φ)q(a|x, φ). Learning

this model of future behavior via divergence minimization

is akin to imitation learning [11, 19]. We use one-step poli-

cies π for generating trajectory x and κ for generating ac-

tions a, and samples from qπ(x|φ) and qκ(a|x, φ) can be

obtained by repeatedly sampling T times from π and κ.

These policies parameterize each generative model. Our

training data is a set of episodes denoted {(x, a, φ)n}Nn=1,

which are samples from the (unknown) data distribution of

the person’s behavior p(x, a|φ). We use this data to train

the policies π and κ, thereby learning q(x, a|φ).
3.2. Complementary Cross Entropy Loss

A desired feature of forecasting models is to generate
both diverse and precise predictions. Following [36], we
construct a complementary cross-entropy loss to train our
trajectory-action distribution q(x, a|φ):
L = E(x,a)∼p − log q(x, a|φ)

︸ ︷︷ ︸

H(p,q)

+β E(x,a)∼q − log p̃(x, a|φ)
︸ ︷︷ ︸

H(q,p̃)

,

(1)

where p̃ is an approximation to the data distribution p,

which we will discuss it in detail in Sec 3.6. β is a weighting

factor. The forward cross entropy term H(p, q) encourages

the distribution q to cover all modes of p and thus increases

sample diversity. The reverse cross entropy term H(q, p̃)
penalizes samples far from the data distribution p̃ to im-

prove sample quality. The joint use of them promotes both

diversity and quality of samples. We use β to control the

trade-off between diversity and precision.
With the factorization q(x, a|φ) = qπ(x|φ)qκ(a|x, φ),

the forward and reverse cross entropies can be rewritten as

H (p, q) = −Ex∼p log qπ (x|φ)
︸ ︷︷ ︸

H(p,qπ)

−E(x,a)∼p log qκ (a|x, φ)
︸ ︷︷ ︸

H(p,qκ)

,

H (q, p̃) = −Ex∼qπ log p̃ (x|φ)
︸ ︷︷ ︸

H(qπ,p̃)

−Ex∼qπ,a∼qκ log p̃ (a|x, φ)
︸ ︷︷ ︸

H(qκ,p̃)

.

(2)

This decomposition disentangles the cross entropies for

trajectory and actions, allowing us to learn the policy π
and κ separately. The optimization of H(p, q) requires us

to compute q and the optimization of H(q, p̃) requires us

to sample from q. Different from GANs [12] (likelihood-

free learning) and VAEs [21] (optimize the evidence lower

bound), we propose an invertible generative model, which

enables us to both compute the likelihood of q(x, a|φ) ex-

actly and generate samples from q(x, a|φ). The model de-

tails will be illustrated in Sec 3.3, 3.4 and 3.5.

3.3. Trajectory Cross Entropy

We employ an invertible trajectory generative model by

constructing a differentiable, invertible function fπ(z;φ) :
R

T×3 → R
T×3. This function maps a noise sequence

z = [z1, . . . , zT ] from a Gaussian distribution N (0, I3×3)
and the scene context φ to a trajectory x = [x1, . . . , xT ]. fπ
is implemented by a θ-parametrized per-step policy π. At

each time step t, π takes in a per-step context ψt, contain-

ing past positions xt−P :t−1, and outputs the mean µt and

an invertible covariance matrix σt, and simulate the current

position xt with noise zt: xt , µt (ψt; θ) + σt (ψt; θ) zt .
Since σt is invertible, π defines a bijection between zt and
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xt, and fπ defines a bijection between x and z.
qπ then follows from the change-of-variables formula for

multivariate integration [34, 5, 13, 20]:

qπ (x|φ) = N
(
f−1
π (x;φ)

)
|detJfπ

(
f−1
π (x;φ)

)
|−1 , (3)

where Jfπ (f
−1
π (x;φ)) is the Jacobian of fπ evaluated at

f−1
π (x;φ). Thus, the forward cross entropy can be rewritten

as

H(p, qπ) = −Ex∼p log
N
(
f−1
π (x;φ)

)

|detJfπ

(
f−1
π (x;φ)

)
|
. (4)

The reparameterization also greatly simplifies the differ-
entiation of H(qπ, p̃) w.r.t. policy π. Instead of sampling
from qπ , we can sample from N and rewrite the reverse
cross entropy as Eq.(5). z is the source of uncertainty for
generating diverse samples.

H(qπ, p̃) = −Ez∼N log p̃ (fπ(z;φ)|φ) . (5)

3.4. Action Cross Entropy

For the action forecasting, at each step t each single ac-

tion class c is represented as at,c ∈ {0, 1}2 which is a one-

hot vector indicating whether this action happens ([0, 1])
or not ([1, 0]). Since actions are discrete variables, we

use Gumbel-Softmax distributions [18] to reparameterize

actions. We build a simulator hκ(g;φ) : R
T×Ca×2 →

{0, 1}T×Ca×2, which maps noise sequences g sampled

from Gumbel distribution G(0, 1) to actions a. The noise

sequence g, as a key part of the Gumbel-Softmax reparam-

eterization – a continuous, differentiable approximation to

Gumbel-Max, provides an efficient way to draw samples

from a categorical distribution.
The per-step action forecasting context χt consists of

past images V−P :0 and past positions xt−P :t−1. The per-
step policy κ outputs action probabilities ut with χt, and
simulate the current action at with noise gt:

at,c,i ,
exp ((log(ut,c,i(χt; θ)) + gt,c,i)/τ)

∑2
j=1 exp ((log(ut,c,j(χt; θ) + gt,c,j)/τ)

,

where i ∈ {1, 2}, c ∈ {1, . . . , Ca}, and t ∈ {1, . . . , T}, τ
is the temperature of Gumbel-Softmax distribution.

According to the probability density function of the
Gumbel-Softmax distribution [18], the action forward cross
entropy can be rewritten as

H (p, qκ) =

− E(x,a)∼p

∑

t,c

log τ

(
2∑

i=1

ut,c,i (χt)

aτ
t,c,i

)−2 2∏

i=1

(

ut,c,i (χt)

aτ+1
t,c,i

)

,

(6)

For the reverse cross entropy, using Gumbel-Softmax repa-
rameterization, it can be rewritten as

H (qκ, p̃) = −Eg∼G

∑

t,c,i

log p̃(at,c,i|x, φ) . (7)

The overall procedure of training the batch model is

shown in Algorithm 1.

Algorithm 1 Offline Generative Hybrid Activity Forecasting

Require: Training dataset {(x, a, φ)n}Nn=1; Batch size B;

Trajectory simulator fπ; Action simulator hκ
1: Randomly initialize fπ and hκ with parameter θ
2: repeat

3: for each mini-batch examples (x, a, φ)i:i+B do

4: Calculate H(p, qπ) with Eq. (4) (6)

5: Sample z ∼ N ; Generate trajectory x̂ = fπ(z;φ)
6: Calculate H(qπ, p̃) with Eq. (5)

7: Sample g ∼ G; Generate actions â = hκ(g;φ)
8: Calculate H(qκ, p̃) with Eq. (7)

9: Update θ by optimizing Eq.(1)

10: end for

11: until θ converge

12: return θ as θ̂

Algorithm 2 Online Generative Hybrid Activity Forecasting

Require: Trajectory simulator fπ; Action simulator hκ;

Pre-trained weights θ̂
1: Initialize fπ, hκ with θ̂
2: Fix all parameters except the linear layer θ0 at the end

3: for each new example do

4: [x, y, z]←− slam.track()

5: Calculate H(p, q) with Eq. (4) (6)

6: Sample z ∼ N ; Generate trajectories x̂ = fπ(z;φ)
7: Calculate H(q, p̃) with Eq. (8)

8: Finetune θ0 by optimizing Eq. (9) with SGD

9: end for

3.5. Policy Modeling

Trajectory Modeling. For the trajectory policy π, we use a

recurrent neural network (RNN) with gated recurrent units

[3] that maps context ψt to µ̂t and St. We use the matrix

exponential [31] to ensure the positive definiteness of σt:
σt = expm

(

St + ST
t

)

. The network architecture is shown

in Figure 2. We provide more architectural details in the

supplementary material.

Action Modeling. Our action policy κ maps context χt to

action probabilities ut, and is based on the idea of Tem-

poral Segment Networks [47] with a ResNet-50 [15] back-

bone. The past images V−P :0 we observe are divided into

K segments and an image is selected randomly from each

segment. These images are passed through a ResNet inde-

pendently to get the class scores. Another fully-connected

layer is built on top of the ResNet to fuse these class scores

to yield segmental consensus, which serves as a useful fea-

ture in our action forecasting. In the meanwhile, the past

trajectory xt−P :t−1 also includes useful information about

what kind of actions people may perform. Thus, we add

a MLP which takes the segmental consensus and the past

trajectory as inputs to generate the action probabilities ut.
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3.6. Prior Distribution Approximation

It is challenging to evaluate H(qπ, p) without the PDF

of p (here, the density function of future behavior). We pro-

pose a simple approach to estimate it using the training data.

For trajectory H(qπ, p), we build p̃ as a sequence of uni-

modal normal distributions with ground-truth trajectory x̃
as means, i.e., p̃(x|φ) = N(·|x̃;σI). In fact, this is iden-

tical to adding a mean squared distance penalty between

the predicted trajectories and expert trajectories. For action

H(qκ, p), we first assume that if an action occurs at time

t, then the same action has a higher probability happening

at time steps closer to t. Based on this assumption, we can

also view each action happening at t as a unimodal normal

distribution in the time dimension. If the action spans sev-

eral time steps, we take the max of the distributions induces

by different t. As a result, we obtain the approximate ac-

tion prior distribution p̃(a|x, φ). Note that this action prior

does not actually depend on the trajectory x, this is partly

due to the difficulty of defining a conditioned prior distri-

bution. On the other hand, our reverse cross entropy can be

seen as a regularization of trajectories and action, and the

independent version can achieve this.

3.7. Online Noregret Learning

To apply the proposed framework to an online scenario
where the policies are learned over time, we would like to
ensure that the learning process is guaranteed to converge
to the performance of the strongest model. We can evaluate
the relative convergence properties of an online learning al-
gorithm through regret analysis. To leverage known proofs
of no-regret learning, one should ensure that the model and
loss function being used is convex. To this end, we pre-
train the network and fix parameters of nonlinear layers. We
slightly adjust the trajectory reverse cross entropy as Eq. (8)
and perform online gradient descent on the loss function in
Eq. (9) by fine-tuning the parameters of the last linear layer.
The regret is computed with respect to a model family, and
the model family we consider is one of pre-trained represen-
tations that are fine-tuned to adapt to online performance.
The detailed online learning parameterization is explained
in supplementary material.

H (qπ, p̃)
adj = −Ex1:t−1∼p,xt:T∼qπ log p̃ (x|φ) , (8)

Lonline = H (p, qπ) +H (qπ, p̃)
adj +H (p, qπ) . (9)

In general, the regret RT of an online algorithm is de-

fined as: RT =
∑T

t=1
lt (ξt; θt) − minθ∗

∑T

t=1
lt (ξt; θ

∗),
where ξt and lt is the input and the loss at time step t sepa-

rately. We can prove our forward cross entropy loss is con-

vex with respect to the parameters of the finetuned linear

layer. If we further constrain the parameter’s norm ‖θ‖2 ≤
B and the gradient’s norm ‖∇θ‖2 ≤ L, then the regret of

our online algorithm is bounded [43] as: RT ≤ BL
√
2T .

Since the bound is sub-linear in T , the average regret

RT /T approaches zero as T grows, so it is a no-regret al-

gorithm. The overall online learning procedure is shown in

Algorithm 2. The detailed proof of the no-regret property

is given in the supplementary material and the empirical re-

sults are shown in the experiments.

4. Experiments

We evaluate our models and baselines on the EPIC-

KITCHEN [4] dataset. In this section, we first describe the

dataset and related data processing steps. We then intro-

duce the baselines that we use to compare our model with

and the metrics to evaluate the performance of trajectory

forecasting and action forecasting. In the experiments, we

perform both batch and online experiments with the goal to

validate the following hypotheses: (1) Since the trajectory-

action joint model make actions conditioned on positions,

the extra position information should help achieve better ac-

tion forecasting performance than separately trained model.

(2) The reverse cross entropy terms for trajectory and ac-

tions in our loss function should help improve sample qual-

ity. (3) The ability of evaluating the exact PDF of the trajec-

tory and action distribution should help our model achieve

lower cross entropies and higher sample quality than other

generative methods that do not optimize the exact PDF such

as CVAE. (4) The generative model should have the ability

to generate samples with higher quality than discriminative

models since it considers the multi-modal nature of future

behavior and can generate multiple reasonable samples dur-

ing the evaluation, while discriminative models can not. (5)

We want to show from an empirical perspective that our on-

line learning method is effective and no-regret.

4.1. Data Description

We evaluate our method on the EPIC-KITCHENS

dataset [4]. First, we use ORB-SLAM [30] to extract the

person’s 3D positions from the egocentric videos. For each

video, we start to collect positions when the pose-graph is

stable and no global bundle adjustment is performed. We

also scale positions with the first 30-second results by as-

suming that the person’s activity range in each video is sim-

ilar to alleviate the scale ambiguity caused by the initializa-

tion of ORB-SLAM. Then, we extract examples with suc-

cessive 7-second interval. Those discontinuous examples

(such as when tracking gets lost) are dropped out. In each

7-second example, we use the past 2 seconds as context to

predict the future trajectory and actions in the next 5 sec-

onds. We down-sample original data to 5 fps for position,

2 fps for images, and 1 fps for actions. Thus, the context

we use to train the model contains 10 past positions and 4

past images. We filter actions to guarantee that each action

occurs at least 50 times and drop videos which includes less

than 5 examples. Finally, we use 4455 examples in total,
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which come from 135 videos. The number of action classes

is 122 with 39 verbs and 83 nouns. Since the annotations

of the test set are not available, we randomly split the orig-

inal training videos to training, validation, and test with the

proportion of 0.7, 0.1, 0.2. At the same time, we ensure

each action occurs in both training set and test set and the

examples in different sets come from different videos.

We predict verbs and nouns separately instead of predict-

ing the pairs of them, which is different from the setting in

[4]. This is because first the combination of verbs and nouns

would create too many action classes and each class would

have few samples; second, there are often multiple actions

taking place at the same time in the dataset, which leads to

our multi-label classification formulation.

4.2. Baselines and Metrics

Baselines The baselines we use include two generative

models and a discriminative model:

• Direct Cross Entropy (DCE): a generative model that

uses a sequence of Gaussian to model the trajectory dis-

tribution, and a sequence of Bernoulli distributions con-

ditioned on the trajectory to model the action distribution.

• Conditional Variational Autoencoder (CVAE): an

auto-regressive variant VAE-based generative model. We

use the Gumbel-Softmax to model the action distribution.

• Mixed Regression and Multi-label Classification

(MRMC): a discrimintative model trained by minimiz-

ing the mean squared error of trajectories and the binary

cross entropy of actions.

For all baseline models, we follow the same network struc-

ture as our model to process past positions and images con-

text. Detailed info can be found in the supplementary.

Metrics We use the following metrics to comprehensively

evaluate our method and other baselines:

• Forward Cross entropy: for trajectory and action fore-

casting, we use their corresponding forward cross en-

tropies H(p, qπ) and H(p, qκ) to evaluate how well the

policy mimics the behaviors of the expert.

• minMSD and meanMSD: for trajectory forecasting,

we also include two common sample-based metrics of-

ten used in generative models – minMSD and mean-

MSD [24, 46, 14, 36]. minMSD computes the small-

est distance from K samples to the ground-truth x:

mink ‖x̂k − x‖2. Thus, minMSD evaluates the quality

of the best sample. In contrast, meanMSD evaluates the

overall quality of allK samples via 1

K

∑K

k=1
‖x̂k −x‖2.

The combined use of these two metrics evaluates the

quality of generated trajectories comprehensively. We

sample 12 trajectories for each example. For discrimi-

native models, we directly report the regression results as

minMSD and meanMSD.

• Precision, Recall and F-1 score: for action forecasting,

since the action space is large and we need to forecast

actions in 5 seconds per example, the exact matching ac-

curacy is not be a good metric. Instead, we calculate the

example-based precision and recall as [56]. One special

case is that if there is no ground-truth action or predicted

action happening at some time step, the denominator will

be zero. If this happens, the precision and recall is 1

only if tp = fp = fn = 0, where tp, fp, fn is the

number of true positives, false positives, and false nega-

tives, otherwise the precision and recall is 0. To consider

both precision and recall, we also calculate F-1 score as

F1 = 2×precision×recall

precision+recall
. As action distribution is condi-

tioned on the forecasted trajectory, we first sample 12

trajectories, and for each trajectory we sample the action

(for each action class, the action happens if its logit is

greater than 0.5) and average the metrics across the tra-

jectories. For discriminative models, we directly report

the multi-label classification results.

4.3. Batch Forecasting Results

Our full model is a joint forecasting model which makes

actions conditioned on the trajectory, and it is trained using

the complementary loss function in Eq. (1). To test whether

the joint modeling of trajectory and action distribution help

improve forecasting performance, we also train a trajectory

forecasting model and an action forecasting model sepa-

rately. We also evaluate a variant of our method by using

only the forward cross entropy for both action and trajec-

tory. The results are summarized in Table 1.

First, we can see that our joint forecasting model (g) out-

performs separately trained models (e) in action forecasting

metrics (cross entropy, precision, recall, and F1-score), so

our factorization – conditioning actions on the trajectory in-

deed helps. Hypothesis (1) is supported. Comparing (e)(g)

to (f)(d), we can see the quality of both trajectory samples

and actions samples are better after using the reverse cross

entropy, which justifies its use in the loss function and also

demonstrates the effectiveness of our designed prior data

distribution. Hypothesis (2) is supported. Furthermore,

our methods outperforms other generative baselines (b)(c)

in terms of most metrics, especially forward cross entropy.

This is due to the fact that our method has more model-

ing power than DCE, and can evaluate the exact PDF of

trajectory and action distribution instead of optimizing the

variational lowerbound like CVAE does. Our model does

not outperform MRMC in the meanMSD metric and DCE

in the Recall metric, but we note that: 1. The MRMC model

can not conduct sampling, so it leads to lower meanMSD

than all of other generative models; 2. The DCE model

actually cannot generate good enough examples, which is

indicated by the low precision and low F1 score, even if

it has high recall; 3. All baselines make actions condi-
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Method
Trajectory Forecasting Action Forecasting

H(p, qπ) (↓) minMSD(↓) meanMSD(↓) H(p, qκ) (↓) Precision(↑) Recall(↑) F1 (↑)

(a) MRMC - 0.392 0.392 - 40.64 32.12 35.88

(b) DCE -26.93 0.539 ± 0.010 1.870 ± 0.094 -40.22 11.04 ± 3.11 39.31 ± 2.10 17.24 ± 2.49

(c) CVAE ≤ -129.78 0.319 ± 0.008 1.394 ± 0.085 ≤ -135.21 38.48 ± 0.09 31.03 ± 0.04 34.38 ± 0.06

(d) Ours (S)-F -288.26 0.304 ± 0.017 1.553 ± 0.077 -192.48 39.06 29.97 33.92

(e) Ours (S) -275.81 0.286 ± 0.007 0.915 ± 0.088 -192.31 39.97 29.80 34.14

(f) Ours (J)-F -298.92 0.291 ± 0.017 1.446 ± 0.087 -192.53 42.89 ± 0.33 32.50 ± 0.29 36.98 ± 0.30

(g) Ours (J) -298.47 0.293 ± 0.004 0.971 ± 0.078 -192.57 44.10 ± 0.11 33.39 ± 0.07 37.90 ± 0.09

Table 1. Batch results on the EPIC-KITCHENS dataset. For sample-based metrics, mean ± std is reported. MRMC: Mix Regression

and Multi-label Classification (discriminative model). DCE: Direct Cross Entropy (generative model). CVAE: Conditional Variational

Autoenconder (generative model). For our model, S denotes separate training of trajectory policy and action policy. J denotes joint

training. F denotes the model is trained with forward cross entropy only. (↓)/(↑) denotes a metric for which lower/higher scores are better.

Figure 3. Forecasting results visualization. Visualization of two examples. It shows how the forecasted trajectory influences the ac-

tion distribution. In each example, the left top shows observed images , the left bottom shows action distributions corresponding to two

forecasted sample trajectories, and the right shows the point cloud of the scene and the forecasted trajectories (Red/Black points: Ob-

served/Unobserved map points).

tioned on positions, so it is fair to compare Ours(J) with

baselines, which shows better performance except for two

aforementioned special cases. Hypothesis (3) is supported.

Finally, our method also performs better than the discrimi-

native baseline MRMC, because it fails to model the multi-

modal nature of the future behavior. Fig. 4 illustrate this

point further. We can see that our model continuously out-

performs the discriminative model in terms of recall when

we force the model output actions with top K (K is from

1 to 10) probabilities. The visualization example shows an

environment with uncertainty. Given past information, we

are actually not sure which actions (wash hand, close tap,

take cloth or dry hand) will happen. Our model assigns

relatively high confidence on these probable future actions

but the discriminative model only focuses on two actions –

wash and cloth. Thus, hypothesis (4) is also supported.

Fig. 3 shows visualization results of two examples. For

each example, we show two sampled trajectories and their

corresponding action distribution. In all these two exam-

ples, the forecasted trajectory influences the action distribu-
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Experiment Method
Trajectory Forecasting Action Forecasting

H(p, qπ) (↓) minMSD(↓) meanMSD(↓) H(p, qκ) (↓) Precision (↑) Recall (↑) F1 (↑)

(i) Train→Test
Pre-online -298.47 0.293 ± 0.004 0.971 ± 0.078 -192.57 44.10 ± 0.11 33.39 ± 0.07 37.90 ± 0.09

Online -299.66 0.283 ± 0.004 0.963 ± 0.063 -192.59 45.27 ± 0.10 32.90 ± 0.07 38.11 ± 0.10

(ii) Test→Train
Pre-online -204.23 0.280 ± 0.005 0.560 ± 0.080 -181.80 20.70 ± 0.03 20.28 ± 0.02 20.49 ± 0.02

Online -220.38 0.230 ± 0.004 0.497 ± 0.091 -184.89 22.76 ± 0.05 22.05 ± 0.04 22.40 ± 0.05

Table 2. Online learning results. Pre-online denotes the results on the streaming data before online learning. Online denotes the results on

the streaming data across online learning. Experiment A → B means we pretrain the model on the data set A and perform online learning

on the data set B. (↓)/(↑) denotes a metric for which lower/higher scores are better.

Past Image GT label: {wash, hand} (t=1s) GT label: {close, tap} (t=5s)
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Figure 4. Top-K visualization. The first row is an example of

uncertain future behavior. The bottom left plot shows the recall

value of our model and the discriminative model if we force the

model to output actions with top K probabilities (K is from 1 to

10). The other two plots in the bottom row show the action class

probabilities of our model and the discriminative model separately.

Our model shows better performance in handling uncertainty.

tion in a meaningful way. In the first example, the person is

going to pour the drink. We can see that the person moves

less in the first forecasted trajectory than the second one.

As a result, the first trajectory has a higher probability for

pouring because people tend to stay still when they are pour-

ing something. In the second example, the person is going

to take the cutlery and insert them into the dishwasher. In

the first predicted trajectory, the person’s position changes

a lot along the z-axis, and the model predicts that the per-

son is more likely to put the cutlery into the dishwasher. In

contrast, the positions change a lot in the ground plane (xy-

plane) in the second forecasted trajectory, and the model

predicts that the person is more likely to wash something as

it requires more horizontal movements.

4.4. Online Forecasting Results

We conduct two online learning experiments to verify

the effectiveness of our model to learn from streaming data.

We pretrain the model on the training set and perform online

learning on the test set in (i), and inversely in (ii). In both

experiments, we only finetune additional linear layers dur-

ing online learning. Pre-online learning and online learning

results are shown in Table 2. It can be seen that in both

experiments, the model obtained after online learning out-

performs the original model which shows the effectiveness

of our online learning algorithm. Additionally, comparing

(ii) with (i), we can also see that with more data observed,

the relative improvement from online learning will be more

significant. We also analyze the regret of our model. We

train the online models and corresponding hindsight mod-

els using Eq. (9). The average regret curve of the forward

experiment is shown in Fig. 5. We can see that the aver-

age regret curve converges to zero as more examples are

observed, which proves that our model is no-regret. Hy-

pothesis (5) is also supported. The theoretical analysis of

no-regret can be found in the supplementary.
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Figure 5. Average regret curve. We compare our online learning

model with the hindsight model to calculate the average regret.

The average regret of both trajectory forecasting (left) and action

forecasting (right) show convergence towards zero, which supports

the claim that our online learning method is no-regret empirically.

5. Conclusion

We proposed a novel generative model to represent hy-

brid continuous and discrete state for first-person activity

forecasting. We model discrete actions conditioned on con-

tinuous trajectories and learn a deep generative model by

minimizing a symmetric cross entropy loss. Our model

can generate both precise and diverse future trajectories

and actions based on observed past images and positions.

The results on EPIC-KITCHENS dataset shows our method

outperforms related generative models and discriminative

models. Our model can also be easily adapted to no-regret

online learning, which creates more application possibilities

in complex real-world scenarios. A possible future work is

the united representation of continuous and discrete vari-

ables with the help of discrete normalizing flow models, in-

stead of factorizing the joint distribution to make actions

conditioned on trajectories.
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