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Abstract

This work presents an efficient yet effective online

Knowledge Distillation method via Collaborative Learn-

ing, termed KDCL, which is able to consistently improve

the generalization ability of deep neural networks (DNNs)

that have different learning capacities. Unlike existing two-

stage knowledge distillation approaches that pre-train a

DNN with large capacity as the “teacher” and then transfer

the teacher’s knowledge to another “student” DNN unidi-

rectionally (i.e. one-way), KDCL treats all DNNs as “stu-

dents” and collaboratively trains them in a single stage

(knowledge is transferred among arbitrary students during

collaborative training), enabling parallel computing, fast

computations, and appealing generalization ability. Specif-

ically, we carefully design multiple methods to generate

soft target as supervisions by effectively ensembling pre-

dictions of students and distorting the input images. Ex-

tensive experiments show that KDCL consistently improves

all the “students” on different datasets, including CIFAR-

100 and ImageNet. For example, when trained together by

using KDCL, ResNet-50 and MobileNetV2 achieve 78.2%

and 74.0% top-1 accuracy on ImageNet, outperforming the

original results by 1.4% and 2.0% respectively. We also

verify that models pre-trained with KDCL transfer well to

object detection and semantic segmentation on MS COCO

dataset. For instance, the FPN detector is improved by

0.9% mAP.

1. Introduction

Knowledge distillation [10] is typically formulated as

“teacher-student” learning setting. It is able to improve

performance of a compact ‘student’ deep neural network

because the representation of a ‘teacher’ network can be

used as structured knowledge to guide the training of stu-

dent. The predictions (e.g. soft target) produced by the

teacher can be easily learned by a student and encourage it

to generalize better than that trained from scratch. However,
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Figure 1: (a) [10] transfers knowledge from the static pre-trained

teacher to student model. (b) Students can learn from each other

in [32]. (c) [15] establishes teacher using multiple branch design.

The gate is to ensemble all the branches. (d) KDCL consistently

gains extra information from ensembling soft target produced by

all students, outperforming existing approaches. The input of each

model is randomly distorted separately to increase its generaliza-

tion ability. When model pair is trained with KDCL on ImageNet,

ResNet-18 is improved by 1.9% and ResNet-50 gets 1.0% im-

provement due to the knowledge from ResNet-18.

in traditional offline knowledge distillation framework, the

teacher is pre-trained first and then fixed, meaning that the

knowledge can be only transferred from the teacher to the

student (i.e. one-way) as shown in Fig. 1a.

The online distillation methods [32, 15] are more attrac-

tive because the training process is simplified to a single

stage, and all the networks are treated as students. These

approaches merge the training processes of all student net-

works, enabling them to gain extra knowledge from each

other. Students directly learn from the prediction of other

students in Deep Mutual Learning (DML) [32], as illus-

trated in Fig. 1b. However, the output of students can be di-

verse, conflicting with each other and even the ground truth.

When the performances are significantly different among

models, this method does harm to the model of high perfor-
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mance.

An alternative method proposed by [15] (ONE) is to train

a multi-branch network while establishing teacher on the

fly, as shown in Fig. 1c. Nonetheless, this method is inflex-

ible because the network is compelled to share lower lay-

ers and knowledge transfer occurs only at the upper layers

within a single model rather than other models, limiting the

extra knowledge and the performance. The gate module is

not a guarantee of high quality soft target.

Self-distillation [6] shows that distilling a converged

teacher model into a student model of identical network

architecture can further improve the generalization ability

compared to the teacher. The efficacy of self-distillation

and online distillation leads us to the following question:

Could we use a small network to improve the model with

larger capacity in a one-stage distillation framework?

In this work, we propose a novel online knowledge dis-

tillation method via collaborative learning. In KDCL, stu-

dent networks with different capacities learn collaboratively

to generate high-quality soft target supervision, which dis-

tills the additional knowledge to each student as illustrated

in Fig.1d. The high-quality soft target supervision aims at

instructing students with significant performance gaps to

consistently converge with higher generalization ability and

less variance to the input perturbation in the data domain.

The major challenge is to generate soft target supervi-

sion that can boost the performance of all students with high

confidence, which have different learning capacities or sig-

nificant performance gaps. Ensembling tends to yield better

results when diversity presents among the outputs of mod-

els [14]. Therefore, we propose to generate high-quality

soft target supervision by carefully ensembling the output

of students with the information of ground truth in an on-

line manner. Furthermore, we propose to estimate general-

ization error by measuring model on the validation set. The

soft target is generated for stronger generalization ability on

the validation set.

For improving invariance against perturbations in the in-

put data domain, the soft target should encourage the stu-

dents to output similarly with similar distorted input im-

ages. Therefore, students are fed with the images, which

are individually perturbed from identical inputs, and the soft

target is generated by combining the outputs and fusing the

information of data augmentation. In this case, the benefits

of model ensembling are further exploited.

To evaluate the effect of KDCL, we conduct exten-

sive experiments on benchmarks for image classification,

CIFAR-100 [13] and ImageNet-2012 [4]. We demonstrate

that, with KDCL, ResNet-50 [8] and ResNet-18 trained

in pair achieve 77.8% and 73.1% val accuracy. ResNet-

18 outperforms the baseline by 1.9% and ResNet-50 gains

1.0% improvement as a benefit of the extra knowledge from

ResNet-18. We also verify that models pre-trained with

KDCL transfer well to object detection and semantic seg-

mentation on the COCO dataset [17].

Our contributions are listed as follows.

• A new pipeline of knowledge distillation based on col-

laborative learning is designed. Models of various

learning capacity can benefit from collaborative train-

ing.

• A series of model ensembling methods are designed

to dynamically generate high-quality soft targets in a

one-stage online knowledge distillation framework.

• Invariance against perturbations in the input domain

is enhanced by transferring knowledge and fusing the

output of images with different distortion.

2. Related work

Knowledge transfer for the neural network is advocated

by [2, 10] to distill the knowledge from teacher to student.

An obvious way is to let the student imitate the output of the

teacher model. [2] proposes to improve shallow networks

by penalizing the difference of logits between the student

and the teacher. [10] realizes knowledge distillation by min-

imizing the Kullback-Leibler (KL) divergence loss of their

output categorical probability.

Structure knowledge Based on the pioneering work,

many methods have been proposed to excavate more infor-

mation from the teacher. [20] introduces more supervision

by further exploiting the feature of intermediate hidden lay-

ers. [31] defines additional attention information combined

with distillation. [18] mines mutual relations of data ex-

amples by distance-wise and angle-wise losses. [23] estab-

lishes an equivalence between Jacobian matching and dis-

tillation. [9] transfers more accurate information via the

route to the decision boundary. A few recent papers about

self-distillation [29, 3, 6, 28] have shown that a converged

teacher model supervising a student model of identical ar-

chitecture could improve the generalization ability over the

teacher. In contrast to mimicking complex models, KDCL

involves all networks in learning and provides hint via fus-

ing the information of the students. Without any additional

loss for intermediate layers, KDCL reduces the difficulty of

optimizing model.

Collaborative learning In online distillation frame-

work, students imitate the teacher in the training process.

DML [32] suggests peer students learn from each other

through the cross-entropy loss between each pair of stu-

dents. Co-distillation [1] is similar to DML, whereas it

forces student networks to maintain their diversity longer

by adding distillation loss after updating enough steps. In-

spired by self-distillation, training a multiple branch vari-

ant of the target network is proposed to establish a strong

teacher on-the-fly. ONE [15] constructs multiple branch

classifiers and trains a gate controller to align the teacher’s

prediction. CLNN [22] promotes the diversity of each
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Figure 2: Overview of knowledge distillation via collaborative learning (KDCL). We input images distorted separately for each network

to increase the invariance against perturbations in the data domain. KDCL dynamically ensembles soft target produced by all students to

improve students consistently. h(x, ǫ) means random distortion and ǫ is the random seed.

branch by a hierarchical multiple branch design and pro-

poses to scale the gradient accordingly. Different from gen-

erating a soft target by averaging the logits, which the above

methods adopt, KDCL is proposed to generate a soft target

dynamically to improve all students, even with significant

performance gaps. The soft target is also designed to im-

prove invariance in the input data domain.

Ensemble method Our work is also related to network

ensemble approaches. Majority Voting, Stacked Gener-

alization [27], GASEN [33], and Super Learner [12] ex-

plicitly select reliable prediction. Dropout [24], Drop-

Connection [26] and Stochastic Depth [11] generally create

exponent numbers of with shared weights during training

and then average them at test time. Our method focuses on

fusing information of students and guaranteeing the quality

of soft target to improve the generalization ability of stu-

dents.

3. Collaborative Learning for Knowledge Dis-

tillation

3.1. Background

Knowledge distillation is to optimize the student net-

work under the supervision of the teacher network. More

precisely, the loss is the KL divergence of the soften output

of teacher network and student network as [10] defines

LKD =
1

n

n
∑

i=1

T 2KL(pi,qi), (1)

where n is the batch size, T is the temperature parameter,

p and q represent the soften probability distribution pro-

duced by teacher network and student network. We note

Teacher Model Teacher Top-1 Student Top-1

ResNet-34 73.5 70.8

ResNet-50 76.5 71.2

ResNet-101 77.9 71.4

Table 1: Top-1 accuracy on ImageNet-2012 validation set. The

second column is the pre-trained teacher model’s performance,

and the third one is student model accuracy trained with KD loss.

The student gets 70.1% accuracy supervised by the hard target.

the logit of student and teacher as zs and zt. Then q =
softmax(zs/T ) and the soft target p = softmax(zt/T ).

A high-quality teacher is important for optimizing a

good student. If the teacher is not well optimized and pro-

vides noisy supervision, the risk that soft target and ground

truth conflict with each other becomes high. We evaluate

the impact of teacher quality using ResNet-18 [8] as the

student model on ImageNet dataset. All the teacher models

and student models are trained for 100 epochs. In Tab. 1,

the performance of the same student network is compared

under the supervision of different teacher models. When the

teacher size is not too large for the student, teacher’s perfor-

mance increases, thus it provides better supervision for the

student by being a better predictor.

3.2. Our method

Overview. We propose KDCL to automatically generate

a soft target in an online manner, as illustrated in Fig. 2. The

framework can be viewed as a super network composed of

multiple individual sub-networks. The raw images are aug-

mented separately with different random seeds, and the soft

target is generated to supervise all networks. We propose

11022



a series of methods to generate a soft target, which ensures

that students with different capacity benefit from collabo-

rative learning and enhances the invariance of the network

against input perturbations. Note that all the models can

predict independently, so the improvement does not incur

additional test computational cost.

Loss function To improve the generalization perfor-

mance, we distill the knowledge of soft target to each sub-

network via the KD loss. All the sub-networks are trained

from scratch. With the standard cross-entropy loss, all the

networks are trained end-to-end with a multi-task loss func-

tion:

L =

m
∑

i=1

Li
CE + λLi

KD, (2)

where LKD is the KL divergence between the output of stu-

dents and the soft target and λ is the trade-off weight.

KDCL-Naive. In our framework, all the models are stu-

dent models and the supervision is generated by combining

the output of the models. Assuming that there are m sub-

networks, the logit of the k-th sub-network is defined as zk.

The teacher logit zt is expressed as

zt = h(z1, z2, ..., zm), (3)

where h is a function to produce higher quality logit com-

pared with the logits of students. Assuming that training

samples and test samples follow the same distribution, a

model predicting with less loss on training set encourages

students to converge faster.

A naive combination method is to choose the logit with

the smallest cross-entropy loss among all students, which

can be defined as

zt = zk, k = argmin
i

LCE(zi,y), (4)

where y is the one-hot label and LCE is the standard cross-

entropy loss.

KDCL-Linear. The naive combination is easy to imple-

ment, but the teacher logit is not quality enough. KDCL-

Linear defines the teacher logit as the best linear combi-

nation of sub-network logits, which is a simple but useful

information fusion. Finding out the best linear combina-

tion can be treated as an optimization problem. Let matrix

Z = (zT
1
; zT

2
; ...; zTm). Each column of the matrix Z repre-

sents the logit of a student. The problem can be illustrated

as follow:

min
α∈Rm

LCE(α
TZ,y), subject to

m
∑

i=1

αi = 1, αi ≥ 0 (5)

Eq. 5 is a convex optimization problem and is easy to solve.

KDCL-MinLogit. The KDCL-Linear incurs another

optimization problem during training, whereas we hope net-

work ensemble is efficient. As an alternative, we propose

the KDCL-MinLogit method to generate the soft target. The

difference between values in logit decides the probability

distribution produced by the softmax function. Therefore

the output probability is expressed as

p = softmax(z) = softmax(z− zc), (6)

where zc is the element corresponding to target class c in

logit. Define zc = z − zc, then the c-th element of zc is 0

for all sub-networks. When the other elements in logit be-

come smaller, the cross-entropy loss with the one-hot label

will decrease. Then a neat way to generate teacher logit is

to select the minimum element of each row of matrix Zc,

which can be defined as Zc = (zc
1
, zc

2
, ..., zcm). More pre-

cisely, the teacher logit can be expressed as

zt,j = min{Zc
j,i|i = 1, 2, ...,m}, (7)

where zt,j is the j-th element of soft target zt and Zc
j,i is the

element of the j-th row and i-th column in Zc. This method

is compatible with mainstream deep learning frameworks.

KDCL-General. The teacher with more generalization

ability usually instructs the students to converge better. Per-

formance on the validation dataset can be viewed as a mea-

sure of generalization ability. Therefore, we propose to find

an optimal ensemble of the m component networks to ap-

proximate the general teacher. We randomly pick N ex-

amples from the training set to construct the validation set

Dv and the predictions of the component networks are com-

bined through weighted average. The weight should satisfy

wi ∈ [0, 1] (i = 1, 2, ...,m) and
∑m

i=1
wi = 1. In this

setup, we focus on measuring the generalization ability di-

rectly, so the probability is discussed rather than the logit.

The generalization error on the input x is defined as

E(x) = (f(x)− t)2, (8)

where f(x) is the prediction probability of target class and t
is the ground truth. The generalization error of the ensemble

network can be expressed as

E =

∫

(

m
∑

i=1

wifi(x)− t

)2

p(x)dx

=

m
∑

i=1

m
∑

j=1

wiwjCij ,

(9)

where p(x) is the data distribution and Cij is expressed as

Cij =

∫

(fi(x)− t) (fj(x)− t) p(x)dx

≈ 1

N

N
∑

k=1

(fi(xk)− t)(fj(xk)− t)

(10)
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In general, the distribution of data is unknown or in-

tractable. Hence the empirical distribution is adapted as an

approximation. According to Eq. 9 and the constraint on

weight, the optimum weight w can be solved by the La-

grange multiplier as follow:

wk =

∑m

j=1
C−1

kj
∑m

i=1

∑m

j=1
C−1

ij

, (11)

where wk is the k-th element of the optimum weight w and

C−1

ij is the value of the i-th row and the j-th column of the

inverse matrix of C.

Measuring the generalization error incurs the little com-

putational cost and updating the parameters of the neural

network a few steps does not change the output drastically

due to the small learning rate. Consequently, we update the

optimal weight vector w after each training epoch. More-

over, without any prior knowledge, we assume all the com-

ponent networks have equal weight 1

m
in initialization and

the soft target is the weighted average probability distribu-

tion.

Invariant collaborative learning. In order to improve

invariance against the perturbations in the data domain, we

generate identical soft target for all students fed with sim-

ilar distorted images. Therefore, we randomly sample im-

ages with the same data augmentation policy for each sub-

network and fuse the knowledge with the above ensemble

methods. This method increases the amount and diversity

of training data. With the knowledge of the additional train-

ing data, the soft target encourages the sub-networks to have

a lower generalization error.

4. Experiments

In this section, we perform a series of experiments to

evaluate our training mechanism on image classification

benchmarks and conduct transfer experiments on COCO

dataset [17], a widely used benchmark in the field of ob-

ject detection and segmentation.

4.1. Results on ImageNet

In experiments on ImageNet, we analyze the effective-

ness of our method of generating soft target based on the

student pair, ResNet-50 and ResNet-18, and evaluate a se-

ries of network architectures on ImageNet.

Dataset and training details. ImageNet dataset con-

tains 1000 object classes with about 1.28 million images

for training and 50,000 images for validation. We separate

20,000 images from the train set, 20 samples on each class,

as the validation set to measure the generalization ability of

sub-network for KDCL-General. So the original validation

set is treated as the test set.

We follow the ResNet training procedure. The learn-

ing rate starts at 0.1 and warms up to 0.8 linearly after 5

Method ResNet-50 ResNet-18 Gain

Vanilla 76.8 71.2 0

KD[10] 76.8 72.1 0.9

DML[32] 75.8 71.7 -0.5

ONE[15] - 72.2 -

CLNN[22] - 72.4 -

KDCL-Naive 77.5 72.9 2.4

KDCL-Linear 77.8 73.1 2.9
KDCL-MinLogit 77.8 73.1 2.9
KDCL-General 77.1 72.0 1.1

Table 2: Top-1 accuracy rate (%) on ImageNet. All the models

are reimplemented with our training procedure for a fair compar-

ison. Gain indicates the sum of the component student network

improvement. ONE and CLNN are incompatible with different

network structures. Therefore, only the accuracy of ResNet-18 is

compared.

Method Top-1 Top-5 Params

Vanilla 71.2 90.0 11.7M

ONE[15] 72.2 90.6 29.5M

KDCL MobileNetV2x1.2 72.9 90.8 16.4M

CLNN[22] 72.4 90.7 40.5M

KDCL ResNet-50 73.1 91.2 37.2M

Table 3: Top-1 and Top-5 accuracy rate (%) on ImageNet. The

backbone is ResNet-18. ONE is trained with 3 branches (Res4

block) and CLNN has a hierarchical design with 4 heads. For

KDCL, ResNet-18 is trained with a peer network.

epochs. We set the weight decay to 0.0001, the batch size to

2048, and the momentum is 0.9. All the ResNet models are

trained for 200 epochs and the learning rate drop by 0.1 at

60, 120, and 180 epoch. As a default, the MobileNetV2 [21]

models are optimized for 300 epochs by stochastic gradi-

ent descent (SGD) with a warm-up learning rate to 0.8 and

decay it by 0.1 at 90, 180 and 270 epoch. We apply the

scale and aspect ration augmentation and the photometric

distortions [25]. During test time, the images are scaled to

256× 256 followed by a 224× 224 center crop.

Quantitative comparison. Tab. 2 shows top-1 accu-

racy rate on ImageNet. KD indicates Knowledge Distilla-

tion [10]. DML represents the Deep Mutual Learning [32].

ONE [15] and CLNN [22] are self-distillation methods,

which are incompatible with different network structures.

Therefore, only the accuracy of ResNet-18 is compared.

From the results in Tab. 2, we can make the follow-

ing key observations. DML can generate an appropri-

ate soft target for the compact model but harm the com-

plex model when there is a significant performance gap, as

the prediction of compact model conflicts with the com-

plex model and ground truth. KDCL-Linear outperforms

KDCL-Naive as a result of the higher quality soft target.
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Model 1 Top-1 Model 2 Top-1 Method

MBV2 72.0 MBV2x0.5 64.8 Vanilla

MBV2 73.1 MBV2x0.5 66.2 Linear

MBV2 73.1 MBV2x0.5 66.3 MinLogit

ResNet-18 71.2 MBV2x0.5 64.8 Vanilla

ResNet-18 71.8 MBV2x0.5* 65.6 Linear

ResNet-18 71.9 MBV2x0.5* 65.6 MinLogit

ResNet-18 71.2 MBV2 72.0 Vanilla

ResNet-18 72.1 MBV2* 72.8 Linear

ResNet-18 72.2 MBV2* 72.8 MinLogit

ResNet-50 76.8 MBV2x0.5 64.8 Vanilla

ResNet-50 77.5 MBV2x0.5* 67.1 Linear

ResNet-50 77.7 MBV2x0.5* 66.8 MinLogit

ResNet-50* 76.5 ResNet-18* 71.2 Vanilla

ResNet-50* 76.8 ResNet-18* 72.0 Linear

ResNet-50* 77.0 ResNet-18* 72.1 MinLogit

Table 4: The comparative result of different sub-network on Ima-

geNet validation set. MBV2 is the abbreviation of MobileNetV2.

MBV2x0.5 represents the width multiplier is 0.5. ResNet-50* and

ResNet-18* are trained for 100 epochs. MBV2* and MBV2x0.5*

are trained for 200 epochs.

KDCL-MinLogit can be more efficient and the performance

is equal to KDCL-Linear. The result of KDCL-General is

not good enough because of the imprecise estimates. The

weight for ensembling the prediction is updated each epoch

rather than each iteration to save computational cost, so the

generated soft target is not as good as KDCL-Linear and

KDCL-MinLogit.

Following the setting of ONE [15] and CLNN [22], the

low-level layers are shared to save parameters. Multiple

branches are ensembled, which are equal to several iden-

tical networks. For a fair comparison, we choose a sin-

gle model as the peer network with fewer parameters than

the multiple branch architecture. Our method surpasses the

complex ONE with gate controller predicting learnable en-

semble logits and carefully designed CLNN with hierarchi-

cal architecture as shown in Tab. 3. The result proves that

ONE and CLNN are limited with extra knowledge due to

the multi-branch design.

Our proposed method applies to various architectures.

Therefore, we conduct experiments on the complex-

compact pair and compact-compact pair. Tab. 4 shows that

the more compact model MobileNetV2×0.5 can provide

hint for MobileNetV2, ResNet-18 and even ResNet-50 be-

cause the compact model can beat the complex model on

some samples as illustrated in Fig. 3. MobileNetV2×0.5
with 1.9M parameters helps to improve ResNet-50 with

25.6M. The fact proves our approach is suitable for the sit-

uation that there is a significant performance gap between

tiger cat mashed potato guinea pig table lamp barometer cornet Band Aid pillow hatchet green lizard
0.0

0.2

0.4

0.6

0.8

Ac
cu
ra
cy

ResNet-50
ResNet-18

Figure 3: The comparison of ResNet-50 and ResNet-18 on the part

categories of ImageNet validation set.

Network 1 2 3 4 5

Top-1 (%) 70.1 71.3 71.61 71.75 71.87

Table 5: KDCL benefits from ensembling more sub-networks. All

the networks are ResNet-18 to prevent the impact of network per-

formance differences.

Model Res-50 Res-18 MBV2 MBV2x0.5 Gain

Vanilla 76.8 71.2 72.0 64.8 0

KDCL 78.2 73.5 74.0 66.9 7.8

Table 6: Top-1 accuracy rate (%) on ImageNet. ResNet-50 is sig-

nificantly improved with the knowledge from three compact mod-

els.

models. Long training runs can improve accuracy by pro-

viding more various soft targets by randomly distorting the

training images. Therefore, the top-1 accuracy of ResNet-

50 and ResNet-18 is further increased by 0.8% and 1.0%

for another 100 training epochs.

Ensemble more models. The main experiments show

good results using two sub-networks. We also prove that

ensembling more models generally give better accuracy.

Tab. 5 shows that ensembling two sub-networks can outper-

form the baseline model with a remarkable margin. KDCL

scales well with more sub-networks but the gain decreases

as the networks increase. We conjecture that the mutual in-

formation between the strong ensemble network and the ad-

ditional network increases as the ensemble size raises. Ex-

periments are further conducted when utilizing neural net-

works with different capacities on ImageNet. Tab. 6 shows

that ResNet-50 achieves 78.2% top-1 accuracy with knowl-

edge from three compact models.

4.2. Results on CIFAR

Dataset and training details. CIFAR-100 consists of

32 × 32 color images containing 100 classes. The dataset
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Method
ICL ResNet-32 WRN-16-2 Gain

Acc % Acc %

Vanilla 69.9 72.2 0

2 distill 1 [10] 73.3 72.2 3.4

1 distill 2 [10] 69.9 74.5 2.3

DML [32] 73.3 74.8 6.0

ONE [15] 73.6 - -

CLNN [22] 73.4 - -

KDCL-Naive 73.7 74.8 6.4

KDCL-Naive
√

73.8 74.9 6.6

KDCL-Linear 73.4 74.6 5.9

KDCL-Linear
√

73.6 74.9 6.4

KDCL-MinLogit 73.0 74.1 5.0

KDCL-MinLogit
√

73.5 74.6 6.0

KDCL-General 74.0 75.2 7.1

KDCL-General
√

74.3 75.5 7.7

Table 7: The comparative and ablative result of our generate dis-

tillation method on CIFAR-100 dataset. ICL is invariant collabo-

rative learning. We only report the accuracy of ResNet-32 as ONE

and CLNN are incompatible with WRN-16-2.

is split into a training set with 50,000 images and a test set

with 10,000 images. For KDCL-General, we separate 5,000

images from the training set, 50 samples on each class, as

the validation set to measure the generalization ability of

students. All the models are trained for 200 epochs with

learning rate starting at 0.1 and the learning rate drops by

0.1 at 100 and 150 epoch. We set the weight decay to

0.0005, batch size to 128, and the momentum is 0.9. All

the training images are padded with 4 pixels and a 32 × 32
crop is randomly sampled from the padded images or its

horizontal flip. The temperature T and λ are 2 and 1 sepa-

rately. Accuracy is computed as the median of 5 runs.

Knowledge distillation relieves over-fitting. The sec-

ond and third row of Tab. 7 show that the student model

becomes more general for knowledge distillation, even sur-

passes the teacher model. For distillation (2nd row in

Tab. 7) from Wide-ResNet-16 [30] with a widening factor

2 (WRN-16-2) to ResNet-32, we observe that the accuracy

of the student network ResNet-32 is 93.37% on the train

set, behind the teacher network WRN-16-2 99.39%, while

the test error is lower than WRN-16-2. This phenomenon

demonstrates the knowledge distillation can relieve over-

fitting.

Quantitative comparison. Most of our proposed meth-

ods outperform DML as a result of the effective learning

mechanism and the end-to-end training manner compared

with multi-stage parameters updating. An interesting phe-

nomenon is observed that KDCL-MinLogit and KDCL-

Linear do worse than KDCL-Naive, which conflicts with

Backbone Type
box mask

mAP mAP

ResNet-18 (BaseLine) Faster 32.2 -

ResNet-18 (Our) Faster 33.1 -

ResNet-18 (BaseLine) Mask 33.4 30.7

ResNet-18 (Our) Mask 34.0 31.3

Table 8: Average precision (AP) on COCO 2017 validation set

with pre-trained ResNet-18. All models are used as backbones for

Faster-RCNN [19], Mask-RCNN [7] based on FPN [16].

the results on ImageNet. We conjecture that the soft target

with less cross-entropy loss on CIFAR-100 train set leads

to over-fitting like the one-hot label. KDCL-General sig-

nificantly improves the performance by the more general

teacher model according to the optimal weighted average

on the validation set. This result proves that our approaches

can further improve the ability of knowledge distillation to

alleviate over-fitting. It also shows that there is a trade-off

between the fitting ability and generalization ability when

the amount of data is limited.

The ablation study in Tab. 7 shows that invariant col-

laborative learning is promising. The improvement comes

from fusing information of different distorting images and

the shared soft target also encourages the sub-network to

output similarly with similar input.

4.3. Transfer Learning

Dataset and training details. We follow the commonly

used practice [19, 7] to divide the 40k validation set into a

35k and 5k subset. The training set containing 80k images

and the 35k subset are used for training. The 5k subset that

denoted as minival set is used to validate our result. All the

models are trained for 14 epochs on 8 GPUs with 4 images

on each GPU. The learning rate starts at 0.04 and is de-

cayed by 0.1 at 9 and 12 epoch. The weight decay is 0.0001

and momentum is 0.9. To fully utilize the capacity of the

model, all the batch normalization layers are in sync mode

and no weight is frozen. We replace ROI-Pooling with ROI-

Align [7] for better results by default.

Results. Tab. 8 reports that the validation set perfor-

mance of object detection and instance segmentation on

standard AP metric (corresponds to the average AP for

IOU from 0.5 to 0.95 with a step size of 0.05.). Based

on ResNet-18 trained with KDCL, the detection head out-

performs baseline by 0.9%. Our proposed learning mecha-

nism also brings improvements on instance segmentation

by 0.6%. The improvements come from the more pow-

erful generalization. In summary, this set of experiments

demonstrates that the improvements induced by our learn-

ing mechanism can be realized across a broad range of tasks

and datasets.
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