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Abstract

Organ at risk (OAR) segmentation is a critical step in ra-

diotherapy of head and neck (H&N) cancer, where inconsis-

tencies across radiation oncologists and prohibitive labor

costs motivate automated approaches. However, leading

methods using standard fully convolutional network work-

flows that are challenged when the number of OARs be-

comes large, e.g. > 40. For such scenarios, insights can

be gained from the stratification approaches seen in man-

ual clinical OAR delineation. This is the goal of our work,

where we introduce stratified organ at risk segmentation

(SOARS), an approach that stratifies OARs into anchor,

mid-level, and small & hard (S&H) categories. SOARS

stratifies across two dimensions. The first dimension is

that distinct processing frameworks are used for each OAR

category. In particular, inspired by clinical practices, an-

chor OARs are used to guide the mid-level and S&H cate-

gories. The second dimension is that distinct network archi-

tectures are used to manage the significant contrast, size,

and anatomy variations between different OARs. We use

differentiable neural architecture search (NAS), allowing

the network to choose among 2D, 3D or Pseudo-3D con-

volutions. Extensive 4-fold cross-validation on 142 H&N

cancer patients with 42 manually labeled OARs, the most

comprehensive OAR dataset to date, demonstrates that both

framework- and NAS-stratification significantly improves

quantitative performance over the state-of-the-art (from

70.44% to 75.14% in absolute Dice scores). Thus, SOARS

provides a powerful and principled means to manage the

highly complex segmentation space of OARs.

1. Introduction

Head and neck (H&N) cancer is one of the most common

cancers worldwide [17]. High-precision radiation therapy,

e.g. intensity-modulated radiotherapy, has been widely used

Figure 1. Illustration of 42 OARs in 3D demonstrating their vari-

ous contrasts, sizes, and shapes in RTCT.

for H&N cancer treatment because of its ability for highly

conformal dose delivery. In this process, the radiation dose

to normal anatomical structures, i.e. organs at risk (OARs),

should be controlled to minimize post-treatment complica-

tions [11]. This requires accurate delineation of tumors and

OARs in radiotherapy computed tomography (RTCT) im-

ages [2, 18, 19, 22, 27, 37]. Clinically, OAR segmenta-

tion is predominantly carried out manually by radiation on-

cologists. Manual delineation is not only time consuming,

e.g. > 2 hrs for 9 OARs, but also suffers from large inter-

practitioner variability [11]. Unsurprisingly, with more

OARs included, time requirements increase significantly,

limiting the number of patients who may receive timely ra-

diotherapy [26]. These issues have spurred efforts toward

automatic OAR segmentation in H&N cancer [29]. De-

spite this progress, performance gaps remain, calling for

approaches better tailored to this distinct and challenging

problem. This is the goal of our work.

By their nature, H&N OARs are 1) complex in anatom-

ical shapes, 2) dense in spatial distributions, 3) large in

size variations, and 4) low in RTCT image contrast. Cur-

rently, deep convolutional neural networks (CNNs) are a

dominant approach[1, 9, 15, 27, 37–39, 41, 46]. How-
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ever, existing methods either perform whole volume seg-

mentation [27, 46] or segmentation-by-detection [9, 37].

Yet, model optimization becomes increasingly difficult as

greater numbers of OARs need to be segmented. Leverag-

ing insights from clinical practices can help ease the corre-

sponding difficulties.

Within the clinic, radiation oncologists typically refer

to easy OARs when delineating harder ones, e.g. the eyes,

brain stem, and mandible, to serve as anchors to segment

hard OARs, such as different types of soft-tissue H&N

glands [36]. Figure 1 visually illustrates this stratifica-

tion. As such, this process suggests that automated solu-

tions could benefit from also stratifying OARs, both to cre-

ate anchors and to create tailor-made analysis workflows for

each stratification. Indeed, Gao et al. [9] showed that ex-

ploiting two branches for OAR segmentation boosts overall

performance. However, large OARs did not serve as support

to small OARs in that work. Moreover, the network archi-

tecture was manually crafted and fixed across OAR strati-

fications. Yet, given their highly distinct natures, different

OARs likely require different network architectures for op-

timal performance. It is difficult to see how regular CNNs

can meet these needs.

Our work fills this gap by introducing stratified organ

at risk segmentation (SOARS), a novel stratified learning

framework to segment OARs. SOARS divides OARs into

three levels, i.e. anchor, mid-level, and small & hard (S&H).

Emulating clinical practice, each is processed using tailored

workflows. Anchor OARs are high in intensity contrast and

low in inter- and intra-reader variability. Thus these can be

segmented first to provide informative location references to

the harder categories. Mid-level OARs are low in contrast,

but not inordinately small. We provide anchor-level predic-

tions as additional input for mid-level segmentation as guid-

ance and reference-based grounding. S&H OARs are very

poor in contrast and very small. Similar to mid-level OARs,

we use anchor OARs to guide S&H segmentation. How-

ever, we use a detection followed by segmentation strat-

egy [9], to better manage the extremely unbalanced class

distributions across the entire volume. While this work-

flow provides specialized frameworks for each OAR cate-

gory, data processing could be even better tailored, as it is

unlikely the same network architecture suits each stratifi-

cation equally. Thus, we deploy an additional dimension

of stratification, using neural architecture search (NAS) to

automatically search the optimal architecture for each cat-

egory. Concretely, we formulate the structure learning as a

differentiable NAS [23, 24, 47], allowing for an automatic

selection across 2D, 3D or Pseudo-3D (P3D) convolutions

with kernel sizes of 3 or 5 at each convolutional block.

Using four-fold cross-validation, we evaluate SOARS on

142 RTCT images with 42 annotated OARs, the most com-

prehensive H&N OAR dataset to date. We demonstrate

that both dimensions of our stratification, i.e. category-

specific processing and NAS, significantly impact perfor-

mance. We achieve an average Dice score (DSC) and

Hausdorff distance (HD) of 75.14% and 6.98mm, respec-

tively, which corresponds to improvements of 7.51% and

2.41mm, respectively over a non-stratified baseline. Com-

pared to the state-of-the-art, a 3D Mask R-CNN based

UaNet method [37], we produce improvements of 4.70%
and 2.22mm, in DSC and HD, respectively. Validation on

a public dataset (the MICCAI 2015 OAR Challenge [29]),

further confirms these compelling performance improve-

ments. In summary, the contributions and novelty of this

paper are three folds:

• Segmenting a comprehensive set of OARs is essential

and critical for radiotherapy treatment planing in head

and neck cancer. We work on the most clinically com-

plete and desirable set of 42 OARs as compared to pre-

vious state-of-the-art work.

• Our main methodological contribution is the proposed

whole framework on stratifying different organs into

different categories of OARs which to be dealt respec-

tively with tailored segmentors (achieved by NAS).

Our method is a well-calibrated framework of integrat-

ing organ stratification, multi-stage segmentation and

NAS in a synergy.

• Our idea of stratifying the 42 OARs into three lev-

els comes from the combination of emulation of on-

cologists manual OAR contouring knowledge and the

OAR’s size distributions. To our best knowledge, this

simple yet effective organ stratification scheme has

not been studied for such a complex segmentation and

parsing task like ours, by previous work.

2. Related Works

OAR Segmentation There is a large body of work on

OARs segmentation. Atlas-based approaches [10, 16, 33–

35, 40] enjoy a prominent history [20, 29]. Their main dis-

advantage is a reliance on accurate and efficient image reg-

istration [46], which is challenged by shape variations, nor-

mal tissue removal, abnormal tissue growth, and image ac-

quisition differences [44]. Registration often also take many

minutes or even hours to complete. Another common ap-

proach is statistical shape or appearance models [5, 6, 32].

These have shown promise, but a prominent issue is that

they can be limited to specific shapes described by the sta-

tistical model, which makes them less flexible when the

number of OARs is large [8]. Of note is Tong et al. [39],

who applied intensity and texture-based fuzzy models us-

ing a hierarchical stratification.

Recently, deep CNN based approaches have proven

capable of delivering substantially better performance.
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Figure 2. (a) SOARS stratifies OAR segmentation across two dimensions: distinct processing frameworks and distinct architectures. We

execute the latter using differentiable NAS. (b) depicts illustrates the backbone network (P-HNN) with NAS, which allows for an automatic

selection across 2D, 3D, P3D convolutions. (c) demonstrates the NAS search space setting.

Apart from early efforts [15], fully convolutional networks

(FCNs) have quickly becomes the mainstream method [18,

27, 38, 46]. To address data imbalance issues when faced

with S&H OARs, FocusNet [9] and UaNet [37] adopt a

segmentation-by-detection strategy to achieve better seg-

mentation accuracy. However, both approaches do not strat-

ify OARs, and hence, cannot use easier OARs as support to

more difficult ones. Moreover, when the number of OARs

is large, e.g. > 40, optimization becomes more difficult.

Finally, their network architecture remains manually fixed,

which is less optimized for the distinct OARs categories.

Stratified Learning Stratification is an effective strategy to

decouple a complicated task into easier sub-tasks. Com-

puter vision has a long history using this strategy. Several

contextual learning models have been used to assist gen-

eral object detection [14, 28] within the conditional ran-

dom field framework [21]. Instance learning, i.e. instance

localization, segmentation and categorization, often strati-

fies the problem into multiple sub-tasks [3, 7, 13]. Within

medical imaging, stratified statistical learning has also been

used to recognize whether a candidate nodule connects to

any other major lung anatomies [43]. Yet, the use of strati-

fied learning for semantic segmentation, particularly in the

deep-learning era, is still relatively understudied in medi-

cal imaging. Within OAR segmentation, Tong et al. [39]

have applied a hierarchical stratification, but this used a

non-deep fuzzy-connectedness model. We are the first to

execute stratified learning for deep OAR segmentation.

Neural Architecture Search This is the process of auto-

matically discovering better network architectures. Many

NAS methods exploit reinforcement learning [48] or evo-

lutionary algorithms [30]. However, both strategies are

extremely computationally demanding. Differentiable

NAS [23, 24, 47] realize all candidate architectures simulta-

neously during optimization, limiting the allowable or feasi-

ble search spaces. Nonetheless, these approaches are highly

practical means to tailor architectures. In this work, we fol-

low the differentiable NAS formulation [24, 47] to search

the architectures for each of the three OAR stratifications.

We explore the optimal kernel size and combination of 2D,

3D, and P3D configurations. As such, we are the first to

apply NAS to OAR segmentation.

3. Methods

Figure 2 depicts the SOARS framework, which uses

three processing branches to stratify anchor, mid-level and

S&H OARs segmentation. A first stratification dimension

is distinct processing frameworks. SOARS first segments

the anchor OARs. Then, with the help of predicted an-

chors, mid-level and S&H OARs are segmented. For the

most difficult category of S&H, we first detect center loca-

tions and then zoom-in to segment the small OARs. The

deeply-supervised 3D P-HNN [12] is adopted as the back-

bone for all three branches, which uses deep supervision

to progressively propagate lower-level features to higher-

levels ones using a parameter-less pathway. We opt for

this backbone due to its good reported performance in other

RTCT works [18, 19]. A second dimension of stratification

uses differentiable NAS to search distinct P-HNN convolu-

tional blocks for each OAR category.

3.1. Processing Stratification

As mentioned, SOARS segments OARs using three dis-

tinct frameworks, where OARs are divided according to

clinician recommendations (the details for our 42 OAR

dataset is reported in Sec. 4.1). We denote the training

data of N data instances as S =
{

Xn, Y
A
n , Y M

n , Y S
n

}N

n=1
,

where Xn, Y A
n , Y M

n , and Y S
n denote the input RTCT and

ground-truth masks for anchor, mid-level, and S&H OARs,
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respectively. Here, we drop n, when appropriate, for clar-

ity. Throughout, we will abuse matrix/vector notation, us-

ing boldface to denote vector-valued volumes and use vec-

tor concatenation as an operation across all voxel locations.

Anchor branch: Assuming we have C classes, SOARS

first uses the anchor branch to generate OAR prediction

maps for every voxel location, j, and every output class,

c:

Ŷ A
c (j) = pA

(

Y A(j) = c |X;WA
)

, (1)

Ŷ
A =

[

Ŷ A
1 . . . Ŷ A

C

]

, (2)

where pA(·) and Ŷ
A
c denote the CNN functions and output

segmentation maps, respectively. Here, predictions are vec-

tor valued 3D masks as they provide a pseudo-probability

for every class. W
(·) represents the corresponding CNN

parameters.

Anchor OARs have high contrast compared to surround-

ing tissue or are in easy-to-locate regions; hence, it is rela-

tively easy to segment them directly and robustly based on

pure appearance and context features. Consequently, they

are ideal candidates to support the segmentation of other

OARs.

Mid-level branch: Most mid-level OARs are primarily soft

tissue, which have low contrast and can be easily confused

with other structures with similar intensities and shapes. Di-

rect segmentation can lead to false-positives or over/under-

segmentations. This can be addressed by using processing

stratification to directly incorporate anchor predictions into

mid-level learning, since the anchor predictions are robust

and provide highly informative location and semantically-

based cues. As demonstrated in Figure 2, we combine the

anchor predictions with the RTCT to create a multi-channel

input:
[

X, Ŷ
A
]

:

Ŷ M
c (j) = pM

(

Y M(j) = c |X, ŶA;WM
)

. (3)

In this way, the mid-level branch leverages both the com-

puted tomography (CT) intensities as well as the anchor

OAR guidance, which can be particularly helpful in manag-

ing regions with otherwise similar CT appearance. Like (2),

we can collect mid-level predictions into a vector-valued en-

tity Ŷ
M .

Small & hard branch: In this branch, we further decou-

ple segmentation into a detection followed by segmentation

process. Directly segmenting the fine boundaries of S&H

OARs from CT is very challenging due to the poor con-

trast and the extremely imbalanced foreground and back-

ground distributions when considering the entire volume.

In contrast, the detection of center regions of S&H OARs

is a much easier problem, since the H&N region has rel-

atively stable anatomical spatial distribution. This means

that the rough locations of S&H OARs can be inferred from

the CT context with confidence. Once the center location is

detected, a localized region can be cropped out to focus on

segmenting the fine boundaries in a zoom-in fashion. This

has similarities to Gao et al.’s [9] approach to segment small

organs.

For detecting S&H OAR centers, we adopt a simple yet

effective heat map regression method [42, 45], where the

heat map labels are created at each organ center using a

3D Gaussian kernel. Similar to the mid-level branch, to in-

crease detection robustness and accuracy we also combine

the anchor branch predictions with the RTCT as the detec-

tion input channels:

Ĥ = f(X, ŶA;WD) (4)

where Ĥ denotes the predicted heat maps for every S&H

OAR. Like the segmentation networks, we use the same

P-HNN backbone for f(·). Given the resulting regressed

heat map, we choose the pixel location corresponding to

the highest value, and crop a volume of interest (VOI) us-

ing three-times the extent of the maximum size of the OAR

of interest. With the VOI cropped, SOARS can then seg-

ment fine boundaries of the S&H OARs. As illustrated in

Figure 2, we concatenate the output from Eq. (4) together

with the cropped RTCT image as the input to the S&H OAR

segmentation network:

Ŷ S
c (j) = pS

(

Y S(j) = c |X, Ĥ′;WS
)

, (5)

where here it’s understood that (5) is only operating on the

cropped region.

3.2. Architectural Stratification

While stratifying OARs into different processing frame-

works with distinct inputs and philosophies is key to push-

ing performance, more can be done. Namely, considering

the significant variations in OAR appearance, shape, and

size, it is likely that each OAR type would benefit from seg-

mentation branch architectures tailored to their needs. To

do this, SOARS automatically searches network architec-

tures for each branch, adding an additional dimension to the

stratification. Throughout, we use P-HNN [12] as the base

backbone. The whole network structure is illustrated in Fig-

ure 2, in which the architecture is learned in a differentiable

way [24].

Let φ( · ;ωx×y×z) denote a composite function of the

following consecutive operations: batch normalization, a

rectified linear unit and a convolution with an x × y × z

dimension kernel. If one of the dimensions of the kernel is

set to 1, it reduces to a 2D kernel. As shown in Eq. (6), we

search a set of possible architectures that include: 2D con-

volutions, 3D convolutions, or pseudo-3D convolution with
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either kernel sizes of 3 or 5:

φ2D3
= φ ( · ;ω3×3×1) ,

φ2D5
= φ ( · ;ω5×5×1) ,

φ3D3
= φ ( · ;ω3×3×3) ,

φ3D5
= φ ( · ;ω5×5×5) ,

φP3D3
= φ (φ ( · ;ω3×3×1) ;ω1×1×3) ,

φP3D5
= φ (φ ( · ;ω5×5×1) ;ω1×1×5) ,

Φ = {φ2D3
, φ2D5

, φ3D3
, φ3D5

, φP3D3
, φP3D5

} ,

(6)

where Φ denotes the search space of possible architec-

tures. For simplicity, instead of a layer-by-layer architec-

ture search, we use only one type of convolutional kernel to

build each P-HNN convolutional block.

Similar to [24, 47], we make the search space continuous

by relaxing the categorical choice of a particular operation

to a softmax over all 6 possible operations. More formally,

if we index each possibility in (6) by k, then we can define

a set of 6 learnable logits for each, denoted ak. A softmax

can then be used to aggregate all possible architectures into

one combined output, φ′:

γk =
exp (αk)

∑

m exp (αm)
(7)

φ′ =
∑

k

γkφk, (8)

where we have dropped dependence on the input images for

convenience. As Zhu et al. demonstrated [47], this type of

NAS scheme can produce significant gains within medical

image segmentation. This creates a sort of super network

that comprises all possible manifestations of (6). This super

network can be optimized in the same manner as standard

networks. At the end of the NAS, the chosen network archi-

tecture of each block, φ̃, can be determined by selecting the

φ corresponding to the largest αk value. If the index to this

maximum is denoted k̃, then φ̃ = φk̃. If we have b blocks,

then based on (8), the searched network can be represented

as p̃
(

· ;W̃
)

= φ̃b
(

φ̃b−1
(

· · · φ̃1
(

· ; ω̃1
)

; ω̃b−1
)

; ω̃b
)

,

where (̃·) denotes the searched network architecture. For

consistency, we use the same strategy to search the network

architecture for each branch of SOARS.

4. Experiments

4.1. Datasets and Preprocessing

To evaluate performance, we collected 142 anonymized

non-contrast RTCT images in H&N cancer patients, where

42 OARs are delineated during the target contouring

process for radiotherapy (hereafter denoted as H&N 42

dataset). Extensive 4-fold cross validation, split at the pa-

tient level, was conducted on the H&N 42 dataset to report

results. We compare against other state-of-the-art methods

including P-HNN [12], UNet [4], and UaNet [37]. To eval-

uate the effectiveness of SOARS, we conducted two abla-

tion studies using 1 fold of the dataset. Furthermore, we

examined our performance using the public MICCAI 2015

head and neck auto-segmentation challenge data1 (referred

hereafter as MICCAI2015). This external testing set con-

tains 9 OARs with 15 test cases. Evaluation metrics: We

report the segmentation performance using DSC in percent-

age, HD and ASD in mm. Note that we use HD metric

instead of HD95 as reported in some previous works.

H&N 42 OARs dataset: Each CT scan is accompanied

by 42 OAR 3D masks annotated by an experienced oncolo-

gist. The average CT size is 512×512×360 voxels with an

average resolution of 0.95 × 0.95 × 1.9 mm. The specific

OARs stratification is as follows. Anchor OARs: brain

stem, cerebellum, eye (left and right), mandible (left and

right), spinal cord and temporomandibular joint (left and

right). Mid-level OARs: brachial plexus (left and right),

basal ganglia (left and right), constrictor muscle (inferior,

middle and superior), epiglottis, esophagus, hippocampus

(left and right), larynx core, oralcavity, parotid (left and

right), submandibular gland (left and right), temporal lobe

(left and right), thyroid (left and right). S&H OARs:

cochlea (left and right), hypothalamus, inner ear (left and

right), lacrimal gland (left and right), optic nerve (left and

right), optic chiasm, pineal gland, and pituitary.

MICCAI2015 dataset: This dataset has been exten-

sively used by researchers to evaluate atlas and deep learn-

ing based H&N OAR segmentation. It contains 33 training

cases and 15 test cases with 9 OARs annotated. The 9 OARs

include brain stem, mandible, optic chiasm, optic nerve (left

and right), parotid (left and right) and submandibular gland

(left and right).

Image preprocessing: We apply a windowing of [-

500, 1000] HU to every CT scan covering the intensity

range of our target OARs, from which we extract 128 ×
128× 64 VOIs as training samples for the anchor and mid-

level branches as well as the detection module in the S&H

branch. The heat map labels in the detection module is a

3D Gaussian distribution with a standard deviation of 8mm.

The training VOIs are sampled in two manners: (1) we ran-

domly extract VOIs centered within each of the OARs to

ensure sufficient positive samples. (2) we randomly sample

additional 15 VOIs from the whole volume to obtain suffi-

cient negative examples. This results in on average 70 VOIs

per CT scan. We further augment the training data by ap-

plying random scaling between 0.8 − 1.2. In testing, 3D

sliding windows with sub-volumes of 128 × 128 × 64 and

strides of 96×96×32 voxels are used. The probability maps

of sub-volumes are aggregated to obtain the whole volume

1http://www.imagenglab.com/wiki/mediawiki/

index.php?title=2015_MICCAI_Challenge
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Anchor OARs Mid-level OARs S&H OARs

DSC HD ASD DSC HD ASD DSC HD ASD

Baseline 84.02 5.98 0.82 Baseline 63.68 12.97 3.48 Baseline 60.97 4.86 0.98

CT Only 84.14 5.25 0.79 CT Only 67.31 12.03 3.97 CT Only 62.09 4.19 1.06

CT+NAS 85.73 4.77 0.77 CT+Anchor 70.73 10.34 1.67 CT+Heat map 71.75 2.93 0.52

CT+Anchor+NAS 72.55 9.05 1.31 CT+Heat map +NAS 72.57 2.94 0.49

Table 1. Quantitative results of the ablation studies of the proposed method using 1 fold of the dataset. The baseline network is a 3D

P-HNN. For S&H OARs, all methods, except the baseline, segment on predicted VOIs. The performance is measured by DSC (unit: %),

HD (unit: mm), and ASD (unit: mm).

GT

CT

+Anchor

+NAS

CT

+Anchor

CT Only

Basal ganglia L
Basal ganglia R

Temp. lobe L
Temp. lobe R

Temp. lobe L
Temp. lobe R
Hippo. L
Hippo. R

Epiglottis
Const. inf

Oral cavity
SMG L
SMG R
Const. mid

Const. inf
Thyroid L
Thyroid R
Brachial L

Larynx

Brachial R

Brachial L
Brachial R

Esophagus

Figure 3. Qualitative mid-level OAR segmentation using different setups. The seven columns are seven representative axial slices in

the RTCT image. For better comparison, we use red arrows to indicate the improvements. The 1
st row is the RTCT image with OAR

delineations of a radiation oncologist. The 3rd row shows the impact of using anchor OARs, which can help the segmentation of soft-tissue

mid-level OARs. The 4
th demonstrates the impact of NAS, indicating the necessity of adapting network architectures for different OARs.

Dist (mm)

CT Only 3.25±2.34

CT+Anchor 2.91±1.74

Table 2. S&H OAR detection results measuring the average dis-

tance between regressed and true center points.

prediction, taking on average 20s to process one input vol-

ume using a single GPU.

4.2. Implementation Details

We implemented SOARS in PyTorch2, and trained it on

an NVIDIA Quadro RTX 8000. The RAdam solver [25] is

used to optimize all models with a momentum of 0.9 and

a weight decay of 0.005. The DSC loss is used for the

2https://pytorch.org/

segmentation task training. The S&H detection branch is

trained using L2 loss with a 0.01 learning rate.

We exploit NAS to search the optimal network architec-

ture for each branch. For the NAS parameter αk, we first

fix αk for 20 epochs. Then we update αk and the network

weights for an additional 30 epochs. The batch size for NAS

training is set to 2. Note that we use only the validation set

for α updating. The ratio between the training set and the

validation set is 2:1. The initial learning rate is set to 0.005
for the anchor and mid-level branches, and 0.001 for the

S&H branch.

After NAS is completed, we retrain the searched net-

work from scratch with a batch size of 12. The batch size

is set to be 12. The initial learning rate is set to 0.01 for

the anchor and mid-level branches, and 0.005 for the S&H

4228



branch. The detailed training strategy is described as fol-

lows: 1) We train the anchor branch for 50 epochs; 2) We

fix the parameters of the anchor branch and concatenate its

output to the original RTCT, followed by further training

the mid-level and S&H branches for 50 epochs; 3) Finally

we fine-tune the whole framework in an end-to-end manner

for 10 epochs.

4.3. Processing Stratification

We first evaluate the effectiveness of the processing strat-

ification of SOARS. The ablation results for segmenting the

anchor, mid-level and S&H OARs are shown in Table 1.

The baseline comparison is the 3D P-HNN model trained

on all 42 OARs together. When anchor OARs are stratified

to train only on themselves, there is a slight improvement as

compared to the baseline model, consistent with the obser-

vation that anchor OARs generally have good contrast and

are easy to optimize. However, when focusing on mid-level

OARs, there is a marked DSC score improvement (3.63%)

when only training on mid-level OARs instead of training

on all. This demonstrates the difficulty in segmenting a

large number of organs together without considering their

differences. When further adding anchor OAR predictions

as support, both DSC scores and the ASD experience large

improvements, i.e. from 67.31% to 70.73% in DSC and

3.97 to 1.67mm in ASD. These significant error reductions

indicate that anchor OARs serve as effective references to

better delineate the hard-to-discern boundaries of mid-level

organs (most are soft-tissue). Figure 3 depicts qualitative

examples of segmenting mid-level OARs. As can be seen,

our method achieves much better visual results.

For the S&H branch, we first report the accuracy of the

regressed center-point using the detection-by-segmentation

network. As Table 2 demonstrates, the center points of

S&H OARs can be detected with high robustness. More-

over, when using the anchor OARs as support, the dis-

tance errors between regressed and true center points are

further reduced. In our experiments, no S&H OAR was

missed by our detection-by-segmentation strategy, demon-

strating the robustness of our approach. Now focusing on

the segmentation results of Table 1, by cropping the VOI

using the detection module, there is remarkable improve-

ment in segmenting the S&H OARs, moving DSC from

62.09% to 71.75%, as compared against directly segment-

ing from the CT. This further demonstrates the value of our

processing-based stratification method, which provides for

optimal treatment of OAR categories with different charac-

teristics. As the examples of Figure 4 demonstrate, the ben-

efits of processing stratification for S&H OARs is clearly

shown in the optic chiasm, hypothalamus, and pineal gland,

which are insufficiently segmented/missed when using only

RTCT for prediction.

GT CT+Heat Map

CT Only CT+Heat Map+NAS

Figure 4. Examples of S&H OAR segmentation using different se-

tups. For visualiztion purpose, the dashed rectangles are enlarged

for highlighting improvements. As indicated using the red arrows,

the proposed method achieves visually better optic chiasm, hy-

pothalamus, and pineal gland segmentation.

4.4. Architectural Stratification

Table 1 also outlines the performance improvements pro-

vided by NAS. As can be seen, all three branches trained

with NAS consistently produce more accurate segmentation

results than those trained with the baseline 3D P-HNN net-

work. This validates the effectiveness of NAS on compli-

cated segmentation tasks. For the three branches, the anchor

and mid-level branches have considerable performance im-

provement, from 84.14% to 85.73% and 70.73% to 72.55%
in DSC scores respectively, while the S&H branch pro-

vides a marginal improvement (0.82% in DSC score). For

segmenting the S&H OARs, the strong priors of detected

heat maps may have already made the segmentation task

much easier. Nonetheless, considering the dramatic im-

provements already provided by the stratified approach in

Sec. 4.3, the fact that NAS is able to boost performance

even further attests to its benefits. Some qualitative exam-

ples demonstrating the effectiveness of NAS are shown in

Figure 3 and Figure 4.

The searched network architectures for the anchor

branch are 2D-kernel3, 2D-kernel5, 2D-kernel3 and 3D-

kernel5 for the four convolution blocks, while for the mid-

level branch they are 2D-kernel3, 2.5D-kernel5, 2D-kernel3

and 2.5D-kernel5. This is an interesting result, as it indi-

cates that 3D kernels may not always be the best choice for

segmenting objects with reasonable size, as mixed 2D or

P3D kernels dominate both branches. Consequently, it is
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Anchor OARs Mid-level OARs S & H OARs All OARs

DSC HD ASD DSC HD ASD DSC HD ASD DSC HD ASD

UNet [4] 82.97 8.90 1.06 63.61 11.06 1.92 59.64 6.38 1.31 66.62 9.26 1.86

P-HNN [12] 84.26 6.12 1.18 65.19 13.15 2.97 59.42 5.23 0.82 67.62 9.39 2.23

UaNet [37] 84.30 8.89 1.72 69.40 11.57 2.06 61.85 5.28 1.53 70.44 9.20 1.83

SOARS 85.04 5.08 0.98 72.75 10.10 1.66 71.90 2.93 0.53 75.14 6.98 1.12

Table 3. Quantitative results of different approaches on segmenting the 42 H&N OARs using the 4-fold cross validation. Our proposed

SOARS achieves the best performance in all metrics (indicated in bold).

Optic Nerve Parotid SMG
Brain Stem Mandible Optic Chiasm

Lt Rt Lt Rt Lt Rt
All OARs

Ren et al. [31] - - 58.0±17.0 72.0±8.0 70.0±9.0 - - - - -

Wang et al. [41] 90.0±4.0 94.0±1.0 - - - 83.0±6.0 83.0±6.0 - - -

AnatomyNet [46] 86.7±2.0 92.5±2.0 53.2±15.0 72.1±6.0 70.6±10.0 88.1±2.0 87.3±4.0 81.4±4.0 81.3±4.0 79.2

FocusNet [9] 87.5±2.6 93.5±1.9 59.6±18.1 73.5±9.6 74.4±7.2 86.3±3.6 87.9±3.1 79.8±8.1 80.1±6.1 80.3

UaNet [37] 87.5±2.5 95.0±0.8 61.5±10.2 74.8±7.1 72.3±5.9 88.7±1.9 87.5±5.0 82.3±5.2 81.5±4.5 81.2

SOARS 87.6±2.8 95.1±1.1 64.9±8.8 75.3±7.1 74.6±5.2 88.2±3.2 88.2±5.2 84.2±7.3 83.8±6.9 82.4

Table 4. For MICCAI 2015 9 OARs segmentation challenge, the proposed method achieves 7 (in bold) best performance and 2 (in grey

box) second best performance.

possible that much computation and memory used for 3D

networks could be avoided by using an appropriately de-

signed 2D or P3D architecture. For the S&H branch, the

search architecture is 2D-kernel3, 3D-kernel5, 2D-kernel3

and 3D-kernel5 for the four convolution blocks. As can be

seen, more 3D kernels are used, consistent with the intu-

ition that small objects with low contrast rely more on the

3D spatial information for better segmentation.

Intuitively, it would be interesting to let the network

search the OAR levels. However, NAS becomes computa-

tionally unaffordable since automatically stratifying anchor

OARs alone is at the complexity of C9
42× more expensive.

4.5. Comparison to State­of­the­art

Table 3 compares SOARS against 3 state-of-the-art

(SOTA) OAR segmentation methods, i.e. UNet [4], P-

HNN [12], and UaNet [37], using the 4-fold cross-

validation on the H&N 42 OARs dataset. We also tested

anatomyNet [46], but it consistently missed very small or-

gans, so we do not report its results. Although P-HNN [12]

achieves comparable performance on the anchor and S&H

OARs segmentation with UaNet [37], it has decreased per-

formance for mid-level OARs. UaNet is a modified ver-

sion of 3D Mask R-CNN [13], which conducts object seg-

mentation within the detected boxes. Hence, it decou-

ples the whole complicated task into detection followed by

segmentation, possibly accounting for the better segmen-

tation accuracy for the mid-level OARs as compared to P-

HNN [12]. Nonetheless, despite being much simpler, P-

HNN is still able to match or beat UaNet on the S&H OARs,

demonstrating its effectiveness as a baseline and backbone

method for SOARS. When considering SOARS, consistent

improvements can be observed in all metrics as compared

to all competitors, with 4.70% absolute DSC increases and

2.22mm HD error reduction as compared to UaNet [37].

4.6. MICCAI2015 Challenge

We use the MICCAI2015 dataset as an external dataset

to further demonstrate the generalizability of SOARS. Simi-

lar to other comparison methods, we trained our framework

from scratch using the MICCAI2015 training set. We get

an average DSC of 82.4%, which has 1.2% improvement

as compared to [37], or 2.1% over [9]. Compared to com-

petitor methods, we achieve 7 best performance and 2 sec-

ond best performance on all 9 OARs, especially the most

difficult optic chiasm, where we have a 3.4% improvement

on DSC as compared to the best previous result achieved

by UaNet [37]. These results on the MICCAI2015 dataset

further validate the effectiveness and consistency of our

method, reinforcing its value.

5. Conclusion

This work presented SOARS, a novel framework that

stratifies H&N OARs segmentation into two dimensions.

Inspired by clinical practices, we stratify OARs into three

categories of anchor, mid-level and S&H, providing cus-

tomized processing frameworks for each. Importantly,

the mid-level and S&H branches build off of the anchor

branch’s more reliable predictions. Additionally, we strat-

ify network architectures, executing an effective NAS for

each. We test on the most comprehensive H&N dataset

to date that comprises 42 different OARs. Comparing to

SOTA methods, the improvements are most significant for

the mid-level and S&H OARs. With this, we demonstrate

that our proposed SOARS can outperform all state-of-the-

art baseline networks, including the most recent representa-

tive work UaNet [37], by margins as high as 4.70% in DSC.

Thus, our work represents an important step forward toward

reliable and automated H&N OAR segmentation.
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