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Abstract

Clustering has many applications in research and in-

dustry. However, traditional clustering methods, such as

K-means, DBSCAN and HAC, impose oversimplifying as-

sumptions and thus are not well-suited to face clustering.

To adapt to the distribution of realistic problems, a natural

approach is to use Graph Convolutional Networks (GCNs)

to enhance features for clustering. However, GCNs can only

utilize local information, which ignores the overall charac-

teristics of the clusters. In this paper, we propose a Density-

Aware Feature Embedding Network (DA-Net) for the task

of face clustering, which utilizes both local and non-local

information, to learn a robust feature embedding. Specif-

ically, DA-Net uses GCNs to aggregate features locally,

and then incorporates non-local information using a den-

sity chain, which is a chain of faces from low density to

high density. This density chain exploits the non-uniform

distribution of face images in the dataset. Then, an LSTM

takes the density chain as input to generate the final feature

embedding. Once this embedding is generated, traditional

clustering methods, such as density-based clustering, can

be used to obtain the final clustering results. Extensive ex-

periments verify the effectiveness of the proposed feature

embedding method, which can achieve state-of-the-art per-

formance on public benchmarks.

1. Introduction

Thanks to the advances in face detection and recogni-

tion, face images can be conveniently collected from the

internet or surveillance cameras and further be represented

by robust feature vectors. In this situation, there arises a

requirement to analyze the face features automatically, and

clustering is a practical tool with a wide range of applica-

tions. Previously developed non-deep clustering methods

use certain global hyper-parameters to determine clustering

behavior. For example, DBSCAN relies on a threshold to

determine if two nodes should belong to the same cluster,

hierarchical clustering methods also employ some criteria

to decide when the cluster splitting or merging should be
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Figure 1. Distribution of face images using Density-Aware Fea-

ture Embedding. Circles denote face images of one cluster. Trian-

gles denote face images of another cluster. By establishing density

chain from low-density faces to high-density faces, our DA-Net

aims to capture relevant information from long-range neighbors

for obtaining better feature embedding.

stopped. However, these methods do not perform well on

face image datasets with complex distributions, because the

variation of the boundary condition of each person’s image

distribution makes it impossible to cluster face images well

enough at the same time. Therefore, a method that can learn

to deal with each cluster individually is required. Existing

deep learning-based methods for face clustering mainly fo-

cus on classifying inter-sample relationships. For example,

the approach in [23, 28] learns to recognize the pair-wise re-

lationship of whether they should belong together, and the

approach in [27] learns to classify whether several samples

belong to the same cluster.

Existing non-deep learning and deep learning ap-

proaches use visual features from the feature extraction

module directly, which introduces a number of issues.

Specifically, as the images of one person can be very differ-
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ent from the images of another person in terms of variation

on pose, illumination, and camera settings, the distributions

of intra-class features are usually different for different peo-

ple, and visual features learned or hand-crafted are still not

robust to this variation in distribution, making these cluster-

ing approaches easily include outlier samples into clusters.

Fig. 1(a) shows an example where the face images of two

identities are so close that it is hard to cluster them sim-

ply based on the original features. In this paper, we aim

to learn context-aware features embedding of an image by

using the information from its neighboring images. Better

learned features facilitate face clustering by simplifying the

inter-class feature distribution.

Inspired by the success of graph convolutional networks

(GCNs) over graph-structured data [9, 22, 7, 20], features of

an image can be refined using correlated images, by treating

each image as a node in the graph. However, standard GCN

usually relies on the affinities between the first order neigh-

bors, and the resulting features still lack the information

from features at longer distances. To take features at longer

distances into consideration, we have to stack GCN layers,

whose number of nodes involved, however, would increase

geometrically, and this method is found ineffective in pre-

vious literature [11]. For example, suppose a sample has

10 neighbors, then 10 steps of message passing along the

edges in the graph may correspond to 1010 samples/nodes

involved in the GCN, which requires too much memory and

computation to be practical for training or inference.

Since it is not a desirable option to include the whole

graph in the GCN framework, we need to select the nodes

with the most important information as the input for our net-

work. The question now is which nodes should be chosen.

Due to photo-taking habits and face detection models, faces

captured under good conditions, such as from a front-on an-

gle with suitable lighting and a neutral facial expression,

are more likely to be detected and registered to the dataset,

which we call model faces. These faces are supposed to be

the most favorable faces we want to pick out and contain

the most relevant part of non-local information. As shown

in Figure 2, we can see that the yaw angle of most faces lies

near 0, specifically, the angles of 93.58% of all faces are

within 25 degrees. Thus the problem remains of how to find

these features with higher probability density.

Even though it is impractical to estimate the distribution

itself, we can still manage to find features with higher den-

sities, and thus we can extract the more important part of

the graph to represent the non-local information. Based on

the motivations above to locally enhance features and rep-

resent non-local information by the model feature, we pro-

pose a Density-Aware Feature Embedding Network (DA-

Net) to aggregate relevant information from both local and

non-local neighbors. To be more specific about the non-

local part, we will use the term ”long range” to refer to it

in the rest of the paper. The DA-Net has two sub-networks.

The first sub-network is the local clique network based on

Figure 2. Distribution of face angle in MS-Celeb-1M dataset

GCNs, aiming to learn feature embeddings from the contex-

tual information contained in the local neighborhood. The

second is the long-range chain network based on CNNs.

It aggregates the knowledge along the chain as a learning

path, which starts from the considered sample and gradually

moves to the nearby density peak/model feature. Examples

of density chains are shown in the Fig. 1(c).

As discussed above, features with higher densities are

features of faces with better conditions. Thus, a face image

and its nearby higher density face image have a high proba-

bility of being the same person. Therefore, the chain tends

to describe consistent identities, which is the most impor-

tant part of the graph for each feature on the chain. Gener-

ating the feature embedding on the identity-consistent chain

is more likely to improve the representation. Such a method

is inspired by the assumption in [16], where cluster centers

are characterized by a density peak that has a higher den-

sity than their neighbors and is distant from other cluster

centers. Considering the nearby density peak for a sample

can better discover long-range and density-aware informa-

tion. By simplifying the relationship from the graph to the

chain, this designed network only needs to update the fea-

ture along the chain, significantly accelerating the training

and inference procedure.

In summary, (1) different from conventional face clus-

tering methods that focus on classifying inter-sample rela-

tionships, we improve the face clustering problem by learn-

ing context-aware feature embeddings, which simplifies the

inter-class feature distribution and is scalable on large-scale

datasets. (2) The feature embedding is based on a density-

guided receptive field. It captures both local neighborhood

information and long-range cluster-level information. Su-

perior clustering results are achieved on MS-Celeb-1M [6],

YouTube Faces DB [26] and IJB-B [24].
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2. Related Work

Face clustering is a challenging task due to its mas-

sive data scale, complex intra-class feature distribution,

and the ambiguous feature border of different classes.

Traditional clustering methods like K-Means[12], spectral

clustering[17], and DBSCAN[3] all rely on certain assump-

tions on data distribution, such as that the clusters are of

convex shape, similar size or the same density, and can

achieve optimum results when the actual distribution lines

up with the expected one. However, these methods ignore

the contextual information for clustering, which are not suit-

able for real-world face clustering.

Context-based Face Clustering. Contextual information

helps to cluster faces. Shi et al. [18] built a conditional

random field in the neighborhood, named Conditional Pair-

wise Clustering, to facilitate the face clustering. Lin et

al. [10] learned the minimal covering spheres of neighbor-

hoods and estimated the inter-sample similarities by a new

density-based strategy. Zhan et al. [28] encoded the pair-

wise relationships in the neighborhood into a feature vector,

then learned to determine whether two nodes belong to the

same class. Compared with these methods, GCN is a more

efficient tool for graph-structured data and can be applied

to face clustering. Wang et al. [23] proposed a linkage-

based GCN to predict the probability of the connection be-

tween a pivot node and its neighbors. Yang et al. [27]

learned to cluster in a detection-segmentation paradigm,

where GCN-Detection selected high-quality clusters from

proposals, and GCN-Segmentation identified the outliers.

However, these methods use visual features from the feature

extraction module directly and only capture short-range lo-

cal information. Our approach for updating features is com-

plementary to these approaches. As long-range neighbors

may still contain consistent semantic meanings to the con-

cerned sample, we propose two sub-networks to aggregate

relevant information from both short-range and long-range

neighbors.

GNN-based Feature Learning. A Graph Neural Net-

work(GCN) naturally makes use of local graph structure

and can learn more discriminative features for the task like

classification or linkage prediction. Deep Walk [15] is

proposed to generate graph embeddings by combining the

SkipGram model [13] with graph random walk. Similar ap-

proaches like node2vec and LINE [5] also have achieved

excellent performance. Hamilton et al. introduced Graph-

Sage [7] to compute node representations in an inductive

manner. It sampled a fixed-size neighborhood for each

node and then performed simple feature aggregation such

as mean pooling, max pooling, and LSTM[8]. In these

methods, the nodes involved in the feature learning merely

depended on the graph topology, while our method addi-

tionally exploits cluster-level feature distribution by defin-

ing the density-aware graph, and thus is more effective and

efficient for face clustering.
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Figure 3. Chain graph. The gray paths, C(vk) is the chain from

node vk to its nearby density peak. And the chain stops growing

once the next nearest higher density neighbor is too far away.
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Figure 4. Clique finding. We find a clique for each node in the

chain.

Self-supervised learning. Our method makes use of the

distribution of clusters and can be regarded as a self-

supervision method[1, 2] that employs density information

to improve the general representation power.

3. Methodology

In our approach, we first build a density-aware local

graph for each sample, then utilize the DA-Net (Density-

Aware Feature Embedding Network) to exploit the informa-

tion within the constructed graph for clustering. The DA-

Net consists of a local clique sub-network and a long-range

chain sub-network and outputs an enhanced feature for each

sample. The obtained feature embeddings of all samples are

fed to a density-based clustering strategy to produce the fi-

nal clusters.
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3.1. Data Density

We model the face images in a KNN graph, where each

image is represented by a node, and is connected to its K
nearest neighbours. For node vi, its K nearest neighbours

are represented by N (vi). To utilize non-local information,

it is essential to compress the whole graph and extract the

most important nodes. Let f(vi) be the CNN feature of

node vi normalized by its L2 norm, we believe there will be

a distribution for each person in feature space.

Given the probability density function for person l to be

pl(·), the value pl(vi) reflects the probability of the person

l’s picture of node vi being taken. In practice, it is almost

impossible to find out the exact distribution. Based on the

observation that the feature distributions of different per-

sons are non-overlap at most of the time, we utilize the

data density ρ(vi), which approximates the probability of

the person of interest. With appropriate definition of ρ, we

have asymptotic property that

ρ(vi) → pl(vi) for |D| → ∞ (1)

where D is the data collected for the person. In this way, the

feature with high data density tend to have a high probabil-

ity to be him, thus it is the feature containing the important

facial information of that person.

Consider the node vi, the data density ρ(vi) is computed

based on the neighbours of vi on the affinity graph. i.e.,

N (vi), which is:

ρ(vi) =
∑

vj∈N (vi)

〈f(vi), f(vj)〉, (2)

where their inner-product 〈f(vi), f(vj)〉 measures the sim-

ilarity between the nodes vi and vj .

3.2. Densityaware Graph Construction

The DA-Net utilizes contextual information by con-

structing a density-aware graph. The graph captures the

cluster-level structure, which gradually relates the consider

image to its non-local neighbours with higher density. For

node vk, we first generate a chain graph from vk to the

nearby density peak. The chain graph grows in multi-

ple steps, and each step sequentially adds one node to the

chain. For notation clarity, we define the chain as C(vk) =
{c1k, c2k, ..., cNk } , where cik is the node on the chain and c1k
is the very node vk. Suppose the added node at step i is cik,

then the node to be added ci+1
k is the nearest neighbor with

higher density:

ci+1
k = argmax

v
{〈f(cik), f(v)〉, v ∈ {u | ρ(u) > ρ(cik)}.

(3)

The chain grows until the inner product between the node

to be added and the last node is lower than a pre-defined

value. As illustrated in Figure 3, the chain gradually moves

from the concerned node to the most related density peak.

As mentioned in Section 3.1, neighboring samples that are

similar to c1k with a higher density are more likely to be

a model feature and correspond to the same person. There-

fore, these samples with higher data density are more useful

in representing the cluster structure and guiding the update

of the features for node c1k.

Given the chain graph {cik}Ni=1, we then extend it by at-

taching a clique to each node in the chain. The nodes in the

clique include cik and the nearest neighbors N (cik) of cik. To

alleviate the influence of irrelevant neighbors, we prune the

clique by performing a threshold choosing scheme, and the

pruned nodes are represented by:

N ′(cik) = {v| 〈f(v), f(cik)〉 > τ, v ∈ N (cik)}, (4)

where τ is an empirical value based on the original features,

and τ = 0.6 in our experiments.

3.3. Local Clique Network

The local clique network is based on GCN, aiming to

update the feature of every node in the chain. As shown in

Figure 4, for each node, it takes the corresponding clique as

input. Given the clique N ′(cik), we define the affinity matrix

A(cik) ∈ R
|N ′(cik)|×|N ′(cik)|, whose elements are computed

by the inner product. The initial feature matrix concatenates

all the original features in the clique, denoted by F 0(cik) ∈
R

|N ′(cik)|×d. In each layer of GCN, we update the feature

matrix by:

F l+1(cik) = σ(α · F l(cik)

+ (1− α) ·D−1(cik)A(c
i
k)F

l(cik)W
l), (5)

where F l(cik) is the updated features of the l-th GCN layer

for all nodes belonging to the clique of cik, D(cik) is the

diagonal matrix with Di,i(c
i
k) =

∑

j Ai,j(c
i
k), σ is the

ReLU function, and α is a learnable parameter balanc-

ing the importance of the updated features and its con-

texts. Intuitively, this formula expresses a procedure of tak-

ing weighted average of the original features in the clique,

transforming them with W l, combining with the previous

feature F l(cik), and then going through a nonlinear activa-

tion. This is similar to a CNN module but is operated on a

graph with arbitrary topology. Our method significantly ac-

celerates the training and inference by decomposing a large

graph into multiple cliques. With L layers of GCN, we ob-

tain the embedded feature of the node cik from the corre-

sponding row in FL(cik), which is denoted by φ(cik).

3.4. Longrange Chain Network

The long-range chain network is essentially a CNN-

based attention network. For node vk, the chain fea-

tures yielded by the local clique network are represented

by {φ(c1k), φ(c2k), ..., φ(cNk )}. Inspired by the “scaled dot-

product attention”[21], we use the transformer architecture

to further update the node feature as shown in Figure 5.
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Figure 5. Long-range chain network. The feature chain is pro-

cessed by an LSTM network to produce a query feature. The inner

product between the query and the key of each node produces a

weight for that node. The weights on the chain are normalized

by a softmax function and are used to summarize the final feature

embedding.

The transformer uses triplets in the form of query, key, and

value. It firstly estimates a query feature, and the query fea-

ture usually indicates what we expect to extract from the

given samples. The query is then matched against a list of

keys where each key has a value. The final value is then re-

turned as the sum of all the values weighted by the affinities

between the keys and the query.

In our method, the query feature should encode the struc-

ture of the nearby feature distributions. The constructed

chain and the associated features should be robust to the

density variations of the neighborhood. We, therefore, ap-

ply an LSTM network along the chain from c1k to cNk , which

consists of the following updating procedure: hi+1 =
LSTM(φ(ci+1

k ),hi), where the LSTM unit takes the fea-

tures φ(ci+1
k ) and hi as the input and outputs the hidden

state hi+1 corresponding to the node ci+1
k . The hidden state

at the last step hN is used as the query q(vk). The keys and

values are associated with each node in the chain, which are

projected from the features φ(cik) for i = 1, . . . , N . The key

and value corresponding to cik are represented by k(cik) and

v(cik) respectively, and the key set and the value set for the

chain C(vk) are respectively denoted by K(vk) and V(vk).
For feature aggregation, we obtain w(cik) by computing

the inner product between the query and the key. The atten-

tion weight w̄(cik) is obtained by normalizing w(cik) within

the chain using the softmax operation, i.e.,

w̄(cik) ∝ exp
(q(vk)

⊤k(cik)√
dk

)

, (6)

where dk is the dimension of k(cik). The attention weights

(a) Original (b) Local (c) Local+long-range

Peak Peak

Figure 6. Function of density-aware chain

are then used to compute the final embedding for node vk:

ψ(vk) =

N
∑

i=1

w̄(cik) · v(cik), (7)

which is exactly the proposed density-aware feature embed-

ding for node vk
Discussion The long-range chain using the density peak es-

sentially connects the samples that are more likely from the

same class. In this way, the feature learning over the chain

can effectively pull the features of the same class together,

which is desired for clustering. Figure 6 illustrates the ef-

fects of long-range chain from a boundary sample to the

density peak. Figure 6(b) shows that the local clique net-

work can make very similar features closer, forming several

clear sub-patterns that might result in wrong clustering re-

sults. Our long-range chain associates the samples in differ-

ent sub-patterns with the local density peak, obtains more

compact feature distribution for each class, and facilitates

more accurate clustering.

3.5. Connected Graph Generation

We apply simple density-based clustering method to

generate clusters. As shown in Algorithm 1, our clustering

method consists of two steps. The first step is to generate

edges for adjacent nodes, which has a time complexity of

O(n log n). The second step is to find the clusters by con-

necting edges. It is dependent on the speed of finding the

connected graph, and the time complexity of finding cluster

is O(log n) while using [4]. Moreover, our feature is also

compatible with other clustering methods, e.g., K-Means,

DBSCAN.

4. Experiments

Datasets and evaluation metric. Our proposed method

is evaluated on three public face clustering benchmarks,

MS-Celeb-1M [6], YouTube Faces DB [26] and IJB-B [24].

MS-Celeb-1M consists of 100K identities and about 10M

images. We divide it into training and testing sets using the

same setting as [27]. YouTube Faces DB contains 3,425
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Algorithm 1 Density-based Clustering

Input: feature set Ψ, threshold θ, the number of neighbors

k
Output: clusters C

1: procedure CLUSTERING

2: E = GENERATING EDGES(Ψ, θ, k)

3: C = Use Union-Find Algorithm [4] to find con-

nected graphs on E .

4: return C

5: end procedure

6: function GENERATING EDGES(Ψ, θ, k)

7: E = ∅
8: for all ψ(vi) in Ψ do

9: Find its k nearest neighbors vj ∈ N (vj)
10: if 〈ψ(vi), ψ(vj)〉 > θ then E = E∪ {{vi, vj}}
11: end if

12: end for

13: return E

14: end function

videos and 1,595 identities, where we use 159 identities

for training and the other 1,436 for testing. IJB-B consists

of three sets, which include 512, 1,024, 1,845 identities,

and 18,171, 36,575, 68,195 samples, respectively, and we

use the model trained on MS-Celeb-1M for testing cluster-

ing. For a fair comparison, we use the features provided by

[27] as the original feature when evaluating on MS-Celeb-

1M and YouTube Faces DB, and use IJB-B feature pro-

vided by [23]. For MS-Celeb-1M and YouTube Faces DB,

we adopted pairwise recall, precision and F-score to mea-

sure the clustering performance, as in [27]. For the IJB-B

dataset, we follow its official protocol [24] and adopt the

B-Cubed F-score for evaluation.

Implementation Details. In the DA-Net, the local clique

network employs a two-layer GCN, and the long-range

chain network employs a two-layer LSTM for query fea-

ture, two-layer linear transformations for keys and values.

We train the DA-Net in an end-to-end fashion. The local

clique network takes the density-aware graph as input to

update the features on the chain. The long-range chain net-

work summarises the chain to obtain the final density-aware

feature embedding. We impose a softmax classification loss

over the feature embedding. The network is trained with a

learning rate of 0.01 and the SGD optimizer. Most param-

eters are learnable, except in the long-range chain network,

where we use K = 256 nearest neighbors to find the local

density.

4.1. Ablation Analysis

Our ablation study is conducted on MS-Celeb-1M. To

better evaluate our method, we utilize four kinds of fea-

(a) Ground-truth

(b) original (c) local

(d) long-range (e) local+long-range

Figure 7. Feature distribution visualization on t-SNE. Several iden-

tities are illustrated. Nodes of the same color indicates faces of the

same identity in (a) and predicted clusters in (b) (c) (d) and (e). (a)

is the ground-truth label for (b). We can observe that most of the

samples in (b) are mis-classified into one cluster. After generating

local and long-rang network, the features are more compact, thus

the predicted result is more accurate.

tures. Specifically, original indicates original features; the

local clique network generates local only features; the long-

range chain network outputs long-range only feature when

taking the original features as input; and the overall frame-

work produces local+long-range features.

Local clique network and long-range chain network.

We evaluate the main components of our method in two

folds: (1) clustering performance; (2) the discriminative

power of the feature embedding.
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Figure 8. ROC curve of MS-Celeb-1M. Under the same false posi-

tive rate, true positive rate of local+long-range feature significantly

outperforms the original one.

Clustering performance. First, we evaluate the cluster-

ing performance from different settings of features when

the connected graph generation module is used for clus-

tering. As shown in Tables 1 and 2, in the MS-Celeb-1M

dataset, we can see that both the short-range and the long-

range features outperforms original features by 14.47% and

9.68% in F-score, respectively. Furthermore, combining lo-

cal neighbor structure with long-range chain structure, the

short+long-range features achieve 90.60% in F-score.

Feature discriminative power. We utilize the ROC curve

to illustrate the discriminative power of our feature embed-

ding. As shown in Figure 8, under the same false-positive

rate, the true-positive rate of the short+long feature is much

higher than that of other features. On the other hand, we vi-

sualize the evolution of the data distribution when applying

different components.

Network depth study. As shown in Table 5, the deeper

structure the GCN and LSTM they have, the better results

their will achieve. We believe a better base network (though

not our focus) could further improve the performance.

Feature distribution analysis. After our DA-Net, the

features will be more identity-relevant. In other words, the

distribution in the embedding space is more compact and

discriminative. To see how the distribution is optimized, we

first select 10 identities that are close and put their original

features, local only features and local+long-range features

all together into the t-SNE mapping training to visualize

their distribution shown the Figure 7, the local clique net-

work tends to gather local neighbors together. However, it is

unable to recognize long-range relationships, thus combines

distinct classes into one cluster. On the other hand, the long-

range chain network captures distant neighbors but leaves a

Figure 9. Sensitivity analysis on MS-Celeb-1M. The vertical line

in the middle represents the best threshold for clustering.

sparse cluster distribution. After utilizing the strengths from

both local and long-range relationships, features are more

inner-class compact and inter-class discriminative. Experi-

ments on the other two datasets in Tables 2 and 3 also vali-

date our assumption.

As mentioned, we use a simple labeling scheme that uses

a global threshold to decide if two features are from the

same class. However, as long as the image distribution re-

mains various, it is impractical to prevent merging different

classes and splitting samples of the same class simultane-

ously. This is reflected by the sensitivity of the clustering

performance. As shown in Figure 9, the local+long-range

features are more robust to the clustering threshold. This is

because of the shrinkage of the intra-class feature distribu-

tion, which significantly simplifies the clustering task.

Compatibility. Our method improves face clustering by

learning a density-aware feature embedding. This embed-

ding is compatible with other clustering methods. As shown

in Table 4, clustering with local+long-range features outper-

forms using original features in pairwise precision, recall,

and F-score.

4.2. Method Comparison

We compare our method with two sets of clustering ap-

proaches. One is the conventional approaches, including

K-Means [12], Density-Based Spatial Clustering of Appli-

cations with Noise (DBSCAN) [3], Hierarchical Agglom-

erative Clustering (HAC) [19], Approximate Rank Order

(ARO) [14]. The other is learning based methods, includ-

ing CDP [28], Learning to Cluster (LearnClust) [27] and

linkage-GCN [23].

The experimental results are presented in Tables 1 to 3.

These show that our method outperforms other approaches

on all datasets. Specifically, in MS-Celeb-1M dataset, our
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Methods Precision Recall F-score Time

K-Means [12] 52.52 70.45 60.18 13h

DBSCAN [3] 72.88 42.46 53.50 100s

HAC [19] 66.84 70.01 6.839 18h

ARO [14] 81.10 7.30 13.34 250s

CDP [28] 80.19 70.47 75.01 350s

LearnClust [27] 98.24 75.93 85.66 2200s

original 85.63 62.17 72.04 30s

local only 93.50 80.50 86.51 178s

long-range only 94.94 71.73 81.72 181s

local+long-range 95.88 85.87 90.60 329s

Table 1. Comparison on MS-Celeb-1M.

Methods Precision Recall F-score

K-Means [12] 60.65 59.60 60.12

DBSCAN [3] 72.88 42.46 53.5

HAC [19] 99.64 87.31 93.07

ARO [14] 81.1 7.3 13.34

CDP [28] 98.32 89.84 93.89

LearnClust [27] 96.75 92.27 94.46

original 98.25 86.57 92.04

local only 99.47 89.86 94.42

long-range only 97.67 88.30 92.75

local+long-range 97.44 92.86 95.10

Table 2. Comparison on YouTube Faces DB.

Methods F512 F1024 F1845

K-Means [12] 0.612 0.603 0.600

DBSCAN [3] 0.753 0.725 0.695

ARO [14] 0.763 0.758 0.755

GCN-A [23] 0.833 0.833 0.814

original 0.785 0.765 0.758

local only 0.827 0.807 0.793

long-range only 0.806 0.797 0.802

local+long-range 0.834 0.833 0.828

Table 3. Comparison on IJB-B. F512, F1024, F1845 are F-scores of

different sets.

method outperforms the state-of-the-art method LearnClust

[27] by 5%, and is substantially better than conventional

methods. In YouTube Faces DB and IJB-B-1845, our

method outperforms the state-of-the-art by 0.64% and 1.4%

respectively. Our approach generates a context-aware fea-

ture, which makes it compatible with other clustering meth-

ods, such as K-Means and LearnClust.

Comparison on efficiency and complexity. In our work,

the computational complexity arises from three parts: the

density-aware graph construction, the network inference,

and the cluster generation. The graph construction is

Methods Precision Recall F-score

K-Means+original 52.52 70.45 60.18

K-Means+local

+long-range
89.28 89.78 89.53

DBSCAN+original 72.88 42.46 53.50

DBSCAN+local

+long-range
97.17 79.79 87.63

Table 4. Compatibility analysis.

Layer settings Precision Recall F-score

2 layer GCN 93.50 80.50 86.51

2 layer GCN

+ 2 layer LSTM
95.88 85.87 90.60

4 layer GCN 97.12 78.46 86.80

4 layer GCN

+ 4 layer LSTM
95.96 86.71 91.10

Table 5. Increase parameters on MS-Celeb-1M.

the most time-consuming part with a time complexity of

O(n2). With approximate nearest neighbor search [25],

the searching complexity reduces to O(n log n). Then, the

graph is only constructed based on the local neighbors,

hence the number of graph grows linearly with the num-

ber of data, thus the network inference cost is O(n). Be-

sides, the complexity of cluster generation module is O(n)
as mentioned in Section 3.5. Consequently, the overall com-

plexity is O(n log n), which means it is efficient and scal-

able.

From Table 1, it is clear that our method is much faster

compared to other network-based methods and is even com-

parable with the fastest traditional methods. Specifically,

our approach only costs 15% of the time when compared

with related GCN-based method LearnClust [27], because

the graph in LearnClust constructed is based on the set of

nodes generated by cluster proposal, which may involve

much more nodes for GCN than the nodes involved using

our density-aware graph construction.

5. Conclusion

This paper has presented a density-aware feature embed-

ding framework. It uses GCN to obtain local context and

uses a density-aware long-range chain to capture cluster-

level information effectively. An LSTM network is applied

along to the density-aware chain to aggregate different lo-

cal information to a unified feature embedding for each

node. Efficient clustering algorithm is performed over the

improved features. Extensive experimental results on three

benchmark datasets and different clustering approaches val-

idate the effectiveness of the proposed DA-Net.
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