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Abstract

Spatial reasoning is an important component of human

intelligence. We can imagine the shapes of 3D objects and

reason about their spatial relations by merely looking at

their three-view line drawings in 2D, with different levels of

competence. Can deep networks be trained to perform spa-

tial reasoning tasks? How can we measure their “spatial

intelligence”? To answer these questions, we present the

SPARE3D dataset. Based on cognitive science and psycho-

metrics, SPARE3D contains three types of 2D-3D reasoning

tasks on view consistency, camera pose, and shape genera-

tion, with increasing difficulty. We then design a method to

automatically generate a large number of challenging ques-

tions with ground truth answers for each task. They are

used to provide supervision for training our baseline mod-

els using state-of-the-art architectures like ResNet. Our ex-

periments show that although convolutional networks have

achieved superhuman performance in many visual learning

tasks, their spatial reasoning performance in SPARE3D is

almost equal to random guesses. We hope SPARE3D can

stimulate new problem formulations and network designs

for spatial reasoning to empower intelligent robots to oper-

ate effectively in the 3D world via 2D sensors.

1. Introduction

Spatial reasoning is “the ability to generate, retain, re-

trieve, and transform well-structured visual images” [29]. It

allows an intelligent agent to understand and reason about

the relations among objects in three or two dimensions. As a

part of general intelligence, spatial reasoning allows people

to interpret their surrounding 3D world [30] and affect their

spatial task performances in large-scale environments [20].

Moreover, statistics from many psychological and educa-

tional studies [26, 31, 45] have empirically proved that good

spatial reasoning ability can benefit performance in STEM

(science, technology, engineering, and math) areas.

Therefore, when we are actively developing intelligent
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Given F, R, T, I,

Select Pose of I

Shape Generation:

Given F, R, T,

Generate 3D Model

Figure 1. SPARE3D task overview. The input to each task is

either the whole or a subset of four different orthographic views

of a 3D object as line drawings, i.e., front (F), top (T), right (R),

and isometric (I) views. Based on the input, an intelligent agent

needs to answer three types of questions: 1) select a consistent

view describing the same object, 2) reason about the camera pose

of a view, and 3) generate the object shape as an isometric view or

a 3D model. The green box (left) and circle (middle) indicate the

correct answers in this example. Best viewed in color.

systems such as self-driving cars and smart service robots,

it is natural to ask how good their spatial reasoning abil-

ities are, especially if they are not equipped with expen-

sive 3D sensors. Because deep convolutional networks em-

power most state-of-the-art visual learning achievements

(such as object detection and scene segmentation) in those

systems, and they are typically trained and evaluated on a

large amount of data, it is then important to design a set of

non-trivial tasks and develop a large-scale dataset to facili-

tate the study of spatial reasoning for intelligent agents.

As an important topic in psychometrics, there exist sev-

eral spatial reasoning test datasets, including the Men-

tal Rotation Tests [43], Purdue Spatial Visualization Test

(PSVT) [4], and Revised Purdue Spatial Visualization

Test [50]. However, those human-oriented tests are not di-

rectly suitable for our purpose of developing and testing the

spatial reasoning capability of an intelligent system, or a

deep network. First, the amount of data in these datasets,

typically less than a hundred of questions, is not enough for

most deep learning methods. Second, the manual way to de-

sign and generate questions in these tests are not easily scal-
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able. Third, many of them focus mostly on various forms

of rotation reasoning tests, ignoring other spatial reasoning

aspects that may be deemed either too easy to answer (e.g.,

to reason about the consistency between different views) or

too difficult to evaluate (e.g., imagine and visualize the 3D

shape or views mentally from different pose) for human,

which are non-trivial for a machine. In addition, some tests

use line drawings without hidden lines (not directly visible

due to occlusion), which might cause ambiguity and make

it unnecessarily difficult for our purpose.

In the vision community, some Visual Question Answer-

ing (VQA) datasets that are reviewed in the next section

are the closest efforts involving spatial reasoning. How-

ever, these datasets are heavily coupled with natural lan-

guage processing and understanding, instead of purely fo-

cusing on spatial reasoning itself. Also, these datasets are

mainly designed for visual relationship reasoning instead of

spatial reasoning about geometric shapes and poses.

Therefore, we propose the SPARE3D dataset to promote

the development and facilitate the evaluation of intelligent

systems’ spatial reasoning abilities. We use orthographic

line drawings as the primary input modality for our tasks.

Line drawings are widely used in engineering, representing

3D mechanical parts in computer-aided design or structures

in building information models from several 2D views, with

surface outlines and creases orthogonally projected onto the

image plane as straight or curved lines. Compared with real-

istic images, line drawings are not affected by illumination

and texture in rendering, providing pure, compact, and most

prominent object geometry information. It is even possible

to encode depth cues in a single drawing with hidden lines.

Moreover, line drawing interpretation has been exten-

sively studied in computer vision and graphics for a few

decades, leading to theories such as line labeling and re-

gion identification [32, 42, 33, 44], and for single-view re-

construction [37]. Many of these methods were trying to

convert 2D line drawings to 3D models based on projec-

tive geometry theories and rule-based correspondence dis-

covery, which is arguably different from human’s seemingly

instinctive and natural understanding of those drawings. We

hope SPARE3D can stimulate new studies in this direction

using data-driven approaches.

SPARE3D contains five spatial reasoning tasks in three

categories of increasing difficulty, including view consis-

tency reasoning, camera pose reasoning, and shape gener-

ation reasoning, as illustrated in Figure 1. The first two

categories are discriminative. View consistency reason-

ing requires an intelligent agent to select a compatible line

drawing of the same object observed from a different pose

than the given drawings. The more difficult camera pose

reasoning requires the agent to establish connections be-

tween drawings and their observed poses, which is simi-

lar to the aforementioned Mental Rotation Tests and PSVT.

Dataset 2D 3D pure geometry line drawing reasoning

Visual Reasoning [24, 3, 48, 7, 22, 28, 38] X ✗ ✗ ✗ X

Phyre [2] X ✗ ✗ ✗ X

ShapeNet [6] X X ✗ ✗ ✗

ScanNet [10] X X ✗ ✗ ✗

Line Drawing [8, 9, 17, 1] X ✗ ✗ X ✗

ABC [27] X X X ✗ ✗

SPARE3D (ours) X X X X X

Table 1. Summary of related public datasets. 2D, 3D and

line drawing indicate the types of data in a dataset. Pure ge-

ometry means the dataset is only focusing on geometry, without

other modalities (language/semantics/physics). Reasoning means

whether a dataset is designed directly for reasoning.

The shape generation is the most difficult, where we test for

higher-level abilities to directly generate 2D (line drawings

from other views) or 3D (point clouds or meshes) represen-

tations of an object, based on the given line drawings. If

an agent can solve this type of tasks accurately, then the

previous two categories can be solved directly. Note that al-

though there are other types of spatial reasoning tasks in the

psychometrics literature, we focus on these three because

they are some of the most fundamental ones.

In summary, our contributions are the following:

• To the best of our knowledge, SPARE3D is the first

dataset with a series of challenging tasks to evaluate

purely the spatial reasoning capability of an intelli-

gent system, which could stimulate new data-driven

research in this direction.

• We design a scalable method to automatically gener-

ate a large number of non-trivial testing questions and

ground truth answers for training and evaluation.

• We design baseline deep learning methods for each

task and provide a benchmark of their performance on

SPARE3D, in comparison with human beings.

• We find that state-of-the-art convolutional networks

perform almost the same as random guesses on

SPARE3D, which calls for more investigations.

• We release the dataset and source code for data gener-

ation, baseline methods, and benchmarking.

2. Related Works

Spatial reasoning has been studied for decades in cogni-

tive science and psychology. With the advancements of ar-

tificial intelligence (AI), researchers begin to design AI sys-

tems with visual/spatial understanding and reasoning abil-

ities. As mentioned, classical human-centered spatial rea-

soning tests are not designed for AI and not readily trans-

ferable for developing spatial reasoning AI. Thus we only

focus on reviewing datasets and methods related to spatial

reasoning in the broad context of AI, where the main differ-

ences with SPARE3D are summarized in Table 1.

Visual Reasoning Dataset. Recently there has been

substantial growth in the number of visual reasoning

datasets. They facilitate the development and evaluation
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of AI’s visual and verbal reasoning ability by asking com-

mon sense questions about an image in the form of natural

language [24, 3, 48, 25, 7, 22, 52, 28, 38] (except for [2]

that focuses on physics). SPARE3D has two major differ-

ences. First, it only involves visual/spatial information of

an object; therefore, natural language processing is not re-

quired. The tasks in SPARE3D is already very challeng-

ing, so decoupling them from other input modalities al-

lows researchers to focus on spatial reasoning. Second,

SPARE3D focuses on reasoning about two fundamental ge-

ometric properties: the shape of a 3D object, and the pose it

was observed from, rather than the relative position, size, or

other semantic information comparisons between objects.

3D Object/Scene Dataset. Recent years have also seen

the booming large-scale 3D datasets designed for represen-

tation learning tasks such as classification and segmenta-

tion as a way to 3D scene understanding. For example,

ShapeNet [6] as a 3D object dataset with rich semantic

and part annotations, and ScanNet [10] as an RGB-D video

dataset for 3D reconstruction of indoor scenes. Some of

those datasets are then utilized in the visual navigation stud-

ies [53, 47]. Although visual navigation can be seen as in-

volving spatial reasoning, it focuses more on a scene level

goal-achieving than the object level shape and pose reason-

ing in SPARE3D. In SPARE3D, we take advantage of 3D

solid models from the ABC dataset [27], which is proposed

for digital geometry processing tasks. We then generate

line drawings from these CAD models as our 2D drawing

sources. Note that none of these datasets are specifically

designed for spatial reasoning, as in our context.

Line Drawing Dataset. Interpreting line drawings has

been a long-term research topic, as discussed. With the de-

velopment of deep learning, the recent efforts in this direc-

tion are to understand line drawings by analyzing a large

number of them. Cole et al. [8, 9] studied on how the draw-

ings created by artists correlate with the mathematical prop-

erties of the shapes, and how people interpret hand-drawn or

computer-generated drawings. OpenSketch [17] is designed

to provide a wealth of information for many computer-aided

design tasks. These works, however, mainly focus on 2D

line drawing interpretation and lack 3D information paired

with 2D drawings. Unlike them, SPARE3D contains paired

2D-3D data, thus can facilitate an AI system to reason about

3D object information from 2D drawings, or vice versa.

Other Related Methods. We also briefly discuss some

machine learning methods that we believe might help tackle

spatial reasoning tasks in SPARE3D in the future. Research

about single view depth estimation, e.g., [15, 46], may be

used to reason about the 3D object from a 2D isometric

drawing (if trained on a large number of such drawings) by

predicting 3D structures to rule out some less likely candi-

dates in the questions. Similarly, spatial reasoning ability

for an intelligent agent could also be connected with neural

scene representation and rendering [13, 19]. For example,

Eslami et al. [13] introduced the Generative Query Network

(GQN) that learns a scene representation as a neural net-

work from a collection of 2D views and their poses. Indeed,

when trying to solve the SPARE3D tasks, people seem to

first “render” the shape of a 3D object in our minds and

then match that with the correct answer. If such analysis-

by-synthesis approaches are how we acquired the spatial

reasoning ability, then those methods could lead to better

performance on SPARE3D.

3. Spatial Reasoning Tasks

SPARE3D contains five tasks in three categories, includ-

ing view consistency reasoning, camera pose reasoning, and

shape generation reasoning. The first two categories contain

three discriminative tasks, where all questions are similar to

single-answer questions in standardized tests with only one

correct and three similar but incorrect answers. The last

category contains two generative tasks, where no candidate

answers are given, but instead, the answer has to be gener-

ated. Next, we discuss first how we design these tasks, and

then how to generate non-trivial question instances.

3.1. Task Design

In a SPARE3D task, an intelligent agent is given sev-

eral views of orthographic line drawings of an object as

the basic input for its reasoning. Without loss of general-

ity and following conventions in engineering and psycho-

metrics, in SPARE3D, we only focus on 11 fixed view-

ing poses surrounding an object: front (F), top (T), right

(R), and eight isometric (I) viewing poses, as illustrated in

Figure 2. Note that drawings from F, T, and R views are

usually termed as three-view drawings. And an isometric

view means the pairwise angles between all three projected

principal axes are equal. Note that there are more than one

possible isometric drawings from the same view point [51],

and without loss of generality, we choose the eight com-

mon ways as in Figure 2. Although geometrically equal,

the F/T/R views and I views have a significant statistical dif-

ference in appearance. Because our 3D objects are mostly

hand-designed by humans, many lines are axis-aligned and

overlap with each other more frequently when projected to

F/T/R views than I views. Therefore, I views can usually

keep more information about the 3D object.

Nonetheless, it is well-known that in general, a 3D shape

cannot be uniquely determined using only two correspond-

ing views of line drawings unless three different views of

line drawings are given with mild assumptions [21]. More-

over, finding the unique solution requires methods to estab-

lish correspondences of lines and junctions across different

views, which itself is non-trivial. Thus, even at least three

views of line drawings are given as input in all SPARE3D

tasks, it is still not straightforward to solve them.
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Figure 2. Illustration of the eight isometric views in SPARE3D.

Imagine a 3D object is placed in the center of a cube (grey).

Each vertex of the cube represents the viewpoint of an isometric

drawing, correspondingly labeled from 1 to 8. The front/top/right

(F/T/R) view’s viewpoint is located on the centers of rectangles

1-5-6-2/1-2-3-4/2-6-7-3 respectively. Note that hidden lines are

drawn in red. Best viewed in color.

View Consistency Reasoning. A basic spatial reasoning

ability should be grouping different views of the same 3D

object together. In other words, an intelligent agent with

spatial reasoning ability should be able to tell whether dif-

ferent line drawings could be depicting the same object

from different viewing poses. This is the origin of the view

consistency reasoning task. It is partly linked to some men-

tal rotation tests in psychometrics, where one is asked to

determine whether two views after rotation can be identi-

cal. We factor out the rotation portion to the second task

category, leave only the consistency checking part, result-

ing in the first task below.

3-View to Isometric. Given front, right, and top view

line drawings of a 3D object, an intelligent agent is asked to

select the correct isometric view drawing of the same object

captured from pose 2 defined in Figure 2. We use pose 2

since it is the most common pose in conventional isometric

drawings (see an example in Figure 3).

Camera Pose Reasoning. Mental rotation ability is an

important spatial reasoning ability that an intelligent agent

should have. By thoroughly understanding the shape of a

3D object from several 2D drawings, the agent should be

able to establish correspondences between a 2D drawing of

the object and its viewing pose. This leads to the following

two tasks (see examples in Figure 4 and 5).

Isometric to Pose. Given the front, right, top view and a

specific isometric view line drawings, an intelligent agent is

asked to determine the camera pose of that isometric draw-

A B C D

Select the Most Consistent Isometric (I) Drawing:

Front (F) Top (T) Right (R)

Given:

Figure 3. An example 3-View to Isometric task. The candidate

isometric views in the second row are all from pose 2. The correct

answer is highlighted in green, and hidden lines are drawn in red

in this and the following two figures. Best viewed in color.

Select the Corresponding Pose of the Isometric (I) Drawing: 

D. Pose 6C. Pose 5B. Pose 2A. Pose 1

Isometric (I)

Given:

Front (F) Top (T) Right (R)

Figure 4. An example Isometric to Pose task.

A B C D

Pose 2

Isometric (I)

Given:

Front (F) Top (T) Right (R)

Select the Isometric (I) Drawing at the Corresponding Pose: 

Figure 5. An example Pose to Isometric task.

ing. We consider only four poses, 1/2/5/6, for isometric

drawings in this task.

Pose to Isometric. As the “inverse” process of the pre-

vious task, this task asks an intelligent agent to select the

correct isometric drawing from a given viewing pose in ad-

dition to the given three-view drawings. To further increase

the difficulty, we consider all the eight isometric poses.

Shape Generation Reasoning. Generating the 2D or 3D

shape of an object from several 2D drawings is a funda-

mental aspect of spatial reasoning as suggested by its def-

inition. We believe it is such a top level capability that if

possessed can solve most of the spatial reasoning tasks: by

extracting spatial information contained in 2D drawings and

reconstruct 3D shapes, it could enable the agent to answer
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view consistency, or camera pose reasoning questions by

searching for possible solutions and eliminate less possible

ones. Therefore we design this category of tasks. Different

from the previous discriminative tasks, where the solution

space is discrete and finite, the following two tasks in this

category do not provide any candidate solutions, thus being

the most challenging among all.

Isometric View Generation. An intelligent agent is pro-

vided with front, right, and top view drawings and asked

to generate the corresponding isometric view drawing from

pose 2 (without loss of generality).

Point Cloud Generation. Given the same input as in the

previous task, the agent is asked to generate a complete 3D

model represented as a point cloud.

3.2. Task Generation

3D Object Repositories. To automatically generate dif-

ferent instances of the above designed tasks, we create

two 3D object repositories: SPARE3D-ABC, where 10,369

3D CAD objects are sampled from the ABC dataset [27],

and SPARE3D-CSG, where 11,149 3D constructive solid

geometry (CSG) objects of simple 3D primitives are ran-

domly generated. Given a 3D model repository, we use

PythonOCC [36], a Python wrapper for the CAD-Kernel

OpenCASCADE, to generate front/top/right/isometric view

drawings from the 11 fixed poses. This directly provides

us datasets for the shape generation reasoning tasks. We

generate all tasks independently on each repository. The

baseline results of all tasks run on both the SPARE3D-ABC

and SPARE3D-CSG models are shown and discussed in the

benchmark result section.

To use 3D objects from the ABC dataset, we remove

all duplicates by choose objects with unique hash values

of their front view image files. We also skip some objects

whose STEP-format file size exceed a certain limit to re-

duce the computing load. Note that there are many objects

in the ABC dataset whose corresponding front, top, or right

view drawings contains only a small point. We exclude all

these objects to ensure 2D drawings in our dataset cover a

reasonably large image area so as to be legible for an intel-

ligent agent even after downsampling.

Avoiding Data Bias. Given a large number of line draw-

ings and corresponding 3D objects, cares must be taken

when generating instances of the above spatial reasoning

tasks. An important consideration is to avoid data bias,

which could be undesirably exploited by deep networks to

“solve” a task from irrelevant statistical patterns rather than

really possessing the corresponding spatial reasoning abil-

ity, leading to trivial solutions. Therefore, we make sure

that all images in the dataset have the same size, resolution,

and scale. We also ensure that our correct and incorrect

answers are uniformly distributed in the solution space, re-

spectively. Besides, we ensure each drawing only appears

once across all tasks, either in questions or in answers, to

avoid memorization possibilities.

The biggest challenge of avoiding data bias is to auto-

matically generate non-trivial incorrect candidate answers

for the view consistency reasoning task. If incorrect an-

swers are just randomly picked from a different object’s

line drawings, according to our experiments, a deep net-

work can easily exploit some local appearance similarities

between views to achieve high testing performance in this

task. Therefore, we further process 3D objects for this task.

We first cut a 3D object by some basic primitive shapes like

sphere, cube, cone and torus for four times to get four cut

objects. Then we randomly choose one of the four objects

to generate F, T, R, and I drawings as question and correct

answer drawings. And the three I drawings from the re-

maining three cut objects are used as the wrong candidate

answers. We record the index of the correct isometric draw-

ing as the ground truth label for supervised learning. We

prepare 5,000 question instances in total for the 3-View to

Isometric task. We perform an 8 : 1 : 1 train/validation/test

dataset split. We use almost the same settings to generate

camera pose reasoning tasks except that no 3D object cut-

ting is needed.

4. Baseline Methods

We try to establish a reasonable benchmark for

SPARE3D tasks using the most suitable baseline methods

that we could find in the literature. 3-View to Isometric and

Pose to Isometric are formulated as either binary classifi-

cation or metric learning, Isometric to Pose as multi-class

classification, Isometric View Generation as conditional im-

age generation, Point Cloud Generation as multi-view im-

age to point cloud translation. For each task, images are en-

coded by a convolutional neural network (CNN) as fixed di-

mensional feature vectors, and a camera pose is represented

by a one-hot encoding because of the small number of fixed

poses in each task. Note that our dataset offers both vector

(SVG) and raster (PNG) representations of line drawings.

Raster files can be readily consumed by CNN, while vector

files offer more possibilities such as point cloud or graph

neural networks. Currently, we focus only on raster files be-

cause of the relative maturity of CNN. We will benchmark

more networks suitable for vector data in the future.

For the backbone network architectures, we select

ResNet-50 [18] and VGGNet-16 [39] to model the im-

age feature extraction function, due to their proved per-

formance in various visual learning tasks. We also select

BagNet [5], which shows surprisingly high performance on

ImageNet [12] even with a limited receptive field. De-

tailed baseline formulation and network architectures are

explained in the supplementary material.

Human Performance. We design a crowd-sourcing

website to collect human performance for 3-View to Iso-
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metric, Pose to Isometric, and Pose to Isometric reasoning

tasks. Two types of human performance are recorded: un-

trained vs. trained. In the untrained type, we distributed

the website on certain NYU engineering classes and social

media platforms and had no control of the participants. We

collected testing results from more than 100 untrained peo-

ple, with each of them answering four randomly selected

questions in each task. We report their average performance

as the first human baseline. The second type comes from

five randomly selected engineering master students. Each

of them is trained by us for about 30 minutes using ques-

tions from the training set, and then answers 100 questions

for each task with limited time. We report their max perfor-

mance as the second human baseline.

5. Benchmark Results

All our baselines were implemented using PyTorch [35],

and run on NVIDIA GeForce GTX 1080 Ti GPU. The re-

sults for the first three tasks are summarized in Figure 6.

3-View to Isometric. In Figure 6 top left, except

for the VGG-16 binary classification, all other results on

SPARE3D-ABC reveal that these networks failed to ob-

tain enough spatial reasoning ability from the supervision

to solve the problems, with their performance on testing

dataset close to random selection. An interesting observa-

tion is that many baseline methods achieved high training

accuracy, indicating severe over-fittings. An unexpected re-

sult is that VGG-16 binary classification achieves higher ac-

curacy than ResNet-50 on the testing dataset (although still

low), while ResNet has been repeatedly shown to surpass

VGG networks in many visual learning tasks. Compare the

two images in the first column of Figure 6, the baseline per-

formance on SPARE3D-CSG data is better than SPARE3D-

ABC. We believe this is because objects in the SPARE3D-

CSG repository are geometrically simpler in terms of the

basic primitives of objects.

Isometric to Pose. The multi-class classification results

on SPARE3D-ABC are shown in Figure 6 top middle. For

ResNet-50, the testing accuracy is about 36.2%, which is

only slightly higher than the random selection. For Bag-

Net, the testing accuracy is 31.5%, which is lower than

the other two baseline methods. VGG-16 again surpris-

ingly and significantly outperforms ResNet and BagNet,

with 65.8% testing accuracy even beating the average hu-

man performance. As for SPARE3D-CSG, we obtain al-

most similar results, which are shown in Figure 6 bottom

middle.

This is surprising. First, VGG-16 outperforms ResNet

again. We tried to match the configurations of the first/last

pooling and the fully connected layers between VGG-

16 and ResNet, without observing significant performance

changes, which suggests the existence of some unknown

undesirable features in ResNet for SPARE3D tasks. Sec-
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Figure 6. SPARE3D benchmark results of baseline methods and human performance on the first three tasks on SPARE3D-ABC (top)

and SPARE3D-CSG (bottom). The average untrained human performance results for 3-View to Isometric, Isometric to Pose, and Pose to

Isometric are 80.5%, 60.2%, and 58.6% respectively. The max trained human performance results for these three tasks are 94.0%, 91.0%,

and 65.0% respectively.
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Front Top Right Predicted Ground Truth Front Top Right Predicted Ground Truth

Figure 7. Isometric View Generation testing examples. The fourth column is the generated I drawing from the first three columns as input,

and the last column is the ground truth. The baseline methods show reasonable results, yet not precise enough for solving the previous

discriminative reasoning tasks. A surprisingly good result is the last one, possibly due to its near-planar structure.

ond, VGG-16 is on par with the average human perfor-

mance, while before experiments, we hypothesized that

none of the baselines could achieve human-level perfor-

mance. This result gives us more confidence in learning-

based methods for addressing these spatial reasoning tasks.

Pose to Isometric. In Figure 6 top row right, all baseline

methods perform poorly, with the highest testing accuracy

30.1% on ResNet-50 for metric learning and average ac-

curacy around 27.5% for other baseline methods. Similar

results are obtained on SPARE3D-CSG.

Moreover, we notice that the accuracy of BagNet is al-

most always lower than that of ResNet-50 and VGG-16 in

all tasks. It could be due to the smaller receptive field in

BagNet than the other two, which constrains BagNet to ex-

ploit only local rather than global information. This indi-

cates the SPARE3D tasks are more challenging and require

higher-level information processing than ImageNet tasks,

which can be solved surprisingly well by BagNet.

Human performance. In Figure 6, the untrained or

trained human performance is better than most baseline

methods for the same task. It reveals that most state-of-the-

art networks are far from achieving the same spatial reason-

ing ability as humans have on SPARE3D.

Isometric View Generation. In Figure 7, the generated

results are still very coarse, although reasonable and better

than our expectation given the poor performance of CNN

in previous tasks. Using the generated isometric drawing to

select the most similar answers (in terms of the pixel-level

L2 distance) in the 3-View to Isometric task leads to a 19.8%

testing accuracy. This reveals that using Pix2Pix [23] in a

naive way can have reasonable generation performance, but

cannot yet generate detailed and correct isometric drawings

for solving the reasoning task. Therefore, new architectures

for this task are still needed in the future.

Point Cloud Generation. In Figure 8, the point cloud

generation results are also reasonable yet unsatisfactory: the

overall shape is generated correctly, while detailed features

are often omitted. One possible reason is that the point

cloud decoding network is not powerful enough, or the en-

coding CNN lacks the ability to extract the spatial informa-

tion from three-view drawings. Therefore the current net-

work baseline cannot be used to reason about complicated

structures by generating them. Also, just concatenating F,

R, T drawings as the input of the network is a simple yet

naive way, and more effective methods are needed to syn-

thesis these 3D objects more reasonably.

Why baseline performance is low? In Figure 6, except

for the binary classification in 3-View to Isometric task and

multi-class classification inIsometric to Pose task of VGG-

16 achieve 47.2% and 65.8% testing accuracy, all other re-

sults are close to random selection. Three following chal-

lenges in SPARE3D may cause the low performance.

Non-categorical dataset. SPARE3D is different from

many existing datasets that contain objects from a limited

number of semantic classes. Without strong shape similar-

ities among objects in SPARE3D, it becomes significantly

more difficult for networks to “trivially” exploit local vi-

sual patterns for “memorization”, and forces future solu-

tions to tackle the reasoning challenge instead of resorting

to statistical correlation. We believe this unique feature is

ignored by the community but necessary for moving for-

ward towards human-level performance: people can solve

our tasks without category information.

Line drawing images. Unlike many other datasets based
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Figure 8. Point Cloud Generation testing examples. The left columns displays AtlasNet [16] results and the right shows FoldingNet [49]

results. The AtlasNet performs slightly better than FoldingNet in terms of details, but none of them are good enough for analysis-by-

synthesis reasoning in previous discriminative tasks.

on textured images or rough sketches [41, 11], SPARE3D

uses line drawings that are sparse and geometrically con-

cise, making them closer to symbolic representations for

reasoning that is difficult for existing CNN.

Reasoning is not retrieval. In some baselines, we use

metric learning, which is common for image retrieval [14]

that searches for an image in a fixed large database. But it

does not fit for SPARE3D, where each question gives only

four candidate answers that also vary across questions.

Would self-supervised 2D/3D information help? In the

three discriminative tasks, we only use 2D information to

train our baselines. One might be wondering whether us-

ing more 3D information would significantly improve the

performance, as shown in [34, 41, 40]. Although results in

the two generation tasks, which is not worse than voxel re-

construction in [11], have indicated that naively generated

coarse shape does not help, it is still valid to ask whether

we can use 2D/3D shape information implicitly via self-

supervision. This leads to the following two experiments.

Pretrained Pix2Pix. As mentioned in Isometric View

Generation, we use the trained Pix2Pix model to generate

the I drawing from the given F/T/R drawings in 3-View to

Isometric questions. Instead of naively using this gener-

ated I drawing with L2 distance, which leads to a 19.8%

testing accuracy, now we train an additional CNN to select

answers in a learned feature space (instead of pixel space).

This CNN is similar to the binary classification network for

3-View to Isometric but takes as input the concatenation of

the answer and the generated images. The new accuracy

raises to 37.6% yet is still very low.

Pretrained FoldingNet. In Point Cloud Generation, we

trained a CNN encoder via 2D-3D self-supervision. Now

Task 3-View to Isometric Pose to Isometric

Without FoldingNet 85.5%/28.8% 66.3%/30.1%

With FoldingNet 81.0%/30.4% 87.5%/27.2%

Table 2. Effect of self-supervised 3D information in training.

The first row is the training/testing accuracy by random CNN ini-

tialization. The last row is using CNN initialized from a pretrained

2D-to-3D FoldingNet.

we use this encoder as a warm start to initialize the ResNet-

50 models of metric learning for 3-View to Isometric and

Pose to Isometric tasks. As shown in Table 2, accuracy has

no significant increase and is still close to random selection.

So our naive way of using 3D information does not work

well, and further design is needed.

6. Conclusion

SPARE3D is designed for the development and evalu-

ation of AI’s spatial reasoning abilities. Our baseline re-

sults show that some state-of-the-art deep learning methods

cannot achieve good performance on SPARE3D. We be-

lieve this reveals important research gaps and motivates new

problem formulations, architectures, or learning paradigms

to improve an intelligent agent’s spatial reasoning ability.
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