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Abstract

Recent works imply that the channel pruning can be re-

garded as searching optimal sub-structure from unpruned

networks. However, existing works based on this obser-

vation require training and evaluating a large number of

structures, which limits their application. In this paper, we

propose a novel differentiable method for channel pruning,

named Differentiable Markov Channel Pruning (DMCP),

to efficiently search the optimal sub-structure. Our method

is differentiable and can be directly optimized by gradient

descent with respect to standard task loss and budget regu-

larization (e.g. FLOPs constraint). In DMCP, we model the

channel pruning as a Markov process, in which each state

represents for retaining the corresponding channel during

pruning, and transitions between states denote the pruning

process. In the end, our method is able to implicitly select

the proper number of channels in each layer by the Markov

process with optimized transitions. To validate the effec-

tiveness of our method, we perform extensive experiments

on Imagenet with ResNet and MobilenetV2. Results show

our method can achieve consistent improvement than state-

of-the-art pruning methods in various FLOPs settings.

1. Introduction

Channel pruning [10, 2, 4] has been widely used for

model acceleration and compression. The core idea be-

hind is that large CNN models are regarded as over-

parameterized. By removing the large model’s unneces-

sary or less important weights, we can obtain a more effi-

cient and compact model with a marginal performance drop.

Conventional channel pruning methods mainly rely on the

human-designed paradigm. A typical pipeline of conven-

tional pruning method can be summarized as three stages:

pre-train a large model, prune “unimportant” weights of the

large model according to the pre-defined criterion, fine-tune

the pruned model [6, 15, 18, 11].

Recent work [17] showed a new perspective of channel

pruning that the structure of the pruned model is the key of

determining the performance of a pruned model, rather than
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Figure 1. MFLOPs vs. Accuracy on the ImageNet classifica-

tion dataset. The original model is MobileNetV2 [21]. Our

method outperforms existing pruning methods MetaPruning [16]

and AMC [7] on mobile settings (<300MFLOPs) at all FLOPs.

See Table 6 for more results. Best viewed in color.

the inherited “important” weights. Based on this observa-

tion, some works try to design a pruning process to directly

search optimal sub-structure from the unpruned structure.

AMC [7] adopted reinforcement learning (RL) to train a

controller to output the pruning ratio of each layer in the

unpruned structure, while MetaPruning [16] used evolution

algorithm to search structures. However, the optimization

of these pruning process need to train and evaluate a large

number of structures sampled from the unpruned network,

thus the scalability of these methods is limited. Although

AMC don’t fine-tune the pruned structures and MetaPrun-

ing trained a meta-network to predict network’s weights to

avoid training the searched structures, the limitation of scal-

ability still remains.

A similar problem in neural architecture search (NAS)

has been tackled by differentiable method DARTS [14].

However, the differentiable method proposed by DARTS

cannot be directly applied to channel pruning. First, the

definition of search space is different. The search space of

DARTS is a category of pre-defined operations (convolu-

tion, max-pooing, etc), while in the channel pruning, the

search space is the number of channels in each layer. Sec-

ond, the operations in DARTS are independent with each
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other. But in the channel pruning, if a layer has k+ 1 chan-

nels, it must have at least k channels first, which has a logi-

cal implication relationship.

In this paper, we propose a novel differentiable chan-

nel pruning method named Differentiable Markov Channel

Pruning (DMCP) to perform efficient optimal sub-structure

searching. Our method makes the channel pruning differen-

tiable by modeling it as a Markov process. In the Markov

process for each layer, the state Sk represents the kth chan-

nel is retained, and the transition from Sk to Sk+1 repre-

sents the probability of retaining the (k+1)th channel given

that the kth channel is retained. Note that the start state is

always S1 in our method. Then the marginal probability

for state Sk, i.e. the probability of retaining kth channel,

can be computed by the product of transition probabilities

and can also be viewed as a scaling coefficient. Each scal-

ing coefficient is multiplied to its corresponding channel’s

feature map during the network forwarding. So the tran-

sition probabilities parameterized by learnable parameters

can be optimized in an end-to-end manner by gradient de-

scent with respect to task loss together with budget regu-

larization (e.g. FLOPs constraint). After the optimization,

the model within desired budgets can be sampled by the

Markov process with learned transition probabilities and

will be trained from scratch to achieve high performance.

The details of our design will be presented in Section 3.

Finally, to demonstrate the effectiveness of our method,

we conduct exhaustive classification experiments on Ima-

geNet [19]. At the same FLOPs, our method outperforms

all the other pruning methods both on MobileNetV2 and

ResNet, as shown in Figure 1. With our method, Mo-

bileNetV2 has no accuracy drop with 30% FLOPs reduction

and the FLOPs of ResNet-50 is reduced by 44% with only

0.4% drop.

2. Related Work

In this section, we discuss related works from network

architecture search (NAS) and channel pruning.

Neural Architecture Search. [25] first proposed to search

for neural architectures with reinforcement learning to

achieve competitive accuracy with the given inference cost.

But the searching cost is too expensive to be applied

broadly. Recent works try to reduce the searching cost by

gradient-based methods. DARTS [14] used a set of learn-

able weights to parameterize the probabilities of each can-

didate operation, the output of a layer is the linear com-

bination of probabilities and feature maps of correspond-

ing operation. After training, the operation with the highest

probability is chosen to be the final architecture. However,

DARTS is performed on a small proxy task (e.g. CIFAR10)

and transfer the searched architecture to large scale target

tasks (e.g. ImageNet). ProxylessNAS [1] avoided using

proxy tasks by only sampling two paths to search for archi-

tecture on large scale target tasks. Different from searching

architecture with different types of operations in the NAS

methods mentioned above, our method focuses on search-

ing structures with a different number of channels.

Channel Pruning. Previous works on channel pruning can

be roughly classified into two categories, i.e. hard pruning

and soft pruning. Hard pruning removes channels during

iterative pruning and fine-tuning process, while soft prun-

ing only makes the pruned channels to be or approach to

zero. Hard pruning methods mainly depend on different

pruning criteria, for example, weight norm [10], the aver-

age percentage of zeros in the output [9] or the influence

of each channel to the final loss [18]. Soft pruning meth-

ods mainly make the pruned channels to be or approach to

zero so that those channels’ influence is decreased. [6] first

zero some filters by intra-layer criterion and a calculated

layer-wise ratio. Then it increases the ratio of pruned filters

gradually until reaching the given computation budget. [15]

add L1 regularization on Batch Normalization’s coefficients

when training, and after training the channels with small co-

efficients will be pruned. [3] search for the least important

filters in a binary search manner. [12] globally prune the

unsalient filters, then dynamically update the saliency of all

filters and recovers the mistakenly pruned filters. [13] use

generative adversarial learning to learn a sparse soft mask

to scaled the output of pruned filters toward zero.

Our method can be seen as soft pruning. The major dif-

ference among DMCP and the above methods is the elimi-

nation of duplicated solutions by our Markov modeling. For

example, given a layer with C channels, the solution space

of our method is O(C), but for methods mentioned above,

the solution space is O(2C) for different combinations even

with the same number of channels.

Based on recent work [17], some work designed a search

process to directly search the optimal sub-structures from

the unpruned net. AMC [7] used reinforcement learning to

determinate the ratio of channels each layer should retain.

MetaPruning [16] used an evolution algorithm to search

network structures and a meta network is trained to pre-

dict weights for network structures during searching. These

methods need to train or evaluate a large number structures,

which makes them inefficient, while our method can be op-

timized by gradient descent and avoid the problem.

3. Method

In this section, we will give a detailed explanation of the

proposed Differentiable Markov Channel Pruning (DMCP)

method. As illustrated in Section 3.1, the channel prun-

ing is first formulated as a Markov process parameterized

by architecture parameters and can be optimized in an end-

to-end manner. Then in Section 3.2, the training proce-

dure of DMCP can be divided into two stages: in stage 1,

the unpruned network is updated by our proposed variant
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Figure 2. The training pipeline of DMCP. Figure (a) demonstrates the two stages of DMCP. DMCP first run stage1 for several iterations to

update weights of the unpruned network to warmup, then run stage1 and stage2 iteratively to update weights and architecture parameters.

In figure (a), each rectangle represents a convolution block, e.g. Conv-BN-ReLU. Four sub-structures, represented by the blue parts of

the rectangle, are sampled from the unpruned net: (1) the whole unpruned net (Max. Arch.), (2) structure with the minimum number of

channels (Min. Arch.), (3) two structures randomly sampled by Markov process (Rand. Arch.). Each of these structures is forwarded

independently, and the gradients in four sub-structure are accumulated to update the weights. Figure (b) is a detail illustration of the

wrapped block in figure (a). The “Fuse” layer shows the incorporate details of architecture parameters α and outputs of unpruned networks

O. Notations in Figure (b) are explained in Section 3. Best viewed in color.

sandwich rule, while in stage 2, the architecture parameters

are wrapped into the unpruned network and get updated, as

shown in Figure 2 (a). After the optimization, we propose

two ways to sample the pruned network in Section 3.3.

3.1. Definition of Pruning Process

Let M(L(1), L(2), ..., L(N)) denote the N -layer un-

pruned network, where L(i) is the ith layer. In layer L(i)

with C
(i)
out convolutional filters (i.e. channels), given input

x, the output O(i) can by computed by:

O
(i)
k = w

(i)
k ⊙ x, k = 1, 2, ..., C

(i)
out (1)

where O
(i)
k is the kth channel of O(i), w

(i)
k is the kth fil-

ter in L(i), and ⊙ denote the convolution operation. If not

explicitly stated, the superscript which represents the layer

index will be omitted below for simplicity.

As illustrated in Section 1, we perform the channel prun-

ing in a reversed way, which can be represented by a di-

rected ascyclic graph, as shown in Figure 3, where the state

Sk(1 ≤ k ≤ Cout) represent kth channel is retained dur-

ing the pruning process, and the transition pk from Sk to

Sk+1 means (k + 1)th channel is retained if kth channel is

retained. The pruning process can be ended by transferring

to the terminal state T from any other state. This process

has the property that if k out of Cout channels are retained

in layer L, they must be first k channels. In other words,

given kth channel is retained, then first (k − 1) channels

must be retained, and we can further conclude that retain-

ing (k + 1)th channel is conditional independent of first

(k − 1) channels give kth channel is retained, which fol-

lows the Markov property.

3.1.1 Channel Pruning via Markov Process

We model transition in aforementioned ascyclic graph

as a stochastic process and parameterized the transi-

tion probabilities by a set of learnable parameters. We

name the learnable parameters as architecture parame-

ters for distinguishing them from network weights. Let

p(w1, w2, ..., wk−1) be the probability that first k− 1 chan-

nels are retained. The probability of retaining first k chan-

nels can be represented as:

p(w1, ..., wk) = p(wk|w1, ..., wk−1)p(w1, ..., wk−1) (2)

where p(wk|w1, ..., wk−1) is the probability of retain-

ing kth channel given first (k − 1) channels are re-

tained. Since retaining wk is conditionally independent of

{w1, w2, ...wk−2} given wk−1 is retained, hence we can

rewrite Equation 2 as:

pk = p(wk|w1, w2, ..., wk−1) = p(wk|wk−1) (3)

p(wk|¬wk−1) = 0 (4)

in which ¬wk−1 means (k − 1)th channel is discarded.

Therefore, in Figure 3, the transitions can be represented

by a set of transition probabilities P = {p1, p2, ..pCout
}

that defined by Equation 3.
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Figure 3. The Modeling of channel pruning as a Markov process.

State Sk(k = 1, 2, ....) means kth channel is retained, and transi-

tion pk is the probability of retaining kth channel given (k− 1)th

channel is retained, while 1 − pk is the probability of terminat-

ing the process. State T means the terminal state and Cout is the

maximum number of channels in each layer.

We use a set of architecture parameters A =
{α1, α2, ..., αcout

} to parameterize P , therefore pk can be

computed as follows:

pk =

{

1 k = 1

sigmoid(αk) =
1

1+e−αk
k = 2, ..., Cout, αk ∈ A

(5)

Note that we leave at least one channel for each layer, so

p1 = p(w1) = 1.
The marginal probability of sampling channel wk de-

noted by p(wk) can be computed as:

p(wk) = p(wk|wk−1)p(wk−1) + p(wk|¬wk−1)p(¬wk−1)

= p(wk|wk−1)p(wk−1) + 0

= p(w1)

k∏

i=2

p(wi|wi−1) =

k∏

i=1

pi

(6)

Then the architecture parameters are wrapped into the un-

pruned network by following equation:

Ôk = Ok × p(wk) (7)

where Ôk is the actual output of kth channel. Therefore,

pruning wk can be represented by setting p(wk) to zero.

However, we cannot directly implement Equation 7 right

after the convolutional layer, because the batch normaliza-

tion layer can scale up the value of ith channel such that

the latter layer will not be affected. So the pruning process

should be put after the batch normalization layer. An ex-

ample of how to combine architecture parameters with an

unpruned network is given in Figure 2 (b).

By the above definition, the pruned model can be sam-

pled by the Markov process, while the transitions can be

optimized by gradient descent, which will be illustrated in

Section 3.2.

3.1.2 Solution to Shortcut Issue

Note that both MobilenetV2 and ResNet have residual

blocks with shortcut connections. For the residual blocks

with identity shortcuts, the number of channels in the last

convolutional layer must be the same as the one in previous

blocks due to the element-wise summation. Many previ-

ous works [10, 9] don’t prune the last convolutional layer of

the residual block. In our method, we adopt a weight shar-

ing strategy to solve this issue such that the layers, whose

output channels must be equal, will share the same set of

architecture parameters.

3.1.3 Budget Regularization

FLOPs and latency are commonly used in evaluating

pruning methods. To perform an easy-to-implement and

fair comparison, we use accuracy at certain FLOPs as bud-

get regularization. However, budget regularization like

FLOPs cannot be naturally optimized by gradient descent.

In this section, we introduce our solution to handle the non-

differentiable budget regularization problem.

In layer L, the expected channel E(channel) can be

computed as:

E(channel) =

Cout
∑

i=1

p(wi) (8)

where Cout is the number of output channels in L and p(wi)
is the marginal probability defined in Equation 6.

In layer L, given expected input channels E(in) and out-

put channels E(out) computed as Equation 8, the expected

FLOPs E(LFLOPs) can be computed by:

E(LFLOPs) = E(out)× E(kernel op) (9)

E(kernel op) = E(in)
groups

×#channel op (10)

#channel op = (SI+SP−SK

stride
+ 1)× SK × SK (11)

where groups = 1 for normal convolution and groups =
E(in) for depth-wise convolution. SI and SK indicate in-

put width/height and kernel width/height respectively, while

SP is padding size and stride is convolution stride.

Then the expected flops of the model E(NFLOPs) is:

E(NFLOPs) =
N
∑

l=1

E(l)(LFLOPs) (12)

in which N is the number of convolutional layers. With

Equation 12, we can optimize FLOPs by gradient descent.

3.1.4 Loss Function

Given target FLOPs FLOPstarget, we formulated the

differentiable budget regularization loss lossreg as follows:

lossreg = log(|E(NFLOPs)− FLOPstarget|) (13)
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To make E(NFLOPs) strictly lower than FLOPstarget but

not too sensitive around the target, we add single side mar-

gin to the loss function, i.e. when γ × FLOPstarget ≤
E(NFLOPs) ≤ FLOPstarget is satisfied, the loss will be

zero. γ < 1 is the tolerance ratio that can be adjusted by

users.

When updating weights, the FLOPs loss has no effect on

weights, so the loss function is:

Lossweight = losscls (14)

where losscls is cross entropy loss for classification. When

updating the architecture parameters, the loss function is

formulated as below:

Lossarch = losscls + λreglossreg (15)

where λreg is hyper-parameters to balance two loss terms.

Note that we don’t add weight decay to architecture pa-

rameters. Because when the probability of keeping some

channels approaching to zero or one, the norm of learnable

parameters α will become very large, which will make them

move forward to zero and hinge the optimization.

3.2. Training Pipeline

As illustrated in Figure 2 (a), the training procedure of

DMCP can be divided into two stages, i.e. weight updating

of the unpruned network and architecture parameters updat-

ing. The stage 1 and stage 2 are called iteratively during the

training.

Stage 1: Weight updating of the unpruned network. In

the first stage, we only update weights in the unpruned net-

work. As defined in Equation 6, the probability of retaining

the kth channel can also be regarded as the probability of

retaining the first k channels. Then our method can be seen

as soft sampling all sub-structures in a single forwarding

when updating architecture parameters. In general, all chan-

nels in a layer are equal and it is not intuitive to modeling

the channel selection as Markov process. Inspired by previ-

ous work [24], which proposed a “sandwich rule” training

method that the 0.75× parts of the trained MobileNetV2

1.0× can get similar performance to it trained from scratch.

, we introduce a variant sandwich rule, into the training

scheme to make the channel groups in the unpruned model

more “important” than the channel groups right after it. So

that channels in a layer are not equal. The best choice of a

layer with k channels will be the first k channels instead of

other possible combinations. Based on this channel impor-

tance ranking property in the unpruned model, when sam-

pling a sub-network with k(k < C) channels, selecting the

first k channels can better indicate the true performance of

the sub-network (trained from scratch individually). There-

fore, it is reasonable to introduce Markov modeling.

There are two differences between our variation and

the original “sandwich rule”. First, the randomly sampled

switch (the ratio of retained channels) in each layer is not

the same. Because the pruned network may have different

switches in different layers. Second, the random sampling

of switches obeys distribution from architecture parameters

with the Markov process, instead of uniform distribution.

Because the possible number of architecture in our method

is much more than [24]. And to make all architectures re-

flect their true performance will need too much costs. Thus

we only focus on the frequently sampled architectures.

Stage 2: Architecture parameter updating. In the sec-

ond stage, we only update architecture parameters. For each

convolutional layer in the unpruned net, an architecture pa-

rameter is incorporated with its original output tensors by

Equation 7. So that gradients could be backpropagated to

the architecture parameters. And the gradients will be back-

propagated to α by following formulas:

∂Loss

∂α
(i)
j

=

Cout
∑

k=1

∂Loss

∂
ˆ

O
(i)
k

×
∂

ˆ
O

(i)
k

α
(i)
j

(16)

∂
ˆ

O
(i)
k

α
(i)
j

=

{

0 , k < j
∂pk
∂αj

O
(i)
k

∏
r∈{r|r 6=j and r≤k} pr , k ≥ j

(17)

∂pk

∂αj

= (1− pk)pk (18)

Such that all components of our method can be trained in an

end-to-end manner. To further reduce the search space, we

divide the channels into groups (≥ 10 groups) uniformly

and each architecture parameter α is responsible for one

group instead of only one channel. Each layer has the same

number of groups.

Warmup process. Before iteratively called stage 1 and

stage 2, DMCP first runs stage 1 for several epochs to warm

up, in which the sub-networks are sampled by Markov pro-

cess with randomly initialized architecture parameters. This

process aims to avoid the network dropping into bad lo-

cal minima when updating architecture parameters caused

by weights’ insufficient training. We also conduct abla-

tion study in section 4.2 to show the effectiveness of using

warmup.

3.3. Pruned Model Sampling

After DMCP training done, we then produce models that

satisfy the given cost constrain from it. In this section, we

will introduce two producing methods. The first method,

named Direct Sampling (DS), is to sample in each layer

independently by the Markov process with optimized tran-

sition probabilities. We sample several structures and only

keep the structures that lie in the target FLOPs budget.

The second method, named Expected Sampling (ES),

is to set the number of channels in each layer to be the ex-

pected channels computed by Equation 8. In our experi-

ment, lossreg is always optimized to zero, so the FLOPs of
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the expected network is equal or less than the given FLOPs

constraint. Thus the expected network also satisfies the re-

quirements.

In Section 4, we perform plenty of experiments to com-

pare these two methods. The best performance of the

pruned model sampled from Direct Sampling is a little

bit higher than the one produced by Expected Sampling

method, but it takes a much longer time to find such a

model. So in our experiments, we use the Expected Sam-

pling method to produce the final pruned model.

4. Experiments

In this section, we perform a large number of experi-

ments to validate and analyze our method. We first describe

the implementation details of DMCP in Section 4.1. To

study the effectiveness of each component in our method,

we conduct ablation experiments in Section 4.2. Finally

in Section 4.3, we compare our results with state-of-the-art

channel pruning methods. More visualizations and experi-

ments will be shown on Supplemental Materials.

4.1. Implementation Details

We demonstrate the effectiveness of our proposed differ-

entiable pruning method on ImageNet classification [20],

which contains 1000 classes. We perform experiments

on both light (MobileNetV2 [22]) and heavy (ResNet [5])

models. For MobilenetV2, we use MobilenetV2 1.5x as the

unpruned net, and the channels in each layer are divided

into 15 groups (0.1x for each group). While for ResNet,

we use standard ResNet50 (1.0x) and ResNet18 (1.0x) as

unpruned structures, the channels in each layer are divided

into 10 groups (0.1x for each group).

DMCP training. As described in Section 3.2, the training

pipeline of DMCP contains two phases: warmup and iter-

ative training. The training is conducted on 8 Nvidia GTX

1080TI GPUs with a batch size of 512. Both MobileNetV2

and ResNet are trained for 40 epochs in total, the initial

learning rate for both unpruned net and architecture param-

eters updating is 0.2 and reduced to 0.02 by cosine sched-

uler finally.

In the warmup phase, only the network weights are

trained for 20 epochs using a variant of “sandwich rule”.

In the iterative training phase, architecture parameters and

unpruned net are both trained in a total of 20 epochs. The

λreg of budget regularization is set to 0.1 in all experiments.

The tolerance ratio γ is set to be 0.99 in all the experiments.

To make the explanation brief in the following sections, we

use the shortened form of experiment settings. For example,

MBV2 1.0x-59M means the unpruned net is MobileNetV2

1.0x with target FLOPs equals to 59M.

Pruned network training. The pruned networks are pro-

duced by Direct Sampling or Expected Sampling. The de-

tails of the pruned model producing methods are illustrated

in Section 3.3. Note that all pruned models are trained from

scratch. The training of pruned models is performed on 32

Nvidia GTX 1080TI GPUs with a batch size of 2048. The

pruned MobileNetV2 is trained for 250 epochs and pruned

ResNet is trained for 100 epochs. The initial learning rate

for training all pruned models is first warming up from 0.2

to 0.8 within one epoch, then is reduced to 0 by cosine

scheduler. Other settings are the same as those in the origi-

nal paper.

4.2. Ablation Study

Recoverability verification. One property of our method

should have is that it should retain nearly all channels when

searching on a pre-trained model without FLOPs constraint.

We use pre-trained MobileNetV2 1.0x and randomly ini-

tialize the architecture parameters. Note that only the iter-

ative training phase is performed. We freeze the weight of

MobileNetV2 1.0x and trained architecture parameters with

only task loss. The result in Figure 4 shows that the FLOPs

and top-1 training accuracy of our method can recover to

those of the pre-trained model within 500 iterations.

Figure 4. The recoverability of DMCP with pre-trained Mo-

bileNetV2 1.0x and randomly initialized architecture parameters.

Expected sampling and Direct Sampling. As described

in Section 3.3, we can sample pruned models by Di-

rect Sampling (DS) and Expected Sampling (ES). We ver-

ify the effectiveness of two model producing methods on

MobileNetV2-210M and ResNet50-1.1G. We also train

MobilenetV2 0.75x and ResNet50 0.5x, whose FLOPS is

210M and 1.1G respectively, as baselines for comparison.

The performance of these two baselines are 70.4% and

71.9% separately. For DS, we sample five models and the

results are reported in Table 1. The table shows that the

performance of all models produced by DS is better than

baseline models, which means the architecture parameters

converge to a high-performance sub-space. And the perfor-

mance of model produced by ES is very close to the best

model produced by DS, which shows the effectiveness of

ES. Besides, results from Table 2 and Table 3 also show the
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robustness of the ES. For saving the cost of fine-tuning, we

use the ES to produce a model if not indicated.

DMCP ES
DS

Highest Lowest

MBV2 1.5x-210M 72.2 72.4 70.6

Res50 1.0x-1.1G 74.1 74.0 72.3
Table 1. Performance of pruned model produced by Direct Sam-

pling (DS) and Expected Sampling (ES). “Highest” and “Lowest”

means the best and worst performance among 5 models sampled

by Direct Sampling. MBV2 is short for MobileNetV2 and Res50

is short for ResNet 50.

The scale of the unpruned network. In this section, we

evaluated the influence of scaling the unpruned network.

We use two scales of MobileNetV2, i.e. MobileNetV2 1.0x

and MobileNetV2 1.5x, as unpruned network, and prune

them into 59M and 210M FLOPs. Note that in the experi-

ments, the channels in each layer are divided into 10 groups

to maintain the same group size. The results showed in Ta-

ble 2 indicate that our method is not sensitive to the un-

pruned network scale. Using the larger unpruned network

can lead to a little bit better performance. So we use Mo-

bileNetV2 1.5x and ResNet50 1.0x as our default unpruned

network in the remaining paper.

We also visualize the difference computed by subtract-

ing the number of channels each layer in MBV2 1.0x-210M

from that in MBV2 1.5x-210M in Figure 5. From the figure,

we can observe that MBV2 1.0x-210M tends to retain more

channels in shallow layers while MBV2 1.5x-210M retains

more channels in deep layers, even they only have a tiny dif-

ference in accuracy. This indicates that there exist multiple

local minima in the search space of channel pruning.

DMCP ES
DS

Highest Lowest

MBV2 1.5x-59M 62.7 62.9 60.8

MBV2 1.0x-59M 62.6 62.6 60.6

MBV2 1.5x-210M 72.2 72.4 71.4

MBV2 1.0x-210M 71.8 72.0 70.4
Table 2. The performance of pruned models in 59M and 210M

FLOPs level on MobileNetV2 (MBV2) with different unpruned

network scale.

Influence of warmup phase. We train MobileNetV2-

210M with and without the warmup phase and evaluate their

performance of the corresponding pruned models. To keep

other settings the same, we double the epochs of the itera-

tive training phase for the experiment without warming up.

In the setting without warming up, the models are trained

for 100 epochs, the initial learning rate and the scheduler in

the first 50 epochs are the same as the warmup phase. The

results in Table 3 shows that using warmup leads to bet-

ter performance. One possible reason is that using warmup

makes the weights trained more sufficiently before updat-

ing architecture parameters, which makes weights more dis-

criminable and prevents architecture parameters from trap-

ping into bad local minima.

DMCP Warmup ES
DS

Highest Lowest

MBV2-210M
X 72.2 72.4 71.4

✗ 71.4 71.2 70.5
Table 3. The influence of using warmup or not. MBV2 is short for

MobileNetV2.
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Figure 5. The difference between two pruned models from MBV2

1.5x-210M and MBV2 1.0x-210M. The x-axis indicates the layer

index and the y-axis is the difference computed by subtracting the

number of channels each layer in MBV2 1.0x-210M from that in

MBV2 1.5x-210M.

Impact of the variant sandwich rule. We ablate the im-

pact of the sandwich rule in the MobileNetV2-210M set-

ting. The original sandwich rule and our variant sandwich

rule are adopted solely in DMCP for comparison. The re-

sults are tabulated in Table 4. We can see that using the vari-

ant sandwich rule leads to better performance. The possible

reason is that the weights corresponding to higher proba-

bility will be optimized better by the variant sandwich rule.

And in these weights, each of them will be optimized bet-

ter to represent their true importance with less influence of

other weights. Thus, when updating architecture parame-

ters, the “competition” is mainly centered on them, which

makes updating more accurate.

DMCP Sandwich rule Top-1

MBV2-210M
original 71.5

our variant 72.4
Table 4. The influence of using the variant sandwich rule or not.

Training scheme. We verify the effectiveness of the

updating scheme. We conduct three experiments on

MobileNetV2-59M. All experiments use the same setting in

the warmup phase, while the settings in the iterative train-

ing phase are as follows: In the first experiment, we only

update architecture parameters with respect to budget regu-

larization (FLOPs loss); in the second experiment, we only

update architecture parameters with respect to both budget

regularization and task loss; and in the last experiment, we
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Arch. Params. updating
Weight updating Top-1

FLOPs loss Task loss

X 52.1

X X 61.5

X X X 62.7
Table 5. The influence of different components in iterative training

phase. The experiments are conducted with MobileNetV2 and all

the target FLOPs are 59M. The cell without check-mark means the

corresponding component is not used during training.

update both unpruned net and architecture parameters with

respect to the full loss function. The results are shown in

Table 5. The first experiment is a naive baseline of FLOPs

guided pruning. The layers with the same FLOPs may be

pruned to the same extent. The result is far worse than the

other experiments. Comparing with the first experiment and

the second experiment, we know that the task loss can help

to discriminate the importance of different layer even they

have same FLOPs. Finally, by comparing with the last two

experiments, we can conclude that when architecture pa-

rameters changed, the weights should also be adapted.

4.3. Comparison with stateoftheart

In this section, we compare our method with various

pruning methods, including reinforcement learning method

AMC [7], evolution method MetaPruning [16], one-shot

method AutoSlim [23], and traditional channel pruning

methods SFP [6] and FPGM [8]. The training settings of our

method in all FLOPs settings are illustrated in Section 4.1,

and our pruned models are sampled by Expected Sampling.

All methods are evaluated on MobileNetV2, ResNet18,

and ResNet50, in each type of model, we trained a set of

baseline model with setting 4.1 for comparison.

From the Table 6, we can see that our method outper-

forms all other methods under the same settings, which

show the superiority of our method. Note that AMC,

MetaPruning and our method train the pruned model from

scratch by standard hard label loss. While AutoSlim adopts

a slimmable training method in which the pruned network

share weights with unpruned net and mimic the output of

the unpruned net. To fairly compare with AutoSlim, we also

train our pruned model with the slimmable training method.

Results show that this training method can further boost the

performance, and our method surpasses AutoSlim in differ-

ent FLOPs models.

5. Conclusion

In this paper, we propose a novel differentiable method

for channel pruning, named Differentiable Markov Channel

Pruning (DMCP), to solve the defect of existing methods

that they need to train and evaluate a large number of sub-

structures. The proposed method is differentiable by model-

1Training settings of baseline and pruned models are different.

Group Model FLOPs Top-1 ∆ Top-1

MBV2

Uniform 1.0x 300M 72.3 -

Uniform 0.75x 210M 70.3 -2.0

Uniform 0.5x 97M 65.4 -6.9

Uniform 0.35x 59M 60.1 -12.2

MetaPruning[16]

217M 71.2 -0.8

87M 63.8 -8.2

43M 58.3 -13.7

AMC[7] 211M 70.8 -1.0

AutoSlim1[23] *
300M 74.2 +2.4

211M 73.0 +1.2

DMCP

300M 73.9 +1.6

211M 72.4 +0.1

97M 67.0 -2.4

87M 66.1 -6.3

59M 62.7 -9.7

43M 59.1 -13.3

DMCP*
300M 74.6 +2.3

211M 73.5 +1.2

Res18

Uniform 1.0x 1.8G 70.1 -

FPGM[8] 1.04G 68.4 -1.9

DMCP 1.04G 69.2 -0.9

Res50

Uniform 1.0x 4.1G 76.6 -

Uniform 0.85x 3.0G 75.3 -1.3

Uniform 0.75x 2.3G 74.6 -2.0

Uniform 0.5x 1.1G 71.9 -4.7

Uniform 0.25x 278M 63.5 -13.1

FPGM[8] 2.4G 75.6 -0.6

SFP [6] 2.4G 74.6 -2.0

MetaPruning[16]

3.0G 76.2 -0.4

2.3G 75.4 -1.2

1.1G 73.4 -3.2

AutoSlim[23]

3.0G 76.0 -0.6

2.0G 75.6 -1.0

1.1G 74.0 -2.6

DMCP

2.8G 77.0 +0.4

2.2G 76.2 -0.4

1.1G 74.4 -2.2

278M 66.4 -10.0
Table 6. Performance of different models on ImageNet dataset

with different FLOPs settings. ∆ Top-1 column list the accu-

racy improvement compared with unpruned baseline model (1.0×)

reported in their original work, and our baseline is indicated by

“-”. “α×” means each layer in baseline model is scaled by α.

The groups marked by * indicate the pruned model is trained by

slimmable method proposed in [23]

ing the channel pruning as the Markov process, thus can be

optimized with respect to task loss by gradient descent. Af-

ter optimization, the required model can be sampled from

the optimized transitions by a simple Expected Sampling

and trained from scratch. Our method achieves state-of-the-

art performance with ResNet and MobileNet V2 on Ima-

geNet in various FLOPs settings.
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