
Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision

Denis Gudovskiy

Panasonic β AI Lab

denis.gudovskiy@us.panasonic.com

Alec Hodgkinson

Panasonic β AI Lab

alec.hodgkinson@us.panasonic.com

Takuya Yamaguchi

Panasonic AI Solutions Center

yamaguchi.takuya2015@jp.panasonic.com

Sotaro Tsukizawa

Panasonic AI Solutions Center

tsukizawa.sotaro@jp.panasonic.com

Abstract

Active learning (AL) aims to minimize labeling efforts

for data-demanding deep neural networks (DNNs) by se-

lecting the most representative data points for annotation.

However, currently used methods are ill-equipped to deal

with biased data. The main motivation of this paper is to

consider a realistic setting for pool-based semi-supervised

AL, where the unlabeled collection of train data is bi-

ased. We theoretically derive an optimal acquisition func-

tion for AL in this setting. It can be formulated as distri-

bution shift minimization between unlabeled train data and

weakly-labeled validation dataset. To implement such ac-

quisition function, we propose a low-complexity method for

feature density matching using self-supervised Fisher kernel

(FK) as well as several novel pseudo-label estimators. Our

FK-based method outperforms state-of-the-art methods on

MNIST, SVHN, and ImageNet classification while requiring

only 1/10th of processing. The conducted experiments show

at least 40% drop in labeling efforts for the biased class-

imbalanced data compared to existing methods1.

1. Introduction

Active learning (AL) algorithms aim to minimize the

number of expensive labels for supervised training of deep

neural networks (DNNs) by selecting a subset of relevant

examples from a large unlabeled collection of data [20] as

sketched in Figure 2. The subset is annotated by an oracle

in semi-supervised setting and added to the training dataset

in a single pool or, more often, in an iterative fashion. The

goal is to maximize prediction accuracy while minimizing

the pool size and number of iterations.

The existing AL methods assume that distribution of col-

lected train examples is somewhat similar to test cases and,

1Our code is available at github.com/gudovskiy/al-fk-self-supervision
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Figure 1. Problem statement for AL with biased data: distribution

of unlabeled train data is not aligned with the test data. As a result,

prior methods select examples from another distribution and the

learned classifier f(x,θ) misses on underrepresented instances.

hence, relevant data points can be found only by accessing

train data. This assumption rarely holds for the unlabeled

data where very rare examples have to be identified as il-

lustrated in Figure 1. The classifier learned on train data se-

lected by the existing AL methods can have high error rate

on underrepresented instances. For example, distribution of

digits ”1” prevails over rare digits ”9” in train data and, as

a result, test digits ”9” are misclassified. Moreover, con-

sider an autonomous vehicle only trained to perform well

in the most frequent conditions rather than in a rare critical

situations such as car crashes. To overcome this limitation,

we propose a new acquisition function for AL. It is based on

distribution matching between the validation dataset and the

AL-selected training data. Validation dataset in such setting

covers important cases from the long-tail of distribution that

can be continuously identified and added after field trials.

We achieve distribution matching by pooling multi-scale

low-dimensional discriminative features from the task clas-

sifier model. Our key contribution is the usage of Fisher

kernel (FK) to find the most important examples with the

improved pseudo-label estimators using several novel met-

rics. Finally, we incorporate recent unsupervised pretrain-

ing method [8] to speed up representation learning by the

task model. Our framework is well-suited for large-scale

data because its complexity is only a single forward and
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backward pass per data point. We show the effectiveness of

our method on MNIST, SVHN, and ImageNet classification

including biased training data with long-tailed distribution,

where the proposed method is able to decrease labeling ef-

forts by at least 40% compared to prior methods.

2. Related work

AL is a well-studied approach to decrease annotation

efforts in traditional machine learning pipelines [27]. Re-

cently, AL has been applied to DNN-based models in

semi-supervised setting with oracle labeling or weakly-

supervised setting with pseudo-labeling. While our method

can be applied to both types, we mainly focus on prior work

of a more robust semi-supervised pool-based AL.

Gal et al. [7] introduced a measure of uncertainty for

approximate Bayesian inference that can be estimated us-

ing stochastic forward passes through a DNN with dropout

layers. Their AL acquisition function selects data points

with the highest uncertainty which is measured at the output

of classifier’s softmax layer using several metrics. Recent

work by Beluch et al. [5] improved this method by using an

ensemble of networks for uncertainty estimation.

Sener and Savarese [26] formulated training dataset se-

lection for AL as a geometric core-set clustering approach

which outperforms greedy k-center clustering. Though

their core-set clustering can complement our approach, we

are focusing on a discriminative low-dimensional feature

extraction followed by inexpensive clustering. Computa-

tional complexity of the core-set clustering is a potential

bottleneck where two orders of magnitude more processing

is needed compared to greedy clustering in our approach.

Recently, Sinha et al. [28] proposed to use variational

autoencoder (VAE) [18] to learn a latent space followed

by an adversarial network [21] to discriminate between la-

beled and unlabeled data. Their AL acquisition function

is the output of discriminator, which implicitly learns the

most likely to be labeled examples. This variational adver-

sarial active learning (VAAL) approach claims to achieve

superior results compared to all previous works. However,

VAAL has large number of hyperparameters and high com-

plexity since VAE and discriminator have to be retrained on

all unlabeled and labeled train data every AL iteration.

The closest to our method, line of works [19, 17] em-

ploys influence functions and Fisher kernels as a measure

of feature importance for dataset subsampling and analysis.

Khanna et al. [17] showed equivalence of FK and influence

functions for log-likelihood loss functions. Similar work

on online importance sampling using Fisher score similar-

ity [25] upweights samples within the mini-batch during

fully-supervised training. However, these approaches re-

quire fully-labeled data to estimate FK.

Another related area is unsupervised representation

learning that, unfortunately, has not been used in AL lit-

erature. At the same time, recent approaches [8, 11, 13]

significantly improved previous state-of-the-art. Hence, we

incorporate unsupervised pretraining into our AL method to

speed up latent representation learning.

The existing methods struggle to deal with biased data

as sketched in Figure 1. Motivated by this, we develop our

framework with the following contributions:

• We derive an optimal acquisition function Ropt(·) for

biased datasets, which is formulated as a task to min-

imize Kullback–Leibler (KL) divergence between dis-

tributions of training and validation datasets.

• We propose a low-complexity non-parametric AL

method via self-supervised FK using a set of pseudo-

label estimators and derive its connection to Ropt(·).

• We complement our method by the recent unsuper-

vised pretraining method using image rotations [8].

• Our method outperforms prior methods in image clas-

sification. In particular, datasets with long-tailed bi-

ased train data result in at least 40% less labeling.

3. Problem statement for biased datasets

Let (x,y) be an input-label pair where a label y = 1d ∈
R

D is one-hot vector with only dth class not equal to zero

for a classification task. There is a relatively small valida-

tion dataset Dv = {(xv
i ,y

v
i )}i∈M of size M and a large

collection of training pairs D = {(xi,yi)}i∈N of size N
for which, initially, all labels are unknown. The validation

dataset can be weakly labeled as discussed below. At every

bth iteration AL acquisition function R(·) selects a pool of

P new labels to be annotated and added to train data which

creates a training dataset indexed by subset Nb.

A feed-forward DNN model f(x,θ) is optimized with

respect to parameter vector θ using supervised learning

framework by minimizing objective function

L(θ) =
1

N b

∑

i∈Nb

L(yi, ŷi) =
1

N b

∑

i∈Nb

L(yi, f(xi,θ)),

(1)

where L(yi, ŷi) is a loss function and ŷi is output predic-

tion. The loss function is a negative log probability of dis-

crete y for classification task. This is equivalent to mini-

mization of approximate KL divergence DKL between joint

training data distribution Qx,y with density q(x,y) and

the learned model distribution Px,y(θ) with correspond-

ing density p(x,y|θ). Since q(x,y) = q(y|x)q(x) and

p(x,y|θ) = p(y|x,θ)q(x), KL objective learns only con-

ditional distribution of y given x as

DKL(Qx,y‖Px,y(θ)) =
∫

q(x)

∫

q(y|x) log
q(y|x)q(x)

p(y|x,θ)q(x)
dydx =

EQx
[DKL(Qy|x‖Py|x(θ))].

(2)
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Figure 2. General setup for our semi-supervised AL: validation dataset is selected to approximate test data and can be continuously updated

by the newly discovered misclassified examples. Unlabeled collection of train data is subject to the specified distortions. AL algorithm

finds relevant train examples for annotation by maximizing acquisition function R(·) every bth iteration.

Due to unknown density q(x), the expectation over Qx

in (2) is usually replaced by empirical distribution Q̂x as

E
Q̂x

[DKL(Qy|x‖Py|x(θ))] =

1

|D|

∑

(x,y)∈D

[DKL(Qy|x‖Py|x(θ))].
(3)

By rewriting loss L(·) in (1) using DKL from (3), ob-

jective function L(θ) can be rewritten as negative log of

conditional probability

L(θ) = −
1

N b

∑

i∈Nb
log p(yi|xi,θ). (4)

However, the actual task is to minimize objective (2) for

test data Dtest with expectation over Qtest
x distribution. This

contradiction is usually resolved in AL literature by assum-

ing Qtest
x and Qx equality. In practice, the deployed sys-

tems struggle to deal with underrepresented test cases in the

train distribution Qx. The examples include autonomous

vehicles in rare traffic situations or facial recognition sys-

tems with gender and race biases [6]. This is schematically

illustrated in Figure 1.

We argue that the key requirement for effective AL in the

wild is to collect a validation dataset Dv with distribution

Qv
x, which approximates Qtest

x . To be specific, we approxi-

mate distribution of a representative collection of test cases

in Dv and continuously update it by newly discovered mis-

classified data. This can be done iteratively after conducting

field trials for deployed systems. The assumptions about Dv

and D are summarized in Figure 2.

It follows from (2) that an optimal acquisition function

Ropt(·) for AL minimizes distribution shift between Dtest

and D, where the former is approximated by empirical Dv.

This can be expressed using KL divergence as

Ropt(b, P ) = argmin
R(b,P )

DKL(Q
test
x ‖Qx) ≈

argmin
R(b,P )

DKL(Q̂
v
x‖Q̂x),

(5)

where, in practice, (5) can be replaced by locally optimal

steps for every iteration b = 1 . . . B and pool size P .

s
o
ft
m
a
x

Figure 3. Conventional multi-scale feature extraction and the pro-

posed FK extension (dashed). Descriptors zi and Fisher score vec-

tors gi are used for density matching by our AL method.

4. The proposed method

4.1. Conventional feature descriptors for AL

High dimensionality of input x causes computational

difficulties in minimizing (5). Then, x is usually re-

placed by a low-dimensional feature descriptor in image

retrieval [30]. Such descriptors are pooled from DNN in-

termediate representations z, which are found to be effec-

tive [3]. Then, (5) can be reformulated as empirical distri-

bution matching between P̂ v
z and P̂z . This can be done us-

ing various methods [10], but, practically, a greedy k-center

clustering for density estimation with a similarity measure

is the most used method for the large train dataset size N .

Let Z
j
i ∈ R

C×H×W be the output of jth layer of task

DNN model for input image xi as shown in Figure 3 for

image classification, where C, H , and W are the number

of channels, the height, and the width, respectively. Then,

a feature vector or descriptor of length L can be defined as

zi = φ(Zi) ∈ R
L, where function φ(·) is a conventional

average pooling operation. In a multi-scale case, descriptor

zi is a list of multiple feature vectors z
j
i .

A descriptor matrix for the validation dataset Zv ∈
R

L×M and training dataset Z ∈ R
L×N can be efficiently

calculated using DNN forward passes. Practically, descrip-

tors can be further compressed for storage efficiency rea-

sons using PCA, quantization, etc. Pearson correlation

(PCC) is a common match kernel, which is an accurate

measure of linear correlation. By preprocessing vectors zi
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to have zero mean and unit variance, the similarity (cross-

covariance) matrix for multi-scale case is simply

Rz =
∑

j
(Zj

v)
TZj . (6)

Using information theory [9], this framework assumes

representation z to have the following properties about the

task: minimality (min I(z;x)) and sufficiency (I(y; z) =
I(y;x)), where I() is mutual information quantity. Indeed,

Achille et al. [1] analytically shows that a DNN trained by

stochastic gradient descent (SGD) discards non-informative

features and retains only the ones to minimize objective

function (2). However, these properties are applicable only

for a fully trained model without bias in train data.

An alternative approach is to use an autoencoder [12] or,

similarly to VAAL [28], probabilistic VAE [18] to compress

x to z. Those alternatives require to train another model

using a new set of hyperparameters and reconstruction loss

rather than task-specific objective (2). However, the learned

representation z is subject to biased train data pitfall shown

in Figure 1. Fortunately, this pitfall can be resolved for

task model by AL itself, if it minimizes distribution shift

in (5). Hence, we choose to pool features z from the task

model in our framework to avoid data bias, additional com-

plexity, and hyperparameter search issues. We address the

sufficiency property discussed above by using unsupervised

pretraining followed by a more powerful match kernel.

4.2. Selfsupervised Fisher kernel

Recent works [19, 17] revived interest in influence func-

tions and Fisher kernels used in pre-DNN era [24]. They

are able to identify the most influential training points for a

given test data. Though attractive, these methods are com-

putationally expensive for large-scale data and DNN mod-

els because FK is typically calculated with respect to high-

dimensional parameter vector θ.

Using the sufficiency property [1], we approximate our

optimal acquisition function (5) using the distributions of

learned representations z as

Ropt(b, P ) = argmin
R(b,P )

DKL(P̂
v
z ‖P̂z), (7)

Then, a connection between the main task (2) and

DKL(P
v
z ‖Pz) minimization in (7) via Fisher information

can be derived with respect to small perturbations in θ.

Assuming that the task model minimizes distribution shift

in (2) every backward pass as

pv(z|θ) = p(z|θ) + ∆p, (8)

where ∆p = ∆θ∂p(z|θ)/∂θ and ∆ → 0.

By substituting (8), the expanded form of (7) can be sim-

plified using Taylor series of natural logarithm as

Ropt(b, P ) ≈ argmin
R(b,P )

∆θTI∆θ, (9)

where I = EPz

[

g(θ)g(θ)T
]

is a Fisher information matrix

and g(θ) = ∂ log p(z|θ)/∂θ is a Fisher score with respect

to θ. The detailed derivation is given in Appendix.

Using result in (9), Jaakkola and Hauusler [15] proposed

the popular Fisher kernel expressed by

Rz,g(zm, zn) = gm(θ)TI−1gn(θ). (10)

To make (10) computationally tractable, we use practical

FK (PFK) where I−1 is replaced by identity matrix. Such

a common approach decreases quadratic storage require-

ments. Next, we rewrite Fisher scores gi(θ) using a more

compact form gi(θ) = vec(giz
T
i ), where gi is computed

with respect to features as gi = ∂L(yi, ŷi)/∂z̃i, L(yi, ŷi)
is log-likelihood loss function from (4), and z̃i is a vector

before applying nonlinearity σ(·). The latter follows from

the chain rule when computing loss function for a DNN lay-

ers (z̃j
i = θTz

j
i = θTσ(z̃j−1

i )) as derived in Appendix.

Then, the tractable PFK can be rewritten for DNNs as

Rz,g(zm, zn) = gm(θ)Tgn(θ) = zT
mzng

T
mgn. (11)

Fisher scores in (11) are also related to visual expla-

nation methods [22]. If replace z by x in g(θ) calcula-

tion, the result estimates popular importance heatmaps in

the input space. In our case, kernel (11) shows the model

sensitivity to changes in parameters caused by distribution

shift DKL(P̂
v
z ‖P̂z). Then, PFK matrix Rz,g ∈ R

M×N

can be efficiently calculated using a series of forward-

backward passes. By analogy to feature similarity (6), the

Fisher scores gi for images are calculated with respect to

tensors Zi and pooled by the same φ(·) such that gi =
φ(∂Li/∂Zi) ∈ R

L. Finally, we minimize the distribution

shift in (7) by maximizing PFK as

Ropt(b, P ) = argmax
R(b,P )

Rz,g, (12)

where Rz,g = Rz ◦Rg =
∑

j(Z
j
v)

TZj ◦ (Gj
v)

TGj . Our

PFK matrix Rz,g is an element-wise multiplication of fea-

ture similarity from (6) and gradient similarity matrices.

4.3. The proposed pseudolabel estimators

The main drawback of (12) is lack of labels y in the unla-

beled collection of train data. The common pseudo-labeling

(1argmax
d
S) metric S(·) assigns hard-label to the dth class

with maximum predicted probability: S = ŷ. That leads to

incorrect estimates during first AL iterations, particularly,

for rare examples. To overcome this limitation, we propose

several novel metrics to estimate pseudo-labels.

First, we introduce estimation metrics using Monte Carlo

(MC) sampling. Consider a DNN input x being sam-

pled near its local neighborhood. That produces inputs xk,

feature samples zk, and a corresponding per-class Fisher

scores gk(d) = ∂L(1d, ŷk)/∂zk, where class d = 1 . . . D.
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The sampling can include small rotations, translations or

color distortions for image inputs [4]. The simplest MC

label estimation maximizes linear correlation between fea-

tures and Fisher scores as S = tr (Cz,g), where Cz,g

is cross-covariance matrix between feature descriptors and

Fisher scores. Theoretically, a better metric is maximiza-

tion of mutual information I(z; g) to capture nonlinear de-

pendency. Classic result [9] shows that for random vectors

z and g that follow Gaussian probability model, average

mutual information can be estimated as S = I(z; g) =
0.5 log (|Cz,z| |Cg,g| / |Czg,zg|), where |C| is the deter-

minant of cross-covariance matrix. This can be efficiently

calculated using LU or Cholesky decomposition imple-

mented in modern ML frameworks [23].

The second proposed metric explicitly estimates

p̂(y, z) = p̂(y|z)p(z), for which it is necessary to have

a trusted annotated dataset to obtain p̂(y|z). In our case, it

can be validation dataset Dv or its subset. Since p(y|z) =
pv(y|z), the estimate p̂(y, z) can be found from trusted

conditional density pv(y|z) and marginal p(z). We pro-

pose to reuse the described above framework to find the

most similar data points in Dv to examples in D using Rz

kernel. Then, we assign given trusted labels yv from pv(z)
to train labels from p(z) for which Rz is maximized. This

results in a low-complexity non-parametric method.

To summarize, we experiment with the following label

estimation metrics: a) S = y for ablation study with true

labels, b) common S = ŷ, as well as the proposed c) MC

S = tr (Cz,g), d) MC S = I(z; g) and e) S = p̂(y, z).

4.4. Complexity of weaklysupervised algorithm

While FK finds the most similar data points using dis-

criminative representation, our AL needs to identify valida-

tion points for distribution matching using (12). However,

even inexpensive greedy k-center clustering might be pro-

hibitive (O(PM)) for relatively small Dv. To address this,

we propose to use weak supervision (correct or incorrect

prediction) to find subset of misclassified validation exam-

ples {1argmax
d
ŷv

i
6= yv

i }i∈Ḿ
, where Ḿ < M . Then, this

subset is clustered using k-centers, and P validation points

are selected to maximize PFK in (12). Weak supervision

assumption typically holds because, often, Dv is already

fully-labeled to know how model is performing. Variant of

our weakly-supervised method is fully described in Alg. 1.

Computational complexity of PFK is estimated in Ta-

ble 1 in terms of forward and backward DNN passes. Note

that the complexity of greedy clustering, finding cross-

covariance matrices is not shown because it is negligible

compared to DNN passes. For comparison with AL phase

(lines 3-10 in Alg. 1), we report complexity of retraining

phase (line 11) using I epochs and N b labeled train data.

Since the number of unlabeled data Ń b (Ń b = N −
N b−1 in line 8) is much bigger than validation data M , our

Algorithm 1 Variant with weakly-supervised Dv.

1: Initialize: N0 = {}, θ0 random or pretrained by [8]

2: for b = 1, 2 . . . B do

3: find misclassified subset {1argmax
d
ŷv

i
6= yv

i }i∈Ḿ

4: pool matrices (Zv,Gv) ∈ R
L×Ḿ

5: if Ḿ > P then

6: find P centers in Ḿ using k-center clustering

7: subsample matrices (Zv,Gv) ∈ R
L×P

8: pool matrices (Z,G) ∈ R
L×Ńb

, Ń b = N −N b−1

9: calculate PFK matrix Rz,g = Rz ◦Rg

10: add P points to N
b as argmaxp Rz,g

11: update θb = argminθ
∑

i∈Nb L(yi, ŷi)/N
b

Table 1. Complexity estimates per AL iteration. Assuming

Ńb >> M , our method has the lowest complexity in terms of

forward and backward DNN passes during AL phase.

Method AL Train

Uncert. [7] KŃ b 2IN b

Ens. uncert. [5] EKŃ b 2EIN b

VAAL [28] Ń b + 2NIVAE,D 2IN b

PCC (6): Rz M + Ń b 2IN b

PFK (12): Rz,g (ours) 2(M + Ń b) 2IN b

PFKMC(12): Rz,g (ours) KD(M + Ń b) 2IN b

method is EK/2 times less complex than uncertainty meth-

ods [7, 5] with K stochastic passes and E ensembles.

VAAL [28] consists of sampling phase with Ń b forward

passes and retraining phase of VAE and discriminator mod-

els using IVAE,D epochs. Assuming that VAE, discriminator

and task model f(x,θ) have roughly the same complexity,

our method is IVAE,D times less complex than VAAL.

The method with PCC kernel (6) is 2× less complex

than ours with PFK. The variant of our method with MC

pseudo-labeling (S = tr (Cz,g) or I(z; g)) is KD/2 times

more complex than PFK with inexpensive metrics (S =
ŷ or p̂(y, z)), where D is number of classes. MC metrics

have potentially better accuracy compared to S = ŷ with-

out reliance on a trusted labeled dataset as in S = p̂(y, z).

5. Experiments

We apply our framework to MNIST, SVHN and Ima-

geNet classification. We evaluate AL not only with the orig-

inal training data, but also their biased versions. Hence, we

introduce a class imbalance which scales down number of

available train images for subset of classes. Class imbal-

ance is defined as the ratio of {0 . . . 4} digits to {5 . . . 9}
digits for MNIST and SVHN. We randomly select 500 out

of 1,000 classes for ImageNet. Train examples for the se-

lected 500 classes are decimated by the class imbalance ra-

tio, while the other 500 classes keep the original train data.
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Figure 4. MNIST test accuracy: (a) no class imbalance, (b) 100× class imbalance, and (c) ablation study of pseudo-labeling and unsuper-

vised pretraining (100× class imbalance). Our method decreases labeling by 40% compared to prior works for biased data.

The code is written in PyTorch [23] with reproducible ex-

periments and is publicly available.

The following experimental configurations are defined:

baseline when all train data is used, random sampling,

and methods from Table 1. We reimplemented all uncer-

tainty methods [7, 5]: variation ratio (varR), maximum en-

tropy and BALD. Only results of the best-performing varR

method are reported. We use official code for VAAL [28]

experiments. We use the following notation in figures:

number of ensembles is specified by the E, samples by K,

and descriptor size by L.

We run each experiment 10× for MNIST, 5× for SVHN

and once for large-scale ImageNet on V100 GPUs. We re-

port mean accuracy and standard deviation for MNIST and

SVHN test dataset. Due to lack of test labels for ImageNet,

we use validation dataset for testing. Each AL experiment

consists of 10 iterations (B = 10). With the exception

of last fully-connected layer, initial network parameters are

from unsupervised pretraining using rotation method [8] or,

if specified, randomly initialized. Large batch sizes may un-

derperform with class-imbalanced data and, therefore, we

select mini-batch size by cross-validation. The used DNN

models are LeNet, ResNet-10, and ResNet-18 for MNIST,

SVHN, and ImageNet, respectively. The dropout configu-

rations are the same or similar to [7, 5] setups.

5.1. MNIST

The dataset split |D|, |Dv| and |Dtest| has 50, 10 and 10

thousand images, respectively. The following hyperparam-

eters are used: SGD, epochs=50, batch-size=25, lr=0.05,

lr-decay=0.1 every 15 epochs. Descriptor length L is 20 for

single-scale (after conv2 output) and 80 for three-scale de-

scriptor (conv1,2 and fc1 outputs). The selected pool size P
is 125 images or 0.25% of |D|.

Figure 4(a) shows the case when the unlabeled train

dataset approximates test distribution. In this setting, the

uncertainty method varR performs relatively well with only

2.5% decrease in accuracy compared to our best method

(Rz,g , S = p̂(y, z), L80) at first iterations and almost on

par when b > 5. Random sampling accuracy is only 3%

lower due to nearly uniform train distribution. VAAL [28]

results are similar to random sampling.

A practical case with 100× class imbalance is illustrated

in Figure 4(b). Our FK-based methods from (12) outper-

form PCC feature-only method from (6) with the increase

of descriptors size L and use of a better label estimation

metric: S = p̂(y, z) vs. common S = ŷ. The gap between

the best FK and the best uncertainty method with ensem-

bles reaches 14% or, equivalently, 40% less labels is needed

for the same accuracy. Furthermore, our method requires

EK/2 = 64× less processing according to Table 1.

As part of ablation study, we plot in Figure 4(a,b) a FK

setup with all-true labels (S = y). It shows the theoretical

limit of FK: no accuracy is gained without class-imbalance,

while significant (3-10%) improvement is achieved with the

data bias compared to pseudo-labeling using S = p̂(y, z).
In fact, such setup exceeds performance of the full train

dataset accuracy at the second AL iteration. Task model

pretrained by rotation method is able to separate digits with-

out supervision with exception of the last randomly initial-

ized fully-connected layer. Hence, a single AL iteration is

needed to achieve baseline result.

A set of ablation studies is presented in Figure 4(c). First,

unsupervised pretraining using rotations [8] adds 7% in ac-

curacy when L = 20 and 3.5% when L = 80 compared to

random-weight initialization (θ0
rnd). Second, we compare

pseudo-label estimation metrics proposed in Section 4.3.

The common S = ŷ metric performs only 1% inferior com-

pared to MC metrics (S = tr (Cz,g) and S = I(z; g))
when b > 4, while it requires KD/2× less processing. In

our setup, MC metrics employ uniform ±5◦ image rotations

and Gaussian additive noise for sampling. They may re-

quire larger K, other sampling or go beyond the Gaussian

assumption to achieve better results. For example, Kay et

al. [16] show a tractable solution for elliptically symmetric

probability model and Bachman et al. [4] propose to mea-

sure mutual information across multiple scales of features.

Our best metric with S = p̂(y, z) outperforms others by
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Figure 5. SVHN test (top) and ImageNet val (bottom) accuracy: (a,c) no class imbalance and (b,d) with 100× class imbalance.

6-7%. Therefore, we conclude that Rz,g with S = p̂(y, z)
is a preferable approach.

5.2. SVHN

The dataset split |D|, |Dv| and |Dtest| contains 500, 104

and 26 thousand images, respectively. Training dataset is

obtained from concatenation of the original train and ex-

tra train datasets with total of 604,388 images. The fol-

lowing hyperparameters are used: SGD, epochs=35, batch-

size=128, lr=0.1, lr-decay=0.1 every 15 epochs. Descriptor

length L is 256 for single-scale (resblock3 output) and 768

for two-scale descriptor (resblock3,4 outputs). The selected

pool size P is 1,250 images or 0.25% of |D|.

The gap between random sampling and our method is

3.5% for the original and 16% for the biased SVHN with the

same amount of training data in Figures 5(a,b). Uncertainty

varR method lacks 1.5% and 10% in accuracy compared to

ours during first AL iterations and perform on par when b >
4. Hence, approximately 40% of labeling can be avoided for

the biased train data. Moreover, computational complexity

of uncertainty methods is 32× higher.

The method with PCC (Rz) in Figure 5(b) achieves 2%

and 4% less accuracy compared to PFK (Rz,g) with the

simplest pseudo-label estimation metric (S = ŷ) and our

best metric S = p̂(y, z), respectively.

The larger descriptor size L does not significantly im-

prove accuracy in this setup. This points to importance

of multi-scale extraction when, for example, spatially-

localized features can be more relevant than global ones or

vice versa. A parametric aggregation of feature hierarchy

can lead to better results [2, 14]. The latter is not trivial

without labeled data, unlike our non-parametric approach.

5.3. ImageNet

The original dataset split |D| and |Dv| has 1,200 and 50

thousand images, respectively. The following hyperparam-

eters are used: SGD, epochs=60, batch-size=128, lr=0.1,

lr-decay=0.1 at [30, 50, 57] epoch. The descriptor configu-

ration is the same as for SVHN. The selected pool size P is

64,000 images or 5% of |D|.

Figures 5(c,d) show results for large-scale ImageNet.

Uncertainty varR method underperforms without class im-

balance and only a fraction of percent better than random

sampling with 100× class imbalance. This could be re-

lated to lower number of samples K compared to setup

in [5], dropout setting heuristics or large number of classes.

Unfortunately, it is almost infeasible to increase K due to

high complexity of varR, which is 16× more than for our

method during AL phase and E× more during retraining.

For instance, the ImageNet experiment took 2.5 days for

our method and 12 days for varR on a single V100 GPU.

Our best method (Rz,g , S = p̂(y, z), L768) increases

accuracy compared to prior works by 1.5% without class

imbalance and by 2% with 100× class imbalance. The con-

figurations with the simplest pseudo-label estimation metric

(S = ŷ) or the ones without FK supervision gain only 1%
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Figure 6. Confusion matrix (top) and t-SNE (bottom) of MNIST test data at AL iteration b = 3 with 100× class imbalance for: (a) varR

with E1, K128, (b) Rz,g , S = p̂(y, z), L80 (ours), and (c) Rz,g , S = y, L80. Dots and balls represent correspondingly correctly and

incorrectly classified images for t-SNE visualizations. The underrepresented classes {5, 8, 9} have on average 36% accuracy for prior

work (a), while our method (b) increases their accuracy to 75%. The ablation configuration (c) shows 89% theoretical limit of our method.

in accuracy. The gap between theoretically possible Ima-

geNet result with true labels (S = y) and our method with

the estimated pseudo-labels is increasing compared to rel-

atively small-scale 10-class MNIST in Figures 4(a,b) and

SVHN in Figures 5(a,b). It indicates that a more accurate

pseudo-label metric may improve results even more. While

our absolute accuracy improvement is 2%, it leads to 42%

less annotations with the same accuracy.

5.4. Qualitative visualizations

To demonstrate improvement of AL behavior, we calcu-

late confusion matrices and t-SNE [29] clusters. We use the

same experimental setup as in Figure 4(b) with class imbal-

ance ratio of 100 and analyze MNIST test dataset after the

third AL iteration (b = 3). Figure 6 presents results for

the following configurations: (a) varR (E1, K128) and the

proposed (Rz,g, L80) with (b) pseudo-labels (S = p̂(y, z))
and (c) true-labels (S = y) for ablation study.

The class-imbalanced digits {5 . . . 9} are heavily mis-

classified in Figure 6(a). It visually confirms quantitative

result from Section 5.1 that uncertainty methods fail to iden-

tify relevant training data clusters. Those methods can only

capture so called epistemic uncertainty which is uncertainty

over DNN parameters instead of uncertainty about data.

Figures 6(b,c) show results of the FK-supervised meth-

ods with the estimated pseudo-labels and true-labels. Com-

pared to Figure 6(a) the class-imbalanced digits are signif-

icantly better classified, specifically, the centers of clusters

”5”, ”8” and ”9”, whose average accuracy increased from

only 36% to 75%. This result indicates the ability of self-

supervised FK to find long-tails of distribution using our

acquisition function (12).

The far edges of the imbalanced clusters that intersect

with other digit clusters still experience some irregular den-

sities of misclassified examples in Figure 6(b) due to imper-

fect pseudo-labeling. The t-SNE setup with all-true labels

in Figure 6(c) improves on those edges and achieves 89%

accuracy. Clearly, it is the most difficult to separate very

similar intersecting examples from different classes. As a

potential future direction, this problem might be addressed

by a better feature separation or using adversarial training.

6. Conclusions

We formulated the optimal acquisition function for AL

with realistic assumptions about data biases and continu-

ous updates after field trials. We introduced low-complexity

non-parametric AL method that minimizes distribution shift

between train and validation datasets using self-supervised

FK and several novel pseudo-label estimators. According to

ablation studies, unsupervised pretraining further improved

our approach. The conducted image classification experi-

ments showed that our method results in at least 40% less

labeling for biased data compared to prior works while re-

quiring a factor of 10 less processing.
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