
Multi-Dimensional Pruning: A Unified Framework for Model Compression

Jinyang Guo Wanli Ouyang Dong Xu

School of Electrical and Information Engineering, The University of Sydney

{jinyang.guo,wanli.ouyang,dong.xu}@sydney.edu.au

Abstract

In this work, we propose a unified model compression

framework called Multi-Dimensional Pruning (MDP) to si-

multaneously compress the convolutional neural networks

(CNNs) on multiple dimensions. In contrast to the existing

model compression methods that only aim to reduce the re-

dundancy along either the spatial/spatial-temporal dimen-

sion (e.g., spatial dimension for 2D CNNs, spatial and tem-

poral dimensions for 3D CNNs) or the channel dimension,

our newly proposed approach can simultaneously reduce

the spatial/spatial-temporal and the channel redundancies

for CNNs. Specifically, in order to reduce the redundancy

along the spatial/spatial-temporal dimension, we downsam-

ple the input tensor of a convolutional layer, in which the

scaling factor for the downsampling operation is adaptively

selected by our approach. After the convolution operation,

the output tensor is upsampled to the original size to en-

sure the unchanged input size for the subsequent CNN lay-

ers. To reduce the channel-wise redundancy, we introduce a

gate for each channel of the output tensor as its importance

score, in which the gate value is automatically learned. The

channels with small importance scores will be removed af-

ter the model compression process. Our comprehensive ex-

periments on four benchmark datasets demonstrate that our

MDP framework outperforms the existing methods when

pruning both 2D CNNs and 3D CNNs.

1. Introduction

With the popularity of Convolutional Neural Networks

(CNNs) for various computer vision applications, several

model compression technologies were developed (see Sec.

2 for more details) to deploy CNNs on resource constrained

platforms. Among these techniques, the channel pruning

methods [8, 23, 38] aim to reduce the redundancy along the

channel dimension of CNNs. However, substantial redun-

dancy also exists on the spatial/spatial-temporal dimension

of CNNs (i.e., spatial dimension for 2D CNNs, spatial and

temporal dimensions for 3D CNNs), which is not consid-

ered by the existing channel pruning methods.

Figure 1(a) shows the output feature maps of four con-

(a)

Downsampling

(b)

Figure 1: (a) Feature maps of four consecutive frames gen-

erated from the output tensor of the first convolutional layer

(the C3D model [31] is used for illustration). The hand po-

sition of the person is mostly identical in these frames. (b)

The downsampled tensor, in which the information is al-

most the same as the original output tensor.

secutive frames generated from the output tensor of the first

convolutional layer in the C3D model [31]. This figure

shows the scenario that a person is diving, with the spatial

resolution of 112 × 112 per frame. From Figure 1(a), we

notice that there is minimal information in the background

(the blue part) and the person (the red part) is mostly identi-

cal in the four frames, which indicates that the redundancies

in CNNs also exist along the spatial and temporal dimen-

sions. We downsample this output tensor on both spatial

and temporal dimensions. As shown in Figure 1(b), af-

ter downsampling, the spatial resolution of each frame is

halved (i.e., from 112 × 112 to 56 × 56) and four consec-

utive frames are reduced to two frames. The information in

Figure 1(b) is almost the same as Figure 1(a) and we can

still recognize that the person is diving after the downsam-

pling operation, which indicates that the spatial-temporal

redundancy (STR) can be reduced with minimal informa-

tion loss by downsampling the tensors in CNNs.

In order to reduce the redundancies along multiple di-

mensions, one can perform different model compression

algorithms in a step-by-step fashion by firstly pruning the

channels and then reducing the STR. However, this solution

is often sub-optimal because the dependency from different

pruning stages is not well explored in the step-by-step prun-

ing process. For exmaple, if we prune the channels in the

first step and then reduce the STR in the next step, the chan-

11508



nels considered as unimportant in the first pruning stage

may become important after reducing the STR of CNNs.

However, we cannot recover these channels in the second

pruning stage because they have already been removed in

the first stage, which degrades the performance of the com-

pressed model. Different channels in CNNs often pay at-

tention to different parts of feature maps. Before reduc-

ing the STR, the channels with detailed information may be

more important than those with overall information as the

details in the high resolution feature maps can provide rich

information to CNNs. Therefore, the channels with over-

all information will be removed. After reducing the STR,

the resolution of the feature maps will be reduced and the

details in these feature maps will be lost. In this case, the

channels with less details might become more informative

when compared with the high resolution case. As a result,

we should keep the channels with overall information.

To address the aforementioned issue, we propose a

new unified framework called Multi-Dimensional Prun-

ing (MDP) to simultaneously reduce the spatial/spatial-

temporal and the channel redundancies in CNNs in an end-

to-end fashion. Specifically, our MDP framework consists

of three stages: the searching stage, the pruning stage, and

the fine-tuning stage. In the searching stage, we construct

an over-parameterized network by expanding each convolu-

tional layer to multiple parallel branches, in which different

branches correspond to information processing at different

spatial/spatial-temporal resolutions. The information from

different branches will be aggregated based on their impor-

tance scores. We also introduce a gate for each channel

to indicate its importance. The importance scores of the

branches and the channels are automatically learned in the

searching stage. In the pruning stage, we prune the branches

and channels based on their importance scores. We finally

fine-tune the compressed model to recover from the accu-

racy drop.

To the best of our knowledge, this is the first unified

model compression framework that can simultaneously re-

duce the spatial and channel redundancy for 2D CNNs,

and the spatial, temporal, and channel redundancy for 3D

CNNs. When compared with the existing channel pruning

methods [21, 38] or other methods that aim at reducing the

STR [4, 33, 39], our MDP framework has several advan-

tages: (1) The MDP framework is a unified model com-

pression framework, which is suitable for both 2D CNNs

and 3D CNNs. (2) The optimal combination of selected fea-

tures from multiple dimensions (i.e., the selected branches

for the spatial/spatial-temporal dimension, and the selected

channels for the channel dimension) can be automatically

learned in the searching stage, which can solve the sub-

optimal problem in the alternative approach that sequen-

tially uses different model compression algorithms in a

step-by-step fashion.

The experiments on four benchmark datasets demon-

strate the effectiveness of our proposed MDP framework for

both image classification and video classification tasks.

2. Related Work

Channel pruning. Channel pruning technologies [23, 8,

38, 35, 24, 7, 22, 37] aim to reduce the channel-wise redun-

dancy in CNNs. In [18], Lin et al. proposed to use adver-

sarial learning to prune the redundant structures in CNNs.

Guo et al. [5] pruned the channels by using the guidance

from the classification loss and feature importance. How-

ever, the existing channel pruning methods ignore the STR

in CNNs. Unlike these channel pruning methods, our MDP

framework can additionally reduce the redundancy along

the spatial/spatial-temporal dimension.

Spatial/spatial-temporal redundancy reduction. Re-

cently, many methods [4, 12] were proposed to reduce

the spatial redundancy when designing the architectures of

CNNs. For example, Chen et al. [4] proposed to replace

the vanilla convolution by the octave convolution. On the

other hand, several network architectures [33, 39, 17] were

proposed to reduce the temporal redundancy in 3D CNNs.

TSN [33] uses the sparse temporal sampling strategy to re-

duce the computational cost for long-term temporal struc-

ture. ECO [39] mixes 2D and 3D networks to save compu-

tation. The goals of these methods [4, 12, 33, 39, 17] are

to design new type of convolution operations or network ar-

chitectures instead of compressing a given network. In con-

trast, we aim to compress a given model by jointly pruning

the network along the spatial and channel dimensions for

2D CNNs, and along the spatial, temporal, and channel di-

mensions for 3D CNNs. Due to the newly designed convo-

lution operations or network structures, these methods are

not suitable for model compression as they need to train the

models from scratch. Therefore, these approaches cannot

transfer the information from the pre-trained model to the

compressed model, which will degrade the performance of

the compressed models. Moreover, these methods only fo-

cus on how to reduce the redundancy along one dimension

(spatial or temporal). In contrast, our approach can jointly

reduce the redundancies along multiple dimensions, which

thus achieves better performance.

Multi-scale representation learning. Multi-scale repre-

sentation learning [10, 30, 19] has been demonstrated to

be effective for many computer vision tasks. For example,

Elastic-Net [32] introduces the elastic module in CNNs to

extract multi-scale feature representations. In [16], the fea-

tures from multiple scales are concatenated to obtain the

information from different scales. The goal of these multi-

scale representation learning approaches is to capture the

information of features at different scales, but our MDP

framework aims to compress a given CNN to obtain a more

efficient network.

1509



ConvAverage pooling Upsampling

The corresponding layer in the over-parameterized network

Output tensor

(two channels)

!"#$%ℎ'

((*+)

((*.)

((*')

Conv

The original layer

Input tensor 

(three channels)

Output tensor

(two channels)

Conv

Input tensor

(three channels)

Average pooling

…

Gates

/','

/',.

/.,'

/.,.

/+,'

/+,.

!"#$%ℎ.

!"#$%ℎ+

width

height
depth

Conv Upsampling

…

…
…

Figure 2: Construction of the over-parameterized network. We expand each convolutional layer into multiple parallel

branches and introduce a gate to each channel of the output tensor at each branch. In this figure, S(·) and g·,· are the

importance scores for the branches and the gate values for the gates, respectively. The input tensors (with 3 channels) and the

output tensors (with 2 channels) and other tensors are all 4th order tensors, which are shown as three or two 3rd order tensors

for better presentation. For the convolution operation, we use two filters to generate the output tensors with two channels.

Network architecture search. While our MDP method is

also related to the network architecture search methods [20,

2], we aim to reduce the redundancies in CNNs by pruning a

given model along different dimensions instead of searching

the optimal network architecture as in [20, 2].

3. Multi-Dimensional Pruning

In this section, we take the process of compressing 3D

CNNs as an example to introduce our MDP framework,

which is a more general case. The algorithm for compress-

ing 2D CNNs can be readily obtained.

3.1. Overview

Our MDP framework consists of three stages: the

searching stage, the pruning stage, and the fine-tuning

stage. In the searching stage, we firstly construct an over-

parameterized network from any given original network to

be pruned and then train this over-parameterized network

by using the objective function introduced in Sec. 3.2.2.

In the pruning stage, we prune the unimportant branches

and channels in this over-parameterized network based on

the importance scores learned in the searching stage. In the

fine-tuning stage, we fine-tune the pruned network to re-

cover from the accuracy drop.

3.2. The searching stage

3.2.1 Overview of the over-parameterized network

In the searching stage, we firstly construct an over-

parameterized network from any given original network.

The compressed model can be obtained by pruning this

over-parameterized network. Figure 2 shows one convolu-

tional layer (left) in the original network and its correspond-

ing layer (right) in the over-parameterized network. We ex-

pand each convolutional layer into several parallel branches

in the corresponding layer of the over-parameterized net-

work. Since we only focus on one convolutional layer in

most places in this section, we omit the index of this layer

when introducing each operation except in Eq. (3), where

the layer index is denoted as the superscript ·(l) for the l-th

layer.

In each branch, we perform the following operations: (1)

We downsample the input tensor of the convolutional layer

by applying average pooling along the spatial and/or tem-

poral dimension. In our implementation, we downsample

the input tensor to 4 different resolutions along the spatial

dimension with four scaling factors 1, 2, 3, and 4, where the

scaling factor of 1 means there is no downsampling opera-

tion (i.e., identity mapping). We also downsample the input

tensor with four different scaling factors (1, 2, 3, and 4)

along the temporal dimension. Therefore, the total number

of branches in each layer of the over-parameterized network

is 4 × 4 = 16 after performing the downsampling opera-

tion along the spatial and temporal dimensions. In Figure 2,

we have three channels of the input tensor of this layer X

(the blue part) and each channel is represented as one blue

block. There are 4 frames along the temporal dimension

in each channel, which is represented as the depth of each

blue block. For branch2 in Figure 2, we downsample X by

1510



using the scaling factor of 2 and 1 along the spatial dimen-

sion and the temporal dimension, respectively. We obtain

the downsampled tensor I
2 in branch2, which is marked

as green. In this case, the height/width of I2 becomes half

of the height/width of X while the number of frames is 4

in both X and I
2. Similar to the downsampling operation

in branch2, we downsample X by using the scaling factor

of 4 and 2 along the spatial dimension and the temporal di-

mension in branchi, respectively. The downsampled input

tensor of this branch I
i is marked as yellow. In this case,

the height/width of Ii become a quarter of the height/width

of X and 4 frames in X are downsampled as 2 frames. (2)

The downsampled tensor of each branch is fed into the con-

volutional layer. The parameters of the convolutional lay-

ers in all branches of the over-parameterized network are

copied from the original network. (3) After the convolu-

tional layer, we multiply each channel by a gate, which is

indicated as g·,· in Figure 2. The gate is used for evaluating

the importance of each channel and its value is simultane-

ously learned with the parameters of convolutional layers

in the searching stage. (4) After the convolution operation,

we upsample the output tensor of the convolutional layer

to the original size so that the output tensors from different

branches can be integrated without resolution mismatch. In

our implementation, we choose the simple nearest neigh-

bour interpolation method for the upsampling operation be-

cause it does not require any computation and achieves good

results in our proposed framework.

The upsampled tensors from multiple branches are inte-

grated into the final output tensor of this layer in the over-

parameterized network. Inspired by DARTS [20], we use

weighted sum as the integration strategy and the weights

are indicated as S(·) in Figure 2.

3.2.2 Formulation

Formally, for constructing the over-parameterized network

of 3D CNNs at each layer, let us denote the input tensor

at this layer as X ∈ R
cin×din×hin×win where cin is the

number of input channels for this layer, din is the length

of the input tensor along the temporal dimension, and hin

and win are the height and width of the input tensor, re-

spectively. Similarly, the output tensor at this layer can be

denoted as Y ∈ R
cout×dout×hout×wout , where cout is the

number of output channels for this layer, dout is the length

of the output tensor along the temporal dimension, and hout

and wout are the height and the width of the output ten-

sor, respectively. The convolutional layer connects the input

tensor X and the output tensor Y by a given transforma-

tion (e.g., a convolution operation) T , where Y = T (X).
Suppose we have B branches for this layer in the over-

parameterized network, the output tensor of this layer in the

over-parameterized network can be written as follows:

Y =

B∑

i=1

S(λi) · Ui{Ti[Ai(X)]}, (1)

where Ai, Ti, and Ui are the average pooling operation, the

transformation function, and the upsampling operation in

the i-th branch at this layer, respectively. λi is the learnable

parameter in the i-th branch and S(·) is the softmax func-

tion, namely, S(λi) =
exp(λi)∑

B

b=1 exp(λb)
. Note S(λi) represents

the importance score of the i-th branch at this layer.

Denote I
i as the pooled input tensor of the i-th branch

at this layer after using the average pooling operation, i.e.,

I
i = Ai(X). Denote I

i
j,:,:,: as the j-th channel of Ii. In the

i-th branch, the output after performing the transformation

operation Ti can be written as follows:

O
i
k,:,:,: = gi,k ·

cin∑

j=1

I
i
j,:,:,: ∗W

i
k,j,:,:,:, (2)

where Oi is the output tensor before the upsampling opera-

tion in the i-th branch and O
i
k,:,:,: is the k-th channel of Oi.

W
i ∈ R

cout×cin×dkr×hkr×wkr is the weight tensor for the

convolution operation where the subscript kr denotes the

kernel/filter. gi,k is the gate value for the k-th channel in

the i-th branch. * is the convolution operation. We omit the

bias term and the activation function in Eq. (2) for better

presentation.

Objective function. After independently constructing the

over-parameterized network at each layer, we train the over-

parameterized network by using the following objective

function, which is inspired by [21, 2]. For better presenta-

tion, we additionally introduce the superscript ·(l) to denote

the corresponding symbols of the l-th layer in the following

objective function.

argmin
Θ,λ,G

L = Lc + αLst + ηLgate,

where Lst =

L∑

l=1

B(l)∑

i=1

S(λ
(l)
i ) · F(T

(l)
i ),

Lgate =

L∑

l=1

B(l)∑

i=1

c
(l)
out∑

k=1

‖g
(l)
i,k‖1.

(3)

Lc is the standard cross-entropy loss. Lst is the penalty to

control the computational complexity, with which we ex-

pect the importance scores of most branches are close to

zero so that most branches will be removed in the pruning

process. Lgate is the l1-norm based regularizer that enforces

the gate values g
(l)
i,k from most branches and channels to be

close to zero so that these channels can be safely removed

in the pruning process. L is the total number of layers in

our network and B(l) is the number of branches at the l-th

layer. Θ is the parameters of the whole network. At the

searching stage, Θ is initialized from the original network

to be pruned. λ is the set containing the learnable parame-

ters λ
(l)
i from all the layers, λ = {λ

(1)
1 , λ

(1)
2 , . . . , λ

(l)
i , . . . }

1511



Average pooling Conv Upsampling
Output tensor

Input tensor

Figure 3: Illustration of the pruning stage (the selected

branch of one layer is used as an example for illustration).

For this layer, we select the i-th branch and the second chan-

nel of the i-th branch in the over-parameterized network in

Figure 2.

where λ
(l)
i is the learnable parameter to obtain the impor-

tance score for the i-th branch at the l-th layer. G is the

set containing the gate values for all channels from all lay-

ers, G = {g
(1)
1,1, g

(1)
1,2, . . . , g

(l)
i,k, . . . } where g

(l)
i,k is the gate

value for the k-th channel of the i-th branch at the l-th layer.

F(T
(l)
i ) denotes the number of floating point operations

(FLOPs) of the transformation T
(l)
i at the l-th layer, which

is widely used for computational complexity measurement.

α and η are two coefficients to balance different losses. ‖·‖1
denotes the l1 norm. We can control the compression ratio

by adjusting the values of α and η. Specifically, higher val-

ues of α and η will result in higher compression ratio.

3.3. The pruning stage

We perform the pruning process after the searching stage

is finished. At each layer, we only select the branch with the

largest importance score and prune other branches, and we

also prune the channels with small gate values in the se-

lected branch. In Figure 3, we show the pruning process

for one convolutional layer. Here, we ignore the superscript

·(l) again for better presentation. Suppose the i-th branch

in Figure 2 has the largest importance score S(λi). In this

case, in the pruning stage, we keep the i-th branch and re-

move other branches at this layer. At the same time, let us

assume the second channel of this branch has the largest

importance score gi,2. Therefore, we preserve the second

channel and remove the first channel. As shown in Fig-

ure 3, we finally arrive at the pruned network for this layer

after the pruning stage.

3.4. The finetuning stage

We perform the fine-tuning process on the pruned net-

work to recover from the accuracy drop. After the fine-

tuning stage, the compressed model is obtained.

3.5. Compressing 2D CNNs

Compressing 2D CNNs by using our MDP framework

is a special case of compressing 3D CNNs. For 2D CNNs,

we only apply the average pooling operation for downsam-

pling along the spatial dimension. Similar to the process

of compressing 3D CNNs, we downsample the input tensor

by using the scaling factors of 1, 2, 3, 4. In this case, we

have 4 branches for each layer in the over-parameterized

network. At the same time, we only upsample the output

tensor of each branch along the spatial dimension. After

constructing the over-parameterized network, the following

stages are the same as those for pruning 3D CNNs.

3.6. Comparison with other methods

Our work is related to multi-scale representation learning

approaches [16, 32] and channel pruning methods [21, 18].

However, our work is different from these methods in both

motivation and formulation. The multi-scale representation

learning approaches aim to capture the multi-scale informa-

tion to improve the accuracy of CNNs. Therefore, multiple

branches are selected and preserved in the final model in

[16, 32]. In contrast to these two methods, our work aims

to compress CNNs and only one branch is preserved in the

compressed model. Although the channel pruning methods

in [21, 18] also prune the channels based on the learnable

importance scores, the spatial-temporal redundancy is not

explored in their works [21, 18].

4. Experiments

In order to demonstrate the effectiveness our MDP

framework, we compare our MDP approach with sev-

eral state-of-the-art model compression methods, includ-

ing ThiNet [23], Channel Pruning (CP) [8], Slimming

[21], Width-multiplier (WM) [9], DCP [38], GAL [18],

Taylor Pruning (TP) [24], Filter Pruning (FP) [15], and

Regularization-based pruning (RBP) [36] on four bench-

mark datasets: CIFAR-10 [13], ImageNet [26], UCF-101

[29], and HMDB51 [14].

The percentage of the number of floating point opera-

tions [#FLOPs(%)] in this section refers to the ratio of the

FLOPs from the pruned network over that from the original

network, which is a commonly used criterion for computa-

tional complexity measurement.

Datasets. CIFAR-10 and ImageNet are used to evaluate

the effectiveness of our proposed method when pruning 2D

CNNs for the image classification task. CIFAR-10 con-

sists of 50k training images and 10k testing images from

10 classes. ImageNet is a large dataset, which contains over

1 million training images and 50k testing images from 1000

categories. On the other hand, UCF-101 and HMDB51 are

used to evaluate the performance of our MDP method when

pruning 3D CNNs for the video classification task. Specifi-

cally, UCF-101 consists of 13,320 videos from 101 classes,

while HMDB51 contains 6,766 videos from 51 classes.

Implementation details. Based on the original network,

we apply our MDP approach to compress the model along

1512



Model ThiNet [23] CP [8] Slimming [21] WM [9] DCP [38] MDP

VGGNet

(Baseline 93.99%)

#FLOPs (%) 50.00 50.00 49.02 50.00 34.97 24.84

Acc. (%) 93.85 93.67 93.80 93.61 94.57 94.57

ResNet-56

(Baseline 93.74%)

#FLOPs (%) 50.25 50.00 - 50.25 50.25 45.11

Acc. (%) 92.98 91.80 - 93.24 93.49 94.29

MobileNet-V2

(Baseline 95.02%)

#FLOPs (%) - - - 73.53 73.53 71.29

Acc. (%) - - - 94.02 94.69 95.14

Table 1: Comparison of Top-1 accuracies from different model compression methods for compressing VGGNet, ResNet-56,

and MobileNet-V2 on the CIFAR-10 dataset. When using the CP method [8], we directly quote the results in the original

work [8] for compressing ResNet-56. The other results are copied from the work in [38].

Model ThiNet [23] CP [8] WM [9] DCP [38] DCP+SP GAL [18] MDP

ResNet-50

(Baseline 92.94%)

#FLOPs (%) 44.44 50.00 44.44 44.44 45.47 45.06 44.29

Top-5 Acc. (%) 90.02 90.80 91.31 92.32 92.46 90.82 92.66

MobileNet-V2

(Baseline 90.56%)

#FLOPs (%) 55.25 - 55.25 55.25 - - 56.85

Top-5 Acc. (%) 86.44 - 85.51 86.34 - - 88.86

Table 2: Comparison of Top-5 accuracies from different model compression methods for compressing ResNet-50 and

MobileNet-V2 on ImageNet. For the state-of-the-art works, we directly quote the results from [38].

multiple dimensions. We adjust the #FLOPs by choosing

different values of α and η. For image classification, we

use the SGD optimizer with nesterov for optimization at

the searching stage. On CIFAR-10, the initial learning rate,

the batch size, and the momentum are set to 0.1, 256, and

0.9, respectively. The settings on ImageNet are the same

as CIFAR-10 except that the initial learning rate is set to

1e−2. In the fine-tuning stage, we follow [18] to fine-tune

the pruned network with hint [25] from the last layer. The

other settings are the same as the searching stage.

For the C3D model [31] used in the video classification

task, we follow [36] to split each video into several non-

overlapped clips with 16 frames as the input of the network.

For Inflated 3D (I3D) ConvNet [34], we pre-train the model

[1] based on kinetics [3, 11] and fine-tune the pre-trained

model on UCF-101 and HMDB51 to obtain the original

models before model compression. For fair comparison, we

follow [1] to use the frame length of 32 as the input size.

The initial learning rate, the batch size, and the weight de-

cay are set to 1e−3, 32, and 5e−4, respectively. The other

settings are the same as ImageNet.

4.1. Results on CIFAR10

On CIFAR-10, we evaluate the effectiveness of our MDP

method by using three widely used models: VGGNet [28],

ResNet-56 [6], and MobileNet-V2 [27]. The results are

shown in Table 1. For VGGNet, our MDP method achieves

the accuracy of 94.57% with only 24.84% #FLOPs, while

it takes 34.97% #FLOPs to achieve the same accuracy for

DCP [38]. For ResNet-56 and MobileNet-V2, our pro-

posed MDP approach achieves higher accuracies with lower

#FLOPs when compared with other baseline methods. The

results clearly demonstrate the effectiveness of our MDP

method on small-scale datasets. It is also worth mention-

ing that our MDP approach outperforms the pre-trained

ResNet-56 and MobileNet-V2 by 0.55% and 0.12%, respec-

tively. Similar results are also reported in the DCP work

[38]. One possible explanation is that the overfitting prob-

lem on small-scale datasets like CIFAR-10 can be partially

solved by compressing the models.

4.2. Results on ImageNet

In order to compare our proposed approach with other

state-of-the-art methods on large-scale datasets, we com-

press ResNet-50 [6] and MobileNet-V2 [27] on ImageNet.

We follow the setting in [8] to compare the Top-5 accuracy

with other methods and the results are shown in Table 2.

To investigate the advantages by simultaneously reduc-

ing the redundancies along multiple dimensions, we also

report the results from an alternative approach by using the

step-by-step pruning strategy, which prunes the channels by

using the DCP method in the first step and then reduces the

spatial redundancy by using our MDP approach at the sec-

ond step. The result is referred as DCP+SP in Table 2.

From Table 2, we have the following observations: (1)

For ResNet-50, our MDP method outperforms other ex-

isting approaches, which indicates that it is beneficial to

compress the model by using our MDP approach. (2) For

MobileNet-V2, our proposed method surpasses other state-

of-the-art approaches by more than 2.4% when #FLOPs

are comparable, which is a significant improvement on the

ImageNet dataset. (3) When comparing the DCP+SP ap-

proach with the DCP method, the DCP+SP approach per-

forms better, which indicates that it is beneficial to addition-

ally reduce the redundancy along the spatial dimension. (4)

Our MDP framework outperforms the DCP+SP approach

by 0.2%, which demonstrates the effectiveness of our MDP

method to jointly prune models along multiple dimensions.

1513



Method #FLOPs (%) Acc. (%)

C3D [31] (Baseline) 100.00 82.10

TP [24] 49.49 72.48

FP [15] 49.45 77.58

DCP [38] 50.37 77.77

MDP 49.89 80.17

I3D [1, 34] (Baseline) 100.00 93.47

TP [24] 48.90 84.48

FP [15] 50.62 85.38

DCP [38] 49.13 85.20

MDP 47.02 88.03

Table 3: Video-level accuracy comparison from different

model compression methods on UCF-101 (Split 1). The re-

sults of the existing methods are based on our implementa-

tion. For the I3D model, we use ResNet-50 as the backbone.

The results on the ImageNet dataset clearly demonstrate

that it is effective to use our proposed approach to simulta-

neously reduce the redundancies along multiple dimensions

on large-scale datasets.

4.3. Results on UCF101

In order to evaluate the performance of our MDP ap-

proach when pruning 3D CNNs, we conduct the experi-

ments to compress C3D [31] and I3D [1, 34] on UCF-101

[29] (Split 1). We follow the setting in [34] to report the

video-level accuracies. For the I3D model, we use ResNet-

50 as the backbone.

The results are shown in Table 3. From Table 3, we ob-

serve that our MDP approach outperforms other channel

pruning methods for compressing both the C3D and I3D

models. Since the work RBP [36] only reports the clip-level

accuracies for compressing the C3D model, we compare

our MDP approach with the RBP method in terms of the

clip-level accuracy. The clip-level accuracy is 76.38% with

50.00% #FLOPs for the RBP approach, while it is 78.06%

with 49.89% #FLOPs for our MDP method. The results

demonstrate the effectiveness of our MDP method for prun-

ing 3D CNNs.

4.4. Results on HMDB51

We also conduct more experiments on the HMDB51

dataset to further evaluate the performance of our MDP ap-

proach for pruning 3D CNNs. Similar to the experiments on

UCF-101, we compress C3D and I3D on HMDB51 (Split 1)

and report the video-level accuracies. The results are shown

in Table 4. Again, our MDP approach consistently outper-

forms other baseline methods with lower #FLOPs, which

further demonstrate the effectiveness of the proposed ap-

proach for compressing 3D CNNs.

4.5. Ablation study

4.5.1 Ablation study for 2D CNNs

In this section, we compress ResNet-56 on CIFAR-10 to

investigate different components in our MDP approach for

Method #FLOPs (%) Acc. (%)

C3D [31] (Baseline) 100.00 47.39

TP [24] 47.43 41.90

FP [15] 49.45 43.53

DCP [38] 49.45 42.22

MDP 47.15 44.97

I3D [1, 34] (Baseline) 100.00 69.41

TP [24] 48.84 59.48

FP [15] 50.62 57.84

DCP [38] 49.13 58.24

MDP 48.00 62.88

Table 4: Video-level accuracy comparison from different

model compression methods on HMDB51 (Split 1). The

results of the existing methods are based on our implemen-

tation. For the I3D model, we use ResNet-50 as the back-

bone.

Method #FLOPs (%) Acc. (%)

MDP w/o CP 45.19 92.86

MDP w/o SP 45.41 93.39

MDP 45.11 94.29

Table 5: Accuracies of our MDP approach and its variants

for pruning ResNet-56 on CIFAR-10, which includes MDP

without pruning the channels (MDP w/o CP), and MDP

without reducing the spatial redundancy (MDP w/o SP).

compressing 2D CNNs.

Effect of channel pruning. To investigate the effectiveness

for pruning the channels in our MDP method, we perform

the experiment to only reduce the spatial redundancy with-

out pruning the channels, which is referred to as MDP w/o

CP in Table 5. From Table 5, our MDP approach outper-

forms MDP w/o CP method by 1.43%, which indicates that

it is effective to prune the channels in our MDP approach.

Effect of spatial pruning. To investigate the effectiveness

for reducing the spatial redundancy in our MDP framework,

we perform the experiment to only prune the channels with-

out removing the spatial redundancy, which is referred to as

MDP w/o SP in Table 5. From Table 5, our MDP method

surpasses the MDP w/o SP approach by 0.9%, which indi-

cates that it is effective to reduce the redundancy along the

spatial dimension in our MDP approach.

The experimental results in Table 5 show that either the

channel pruning or the spatial pruning alone does not per-

form better than our MDP method, which jointly performs

both of them. Therefore, it is beneficial to jointly prune

the models along multiple dimensions by using our MDP

method.

Effect of α and η. We conduct more experiments to inves-

tigate the performance when choosing different values of α

and η. For fair comparison, we adjust α and η in Eq. (3)

to obtain the compressed models with similar #FLOPs and

compare their performance. The results are shown in Ta-

ble 6. From Table 6, we have several observations: (1) The

models with similar #FLOPs can be obtained by increasing

one of the coefficients and decreasing the other one. (2)

1514



α η #FLOPs (%) Acc. (%)

2e
−15

1e
−10 43.44 94.18

2e
−14

1e
−11 43.53 94.26

2e
−13

1e
−12 45.11 94.29

2e
−12

1e
−13 45.47 94.23

2e
−11

1e
−14 45.03 94.22

Table 6: Accuracies of our MDP method by using different

values of α and η when pruning ResNet-56 on CIFAR-10.

Method #FLOPs (%) Acc. (%)

MDP w/o CP 49.54 76.92

MDP w/o STP 49.50 77.66

MDP 49.89 80.17

Table 7: Video-level accuracies of our MDP approach

and its variants for pruning C3D on UCF-101, which in-

cludes MDP without pruning the channels (MDP w/o CP)

and MDP without reducing the spatial-temporal redundancy

(MDP w/o STP).

With similar #FLOPs, the performance of the compressed

model obtained by using different values of α and η are

comparable, which shows the performance of our MDP ap-

proach is not sensitive to the coefficients α and η.

4.5.2 Ablation study for 3D CNNs

To investigate the effectiveness of different components in

our MDP method for compressing 3D CNNs, we perform

the experiments to compress C3D on UCF-101 and re-

port the video-level accuracies. In 3D CNNs, the spatial-

temporal redundancy exists along both the spatial and the

temporal dimensions.

We firstly perform the experiment to only reduce the

spatial-temporal redundancy without pruning the channels

in the C3D model, which is referred to as MDP w/o CP in

Table 7. We also perform the experiment to only prune the

channels without reducing the spatial-temporal redundancy

in the C3D model, which is referred to as MDP w/o STP.

From Table 7, our MDP method outperforms the alternative

approach MDP w/o CP, which indicates that it is effective to

prune the channels for compressing 3D CNNs in our MDP

method. Our MDP method also surpasses the alternative

approach MDP w/o STP by 2.51%, which demonstrates the

effectiveness of our MDP approach for reducing the spatial-

temporal redundancy when compressing 3D CNNs.

4.6. Branch selection analysis

In Figure 4, we report the index of selected branch (i.e.,

the selected scaling factor for the downsampling operation)

for each convolutional layer in the compressed ResNet-50

model on the ImageNet dataset. From Figure 4, it is inter-

esting to see that the branches with higher downsampling

scaling factor (e.g., the index of selected branch is 4) tend to

appear in the shallower layers (close to the input of CNNs),

1

2

3

4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47T
h

e 
in

d
ex

 o
f 

th
e 

se
le

ct
ed

 b
ra

n
ch

 

(d
o

w
n

sa
m

p
li

n
g

 s
ca

li
n

g
 f

a
ct

o
r)

Layer Index

The index of selected branch at each layer 

Figure 4: The index of selected branch (i.e., the selected

scaling factor for the downsampling operation) in each con-

volutional layer when pruning ResNet-50 on ImageNet.

The layer indices 1 to 48 correspond to the first convolu-

tional layer in the first residual block to the last convolu-

tional layer in the last residual block in ResNet-50. The

branches with larger scaling factors tend to appear in shal-

lower layers, while the branches with smaller scaling factors

tend to appear in the deeper layers.

while the branches with lower downsamling scaling factor

(e.g., the index of selected branch is 1) tend to appear in

the deeper layers (close to the output of CNNs). We hy-

pothesize that the feature maps in the shallower layers have

higher resolutions, which indicates more redundancy along

the spatial dimension. On the other hand, the feature maps

in the deeper layers have lower resolutions along the spatial

dimension, which indicates there is less redundancy along

this dimension. It is also worth mentioning that we do not

reduce the resolution (i.e., the index of selected branch is 1)

for most of the branches from layer 29 to layer 48, which

suggests that the spatial redundancy in the deeper layers of

the ResNet-50 model can be neglected possibly because of

low spatial resolutions in these deep layers.

5. Conclusion

In this work, we have proposed a unified model compres-

sion framework called Multi-Dimensional Pruning (MDP)

to compress 2D CNNs along the channel and spatial dimen-

sions, and 3D CNNs along the channel, spatial, and tempo-

ral dimensions. In contrast to the existing model compres-

sion approaches that only reduce the redundancy along one

certain dimension, our proposed framework can simultane-

ously reduce the redundancies along multiple dimensions

and thus significantly accelerate CNNs when they are de-

ployed on resource constrained platforms. Comprehensive

experiments on four benchmark datasets demonstrate the ef-

fectiveness of our MDP method for pruning both 2D CNNs

and 3D CNNs.

Acknowledgement. This work was supported by the Aus-

tralian Research Council (ARC) Future Fellowship under

Grant FT180100116. Wanli Ouyang was supported by the

ARC Discovery Project under Grant DP200103223.

1515



References

[1] pytorch-resnet3d. https://github.com/Tushar-N/

pytorch-resnet3d. 2019. 6, 7

[2] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. In

ICLR, 2019. 3, 4

[3] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In CVPR,

2017. 6

[4] Yunpeng Chen, Haoqi Fang, Bing Xu, Zhicheng Yan, Yan-

nis Kalantidis, Marcus Rohrbach, Shuicheng Yan, and Ji-

ashi Feng. Drop an octave: Reducing spatial redundancy in

convolutional neural networks with octave convolution. In

ICCV, 2019. 2

[5] Jinyang Guo, Wanli Ouyang, and Dong Xu. Channel pruning

guided by classification loss and feature importance, 2020. 2

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 6

[7] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and

Song Han. AMC: Automl for model compression and accel-

eration on mobile devices. In ECCV, pages 815–832, 2018.

2

[8] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In ICCV, pages

1398–1406, 2017. 1, 2, 5, 6

[9] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 5, 6

[10] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens

van der Maaten, and Kilian Q Weinberger. Multi-scale dense

networks for resource efficient image classification. arXiv

preprint arXiv:1703.09844, 2017. 2

[11] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,

Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,

Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman,

and Andrew Zisserman. The kinetics human action video

dataset, 2017. 6

[12] Tsung-Wei Ke, Michael Maire, and Stella X Yu. Multigrid

neural architectures. In CVPR, 2017. 2

[13] Alex Krizhevsky. Learning multiple layers of features from

tiny images. Technical report, Citeseer, 2009. 5

[14] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre.

HMDB: a large video database for human motion recogni-

tion. In ICCV, 2011. 5

[15] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. ICLR,

2016. 5, 7

[16] Yi Li, Zhanghui Kuang, Yimin Chen, and Wayne Zhang.

Data-driven neuron allocation for scale aggregation net-

works. In CVPR, 2019. 2, 5

[17] Ji Lin, Chuang Gan, and Song Han. Temporal shift module

for efficient video understanding. ICCV, 2019. 2

[18] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang,

Liujuan Cao, Qixiang Ye, Feiyue Huang, and David Doer-

mann. Towards optimal structured cnn pruning via genera-

tive adversarial learning. In CVPR, 2019. 2, 5, 6

[19] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In CVPR, 2017. 2

[20] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:

Differentiable architecture search. In ICLR, 2019. 3, 4

[21] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,

Shoumeng Yan, and Changshui Zhang. Learning effi-

cient convolutional networks through network slimming. In

CVPR, 2017. 2, 4, 5, 6

[22] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin

Yang, Tim Kwang-Ting Cheng, and Jian Sun. Metapruning:

Meta learning for automatic neural network channel pruning.

ICCV, 2019. 2

[23] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter

level pruning method for deep neural network compression.

In ICCV, pages 5068–5076, 2017. 1, 2, 5, 6

[24] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,

and Jan Kautz. Pruning convolutional neural networks for

resource efficient inference. ICLR, 2017. 2, 5, 7

[25] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,

Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:

Hints for thin deep nets. ICLR, 2015. 6

[26] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. IJCV, 115(3):211–252,

2015. 5

[27] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In CVPR, 2018. 6

[28] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv,

2014. 6

[29] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.

Ucf101: A dataset of 101 human actions classes from videos

in the wild. 2012. 5, 7

[30] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep

high-resolution representation learning for human pose esti-

mation. CVPR, 2019. 2

[31] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,

and Manohar Paluri. Learning spatiotemporal features with

3d convolutional networks. In ICCV, 2015. 1, 6, 7

[32] Huiyu Wang, Aniruddha Kembhavi, Ali Farhadi, Alan

Yuille, and Mohammad Rastegari. Elastic: Improving cnns

with instance specific scaling policies. In CVPR, 2019. 2, 5

[33] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua

Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment

networks: Towards good practices for deep action recogni-

tion. In ECCV. Springer, 2016. 2

[34] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In CVPR, 2018. 6, 7

[35] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I

Morariu, Xintong Han, Mingfei Gao, Ching-Yung Lin, and

1516



Larry S Davis. NISP: Pruning networks using neuron impor-

tance score propagation. In CVPR, 2018. 2

[36] Yuxin Zhang, Huan Wang, Yang Luo, and Roland Hu.

Three dimensional convolutional neural network pruning

with regularization-based method. In NeurIPS Workshop,

2018. 5, 6, 7

[37] Chenglong Zhao, Bingbing Ni, Jian Zhang, Qiwei Zhao,

Wenjun Zhang, and Qi Tian. Variational convolutional neu-

ral network pruning. In CVPR, 2019. 2

[38] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,

Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.

Discrimination-aware channel pruning for deep neural net-

works. In NeurIPS, 2018. 1, 2, 5, 6, 7

[39] Mohammadreza Zolfaghari, Kamaljeet Singh, and Thomas

Brox. Eco: Efficient convolutional network for online video

understanding. In ECCV, 2018. 2

1517


