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Abstract

Dynamic medical images are often limited in its applica-

tion due to the large radiation doses and longer image scan-

ning and reconstruction times. Existing methods attempt

to reduce the volume samples in the dynamic sequence by

interpolating the volumes between the acquired samples.

However, these methods are limited to either 2D images

and/or are unable to support large but periodic variations

in the functional motion between the image volume samples.

In this paper, we present a spatiotemporal volumetric inter-

polation network (SVIN) designed for 4D dynamic medical

images. SVIN introduces dual networks: the first is the spa-

tiotemporal motion network that leverages the 3D convo-

lutional neural network (CNN) for unsupervised paramet-

ric volumetric registration to derive spatiotemporal motion

field from a pair of image volumes; the second is the se-

quential volumetric interpolation network, which uses the

derived motion field to interpolate image volumes, together

with a new regression-based module to characterize the pe-

riodic motion cycles in functional organ structures. We also

introduce an adaptive multi-scale architecture to capture

the volumetric large anatomy motions. Experimental results

demonstrated that our SVIN outperformed state-of-the-art

temporal medical interpolation methods and natural video

interpolation method that has been extended to support vol-

umetric images. Code is available at 1 .

1. Introduction

Dynamic medical imaging modalities enable the exam-

ination of functional and mechanical properties of the hu-

man body and are used for clinical applications, e.g., four-

1https://github.com/guoyu-niubility/SVIN

dimensional (4D) computed tomography (CT) for respira-

tory organ motion modelling [33], 4D magnetic resonance

(MR) imaging for functional heart analysis [9], and 4D ul-

trasound (US) for echocardiography analysis [40]. These

4D modalities have high spatial (volumetric) and temporal

(time sequence) sampling rate to capture the periodic mo-

tion cycles of organ activities, and this information is used

for clinical decision making. However, the acquisition of

these dynamic images requires larger radiation doses which

may cause harm to humans, and longer image scanning and

reconstruction times; these factors limit the use of 4D imag-

ing modalities to broader clinical applications [32, 10].

Figure 1. The cardiac motions in two-time phases: End-Systole

(ES) and End-Diastole (ED). The red bounding boxes highlight the

heart structure. All images are shown in transaxial views, cropped

in varying scales, to enlarge the heart.

To mitigate these factors, reducing the temporal sam-

pling has been widely employed but this compromises valu-

able temporal information [23, 15]. In these approaches, the

intermediary temporal frames can be used to improve visual

inspection, quantitative modelling (e.g., dynamic motion
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trajectory) and accurate interpretation / diagnosis. These

benefits apply to various clinical applications, e.g., motion

compensation in image-guided therapy [37], organ motion

modeling [1] and alignment or fusion of 4D multi-modal

images [1, 40]. Such interpolation methods are reliant on

either non-rigid registration [6, 28, 40] or optical flow-based

[30, 19] algorithms. Non-rigid registration approaches cal-

culate the dense image volume correspondences that oc-

cur from one volume to another, and then uses the cal-

culated correspondences to generate the intermediary vol-

umes. Such approaches, however, often generate artifacts

or fuzzy boundaries and do not perform well when the vari-

ations in anatomy or organ activity (e.g., size and shape)

are large. An alternative approach was to use optical flow-

based methods (using deep learning) [19, 38] to estimate a

dense motion (i.e., deformation) field between image pairs.

However, these methods were limited to 2D image inter-

polation and therefore did not utilize the rich spatial infor-

mation inherent in medical image volumes. They are also

limited when the motion between the image sequences are

not in linear trajectory and are not changing in a constant

velocity. Therefore, these approaches are not applicable to

volumetric temporal imaging modalities that exhibit large

non-linear motions in spatiotemporal space.

In this paper we propose a spatiotemporal volumetric in-

terpolation network (SVIN) designed for 4D dynamic med-

ical images. To the best of our knowledge, this is the first

deep learning-based method for 4D dynamic medical im-

age interpolation. An overview of our model is illustrated

in Fig. 2 which comprises of two main networks. Our first

spatiotemporal motion network leverages the 3D convo-

lutional neural network (CNN) for unsupervised paramet-

ric volumetric registration to derive spatiotemporal motion

field from two-image volumes. In the second sequential vol-

umetric interpolation network, the derived motion field is

used to interpolate the image volume, together with a new

regression-based module to characterize the periodic mo-

tion cycles in functional organ structures. We also propose

an adaptive multi-scale architecture that learns the spatial

and appearance deformation in multiple volumes to capture

large motion characteristics. We demonstrate the applica-

tion of our method on cardiac motion interpolation, which

is acquired using both 4D CT and 4D MR images. These

images are characterized by twisting action during contrac-

tion to relaxation of the heart structure, and has complex

changes in muscle morphology, as depicted in Fig. 1. Our

method was used to increase the temporal resolution in both

the CT and MR image volumes. We evaluate our method in

comparison to the state-of-the-art interpolation method. We

further conducted an ablation study to demonstrate the ef-

fectiveness of our motion network.

2. Related Works

We partitioned the related works into three categories

which we deemed relevant to our research: (1) Medical dy-

namic image interpolation; (2) spatiotemporal motion field

calculation for medical image and (3) natural video interpo-

lation approaches.

2.1. Dynamic medical image interpolation

Many existing medical image interpolation methods rely

upon optical flow-based or non-rigid registration meth-

ods to generate a linearly interpolated image by averag-

ing pixel values between the adjacent image sequences

[6, 22, 30, 28, 40, 37]. For instance, Ehrhardt et al. [14]

presented an optical flow-based method to establish spatial

correspondence between adjacent slices for cardiac tempo-

ral image. Zhang et al. [40] used non-rigid registration-

based method to synthesize echocardiography and cardio-

vascular MR image sequences. The main advantage of these

approaches is that they track spatiotemporal motion field,

in a pixel-wise manner, between the neighboring images

to estimate the interpolation. However, their assumption

limited the spatiotemporal motion between the adjacent im-

ages to be in a linear trajectory, and thus disregarded the

complex, non-linear motions apparent in functional organ

structures. Recently, there are two CNN based methods for

temporal interpolation via motion field for MR images from

Lin Zhang et al. [25] and Kim et al. [19]. They achieved

outstanding performance compared with previous works.

However, their method did not support full 3D volumetric

information and did not perform well when there were large

variations in motion.

2.2. Learning spatiotemporal motion fields from
volume image sequence

Many studies used deformable medical image registra-

tion techniques to estimate the motion field between the in-

put image sequences. The deformable medical image reg-

istration techniques can be divided into two parts: non-

learning based [36, 2, 20, 5, 13] and learning-based meth-

ods [21, 39, 35]. The typical non-learning based approaches

are free-form deformations with B-splines [2], Demons [36]

and ANTs [3]. These approaches optimize displacement

vector fields by calculating the similarity of the topological

structures. Deep learning-based methods, in recent years,

used labelled data of spatiotemporal motion field and have

shown great performances [21, 39, 35]. However, their per-

formance was dependent upon the availability of large-scale

labelled data. To address this, several unsupervised methods

were proposed to predict the spatiotemporal motion field

[12, 24, 4]. Although these methods demonstrated promis-

ing results, [12] and [24] were only useful in patch-based

volumes or in 2D slices. Jiang et al. [4] recently developed
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Figure 2. An overview of the proposed method which contains a motion network and an interpolation network. An adaptive multi-scale

architecure is used in both of motion and interpolation network to cover the large motion. A regression module is intergrated in our

interpolation network to constrain the intermediated motion field.

a CNN, VoxelMorph which used full 3D volumetric infor-

mation. However, it was not designed for dynamic image

sequences where it has large variations in motion.

2.3. Natural video interpolation approaches

Video interpolation is an active research task in natu-

ral scenes, e.g., model-based tracking, patch identification,

and matching and framerate upsampling [17, 11, 27, 29].

Niklaus et al. [31] developed a spatially-adaptive convo-

lution kernel to estimate the motion for each pixels. Liu

et al. [26] divided the frame interpolation into two steps,

optical flow estimation and image interpolation. Their net-

work learnt an input pair of consecutive frames in an unsu-

pervised manner and then refined the interpolation based

on the outputs of the estimation. Jiang et al. [18] pre-

sented Slomo – a technique which interpolates frame mo-

tion by linearly combining bi-directional optical flows, and

then further refining the estimated motion flow field through

an end-to-end CNN. Recently, Peleg et al. [34] presented a

multi-scale structured architecture neural network to better

capture the local details from high resolutions frame. How-

ever, when considering the application of these methods to

dynamic medical images interpolation, this is a challenging

problem as the temporal sampling in medical image volume

sequences are much lower than that of natural scene videos.

In addition, the deformation and visual differences in dy-

namic medical images are comparatively more complex and

non-trivial than natural scene videos.

3. Proposed Method

Let {IT , T = 1, 2..., N} be a sequence of volumetric

images representing the cardiac motion from end-diastole

(ED) (T = 1) to end-systole (ES) (T = N ) phase, and let

{Ii, Ij | (i, j) ∈ T} be a pair of cardiac images indicating

two random time points within the cardiac motion. Our aim

is to interpolate the intermediate image It, (t ∈ T ). For this

work, we used images at ED (denote as IED) and ES (de-

note as IES) phase to interpolate the complete the cardiac

motion. {φi→j , φj→i} denotes the motion field between Ii
and Ij in bi-directions.

Fig. 2 shows the overall proposed method. Initially, spa-

tiotemporal motion network was used to learn and capture

bi-directional motion fields between IED and IES in an un-

supervised manner. Two linearly interpolated intermediate

images were then coarsely created using the learned spa-

tiotemporal motion fields, φED→ES and φES→ED. Using

the coarsely interpolated intermediate images and their cor-

responding deformation fields, we further refined the coarse

intermediate images by the volumetric interpolation net-

work, where we used a regression-based module to con-

strain the interpolation to follow the patterns of cardiac bio-

logical motion. Specifically, both of our volumetric motion

estimation and interpolation network are using an adaptive

multi-scale architecture which enables to capture various

types motions - both small and large volume spatiotemporal

deformations (see Fig. 2 and 3).
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Figure 3. The architecture of our spatiotemporal volumetric motion network with an adaptive multi-scale architecture.

3.1. Spatiotemporal volumetric motion field estima­
tion

Fig. 3 presents the architecture of 3D CNN for spa-

tiotempopral motion field estimation. We estimate a mo-

tion field that can represent the voxel-wise motion flow of

volume images at two individual time points. This can be

represented as a function Dθ(Ii, Ij) = φi↔j(∆x,∆y,∆z),
where φi↔j(∆x,∆y,∆z) indicates the vectors that repre-

sent the movement in 3D space and θ are the learnable pa-

rameters of the network. We used an encoder-decoder archi-

tecture with skip connections for generating φi↔j by given

Ii and Ij .

In order to produce a volumetric motion field that can

cover various types of deformations, we propose an adap-

tive multi-scale architecture that embeded both a global and

a local learning. More specifically, for global learning,

our motion field estimation network focuses on large de-

formation while the volumetric images in a low-scale level

would ignore the local details while more detailed informa-

tion will be covered when the volumetric image in a high-

scale. In addition, the global deformation from low-scale

is integrated to high-scale, which reduces the difficulty of

the network for learning and constrains the network to pay

more attention to detailed deformation. Our deformation

field can be defined as:

φi→j = Dθ(Ii, Ij) or φj→i = Dθ(Ij , Ii) (1)

Ij = ζ(Ii|φi→j) or Ii = ζ(Ij |φj→i) (2)

where ζ(Ii|φi→j) representing the warped image by the

spatial vector field φi→j with bilinear interpolation.

For training our motion field estimation network, we

used an image-wise similarity loss and a motion field

smoothness regularization loss with an adaptive multi-scale

network architecture (as shown in Fig. 3). Given the net-

work output φn
i→j {n = 1, 2, 3}, where i denotes the volu-

metric images at different scales (we used 3 different scales

in total), we define a motion field smoothness regularization

loss as:

Lφ(Dθ(Ii, Ij)) =

3
∑

c=1

‖ ∇φc
i→j ‖1 (3)

Where ∇ is the gradient operator. The image-wise simi-

larity loss was leveraged from VoxelMorph [4] and this can

be defined as:

Ls(ζ(Ii|φi→j), Ij) =

3
∑

c=1

‖ ζ(Ici |φ
c
i→j)− Icj ‖2 (4)

3.2. Sequential volumetric interpolation network

Based on the derived deformation fields φED→ES and

φES→ED, we used linear interpolation approach to synthe-

size the intermediate deformation fields, as shown in fol-

lows:

φED→t = tφED→ES (5)

φES→t = (1− t)φES→ED (6)

Based on Eqs. 1 and 2, the linear interpolation based

deformation field for It can be approximated as:

Ĩt = (1− t)ζ(IED|φED→t) + tζ(IES |φES→t) (7)
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To improve the consistency in bi-directions, Eq. 5 and 6

can be modified to as follows:

φED→t =t(1− t)φED→ES

− t2ζ(φES→ED|φES→ED)
(8)

φES→t =− (1− t)2ζ(φED→ES |φED→ES)

+ t(1− t)φES→ED

(9)

In addition, we introduce a hyper-weight map γ to bal-

ance the importance of using deformation from the bi-

directions (forward and backward directions) and this can

be defined as:

γES = 1− γED (10)

Thus, the linear image interpolation based on bi-

directional deformation and γ can be defined as:

Ĩt =(1− t)γEDζ(IED|φED→t)

+ tγESζ(IES |φES→t)
(11)

As examplified in right-side of Fig. 2, we used an

adaptive multi-scale network architecture to ensure the syn-

thesized intermediate volumetric images will have a high

spatial-temporal resolution.

3.3. Regression­based module for interpolation con­
straints

Since most biological movements have a relatively fixed

motion pattern, especially in cardiac motion [8], we present

a regression-based module to model the relationship be-

tween cardiac motion of the cardiac cycle and time phase

(as shown in Fig. 4). Specifically, we attempted to build a

regression model representing the population-based cardiac

motion vector which indicate the shape variability at indi-

vidual time point. The population-based cardiac motions at

individual time point was then used to constrain the appear-

ance of the synthetic intermediate volumetric images. Our

regression estimation Rθ at time point t̃ is defined as:

t̃ = Rθ(φED→t − tφED→ES ,

φES→t − (1− t)φES→ED)
(12)

3.4. Training details for volumetric interpolation

For training our sequential volumetric interpolation net-

work, our loss function is defined as a sum of an image-wise

similarity loss Lsimilar, a regression loss Lr and a regula-

tion loss Lg:

L = λsLsimilar + λrLr + λgLg (13)

where image-wise similarity loss Lsimilar is used to

evaluate the similarity of the predicted synthetic interme-

diate images and the real intermediate images at multiple

image scales and is defined as:

Figure 4. Illustration of left ventricle (LV) volume changing dur-

ing the cardiac contraction period. The brown curve shows the real

motion flow of LV, and blue hidden line shows the simple linear

assumption. The blue points and green points represent the inter-

mediate time points.

Lsimilar =

3
∑

c=1

N
∑

k=1

‖ Ĩctk − Ictk ‖2 (14)

where
∑

3

c=1
() represents a 3-scales volumetric image

loss. {Itn}
N

n=1
represents the real intermediate volumetric

images and
{

Ĩtn

}N

n=1

represents the predicted synthetic in-

termediate volumetric images. The regression loss Lr is de-

fined as the appearance difference at individual time point:

Lr =

N
∑

k=1

‖ t̃k − tk ‖1 (15)

Regularization loss Lg is used to constrain the predicted

motions to be consistent in bi-directions and is defined as:

Lg =

3
∑

c=1

‖ ∇φc
ED→t +∇φc

ES→t ‖1 (16)

The weights λr = 1;λs = 500;λg = 50 have been set

empirically using a validation set.

4. Experiments

4.1. Materials and implementation details

We demonstrate our method with two datasets: 4D Car-

diac CT (4D-C-CT), and ACDC (4D-MR cardiac cine or

tagged MR imaging) [7]. Fig. 5 shows a snapshot of ran-

domly sampled cardiac sequence volume slices. The 4D-C-

CT dataset consists of 18 patient data, each having 5 time

points (image volumes) from ED to ES. Image volume is

characterized by a high-resolution ranging from 0.32 to 0.45

mm in intra-slice (x- and y-resolutions) and from 0.37mm

to 0.82mm in inter-slice (z-resolution). The ACDC dataset

contains 100 patient data. On average, each patient has

10.93 time points from ED to ES and it has an imaging res-

olution from 1.37 to 1.68 mm in x- and y-resolution and 5

to 10 mm in z-resolution. All scans of 4D-C-CT were re-

sampled to a 128x128x96 grid and crop resulting images to
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96x96x96. For ACDC dataset, we resampled all scans to

160x160x10. We pad ACDC data in z-axis by 0, increasing

its size to 160x160x12 to reduce the border effects of 3D

convolution. We randomly selected 80 training / 20 testing

patient data and applied contrast-normalization to both of

datasets, consistent to other similar researches [16].

We implemented all the networks using Pytorch library

and was trained on two 11GB Nvidia 1080Ti GPUs. All

models were trained with a learning rate of 0.0001. In all

our evaluations, we used 3-fold cross-validation on both the

datasets.

Figure 5. A snapshot of our training data showing CT (left) and

MRI (right).

4.2. Evaluation and metrics

In order to evaluate the two networks in our SVIN, we

conducted an ablation study. For the unsupervised spa-

tiotemporal motion network, we compared it with state-of-

the-art CNN based deformable medical image registration

– VoxelMorph [4]. For the interpolation network, state-of-

the-art image interpolation methods were used in the com-

parison including (i) RVLI [40] – registration-based volume

linear interpolation for medical images, (ii) MFIN [25] –

CNN-based medical image interpolation (2D slice-based),

and (iii) Slomo – natural video interpolation [18] in 2D as

well as its extension to work on medical image volumes

(3D-Slomo). For image volume interpolation, we interpo-

lated 3 intermediate volumes in between the ED-ES frames

(see Fig 5), evenly distributed across the time points.

We used the standard image interpolation evaluation

metrics including Peak Signal-to-Noise Ratio (PSNR),

Structural Similarity Index (SSIM), Mean Squared Error,

and Normalized Root Mean Square Error (NRMSE). We

used the same evaluation metrics for the spatiotemporal mo-

tion field estimation, consistent to other medical image reg-

istration approaches [25]. In addition, we further used Dice

Similarity Coefficient (DSC) to measure the usefulness of

our interpolation in medical imaging applications.

5. Results and Discussion

5.1. Ablation study – spatiotemporal volumetric
motion field estimation

The results of motion field estimation on two datasets -

4D-C-CT and ACDC are shown in Table 1 and 2. Our re-

Figure 6. Comparison of spatiotemporal volumetric motion esti-

mation results. The intensity image is warped from estimated spa-

tiotemporal motion field. The red curve represents the real seg-

mentation results while the green color shows the warped segmen-

tation results (see the yellow arrows indicated). The red arrows

indicate some organ boundaries.

Table 1. The performance of spatiotemporal motion field estima-

tion on 4D-C-CT dataset.

MSE(10−2) PSNR NRMSE SSIM Dsc

VoxelMorph 0.787 27.10 0.276 0.807 0.880

Ours 0.197 33.17 0.138 0.918 0.944

Table 2. The performance of spatiotemporal motion field estima-

tion on ACDC dataset.

MSE(10−1) PSNR NRMSE SSIM Dsc

VoxelMorph 0.194 38.06 0.132 0.912 0.920

Ours 0.168 38.93 0.121 0.914 0.936

sults show that motion estimation network with our adaptive

architecture outperforms the recent VoxelMorph [4] across

all metrics on 4D-C-CT dataset, achieving the PSNR score

of 33.176, NRMSE of 0.1388, SSIM of 0.9185 and MSE of

0.00197. Similarly, it also had better scores across all met-

rics on ACDC dataset. Our motion estimation architecture

had higher improvements on 4D-C-CT dataset than that of

ACDC dataset relative to VoxelMorph. We attribute this to

our robust multi-scale adaptive 3D CNN which can effec-

tively learn both large and small variations in motion.

Fig. 6 shows the synthesized volumes based on the de-

rived motion field and their corresponding warped segmen-

tation results. It clearly shows that the warped segmentation

results from the motion field learnt by our motion architec-

ture is more similar to the ground truth.

5.2. Comparison with the state­of­the­art interpo­
lation methods

Table 3 and 4 represent the interpolation results of dif-

ferent time points from ED to ES on 4D-C-CT and ACDC

4731



Figure 7. Qualitative results of the two 4D-C-CT samples ( top two rows for the first sample; bottom two for the second sample). The first

left column shows the paired-input volumes (ED and ES) and the last right column shows the real intermediate volume. The rest of the

columns show the interpolated intermediary volumes reconstructed using different approaches.

datasets, respectively. As expected, results show that the in-

termediate volumes that are in later time points had better

performances. This is due to the fact that the earlier time

points have larger motion variations, which contributed to

its lower accuracy.

Table 3. Multi-volume cardiac sequence interpolation results on

the 4D-C-CT dataset.

MSE(10−2) PSNR NRMSE SSIM

1st-point 0.45 29.45 0.211 0.830

2nd-point 0.43 29.47 0.210 0.825

3rd-point 0.28 31.52 0.165 0.863

Table 4. Multi-volume cardiac sequence interpolation results on

the ACDC dataset.

MSE(10−2) PSNR NRMSE SSIM

1st-point 1.22 39.34 0.109 0.934

2nd-point 0.95 40.42 0.087 0.950

3rd-point 0.28 45.86 0.052 0.977

The comparative quantitative results for volume inter-

polation are shown in Table 5 and 6. SVIN outperformed

all other state-of-the-art interpolation method on 4D-C-CT

dataset across all measures. Similarly, it also had the best

scores across all metrics on the ACDC dataset. We attribute

this to our adaptive multi-scale architecture capturing the

variant type of motions and regression-based module which

effectively constrains the intermediate volumetric motions

and learn relevant inherent functional motion patterns (see

Fig. 7 and 8). Our results show that the RVLI was the

closest to our results. However, the RVLI was not able to

accurately interpolate the volumes when there were artifacts

as evident in Fig. 7 and 8. MFIN and Slomo also did not

consider full 3D volumetric information, i.e., limited to 2D

space, which contributed to its lower scores. As expected,

our implemented 3D-Slomo produced a better result rela-

tive to the 2D methods. The 3D-Slomo, however, was not

able to accurately synthesize the clear organ boundary and

estimate the motion trajectory when there are large changes

of cardiac activities (see Fig. 7).

Table 5. Performance comparisons on the 4D-C-CT dataset.

MSE(10−2) PSNR NRMSE SSIM Dsc

MFIN 1.06 26.84 0.308 0.709 0.844

Slomo 1.13 26.52 0.308 0.704 0.839

3D-Slomo 0.92 26.33 0.303 0.713 0.872

RVLI 0.54 28.70 0.237 0.806 -

Ours 0.39 30.15 0.196 0.840 0.917
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Figure 8. Qualitative results of two samples from the ACDC dataset. The first left column shows the paired-input volumes (ED and ES)

and the last right column shows the real intermediate volume. The rest columns show the interpolated intermediary volumes of different

approaches.

Table 6. Performance comparisons on the ACDC dataset.

MSE(10−1) PSNR NRMSE SSIM

MFIN 1.082 30.69 0.309 0.607

Slomo 1.001 31.08 0.296 0.630

3D-Slomo 0.341 35.27 0.178 0.845

RVLI 0.331 35.66 0.173 0.860

Ours 0.081 41.87 0.085 0.953

6. Conclusion

6.1. Summary

We presented a novel interpolation method for 4D dy-

namic medical images. Our proposed two-stage network

was designed to exploit the volumetric medical images that

exhibit large variations between the motion sequences. Our

SVIN outperformed state-of-the-art temporal medical in-

terpolation methods as well as natural video interpolation

methods that has been extended to support volumetric im-

ages. Ablation study further exemplified that our motion

network with our SVIN was able to better represent the

large functional motion compared with the state-of-the-art

unsupervised medical registration methods.

6.2. Extensions implementation

In Section 4, we discussed our multi-scale architec-

ture for learning the spatial appearance volume in different

scales to retain the spatial information for volume synthesis.

Rather than learning a spatial transform model, as future

work, we will implement our architecture in other volume

synthesis task.

We leveraged a regression based constrain module to ex-

plore the potential ’rule’ associated with functional motion.

This could be extended to other 4D volumetric medical im-

age tasks having periodic cycle motion.

Although we demonstrated our SVIN model on cardiac

imaging modality, there is no restriction of our method to

be applied to other dynamic images. We suggest that our

method is broadly applicable to other 4D medical images,

as well as to non-medical image volume interpolation prob-

lems where the motion field can be modeled.
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