
Towards Learning a Generic Agent for

Vision-and-Language Navigation via Pre-training

Weituo Hao1†‡, Chunyuan Li2†∗, Xiujun Li2, Lawrence Carin1, Jianfeng Gao2

1Duke University 2Microsoft Research, Redmond

{weituo.hao, lcarin}@duke.edu {chunyl,xiul,jfgao}@microsoft.com

Abstract

Learning to navigate in a visual environment follow-

ing natural-language instructions is a challenging task, be-

cause the multimodal inputs to the agent are highly vari-

able, and the training data on a new task is often limited.

We present the first pre-training and fine-tuning paradigm

for vision-and-language navigation (VLN) tasks. By train-

ing on a large amount of image-text-action triplets in a

self-supervised learning manner, the pre-trained model pro-

vides generic representations of visual environments and

language instructions. It can be easily used as a drop-in

for existing VLN frameworks, leading to the proposed agent

PREVALENT
1. It learns more effectively in new tasks and

generalizes better in a previously unseen environment. The

performance is validated on three VLN tasks. On the Room-

to-Room [3] benchmark, our model improves the state-of-

the-art from 47% to 51% on success rate weighted by path

length. Further, the learned representation is transferable

to other VLN tasks. On two recent tasks, vision-and-dialog

navigation [30] and “Help, Anna!” [22], the proposed

PREVALENT leads to significant improvement over existing

methods, achieving a new state of the art.

1. Introduction

Learning to navigate in a photorealistic home environ-

ment based on natural language instructions has attracted

increasing research interest [23, 14, 7, 3, 6], as it pro-

vides insight into core scientific questions about multimodal

representations. It also takes a step toward real-world ap-

plications, such as personal assistants and in-home robots.

Vision-and-language navigation (VLN) presents a challeng-

ing reasoning problem for agents, as the multimodal inputs

are highly variable, inherently ambiguous, and often under-

specified.

∗Corresponding author †Equal Contribution ‡Work performed dur-

ing an internship at MSR
1PRE-TRAINED VISION-AND-LANGUAGE BASED NAVIGATOR

Most previous methods build on the sequence-to-

sequence architecture [26], where the instruction is encoded

as a sequence of words, and the navigation trajectory is de-

coded as a sequence of actions, enhanced with attention

mechanisms [3, 32, 18] and beam search [9]. While a num-

ber of methods [20, 21, 33] have been proposed to improve

language understanding, common to all existing work is that

the agent learns to understand each instruction from scratch

or in isolation, without collectively leveraging prior vision-

grounded domain knowledge.

However, each instruction in practice only loosely aligns

with the desired navigation path, making it imperfect for

the existing paradigm of learning to understand the instruc-

tion from scratch. This is because (i) every instruction only

partially characterizes the trajectory. It can be ambiguous

to interpret the instructions, without grounding on the vi-

sual states. (ii) The objects in visual states and language in-

structions may share various common forms/relationships,

and therefore it is natural to build an informative joint rep-

resentation beforehand, and use this “common knowleldge”

for transfer learning in downstream tasks.

To address this natural ambiguity of instructions more

effectively, we propose to pre-train an encoder to align lan-

guage instructions and visual states for joint representa-

tions. The image-text-action triplets at each time step are

independently fed into the model, which is trained to pre-

dict the masked word tokens and next actions, thus formu-

lating the VLN pre-training in the self-learning paradigm.

The complexity of VLN learning can then be reduced by

eliminating language understandings which lack consensus

from visual states. The pre-trained model plays the role

of providing generic image-text representations, and is ap-

plicable to most existing approaches to VLN, leading to

our agent PREVALENT. We consider three VLN scenarios

as downstream tasks: Room-to-room (R2R) [3], coopera-

tive vision-and-dialog navigation (CVDN) [30], and “Help,

Anna!” (HANNA) [22]. The overall pre-training and fine-

tuning pipeline is shown in Figure 1.

Comprehensive experiments demonstrate strong empir-

ical performance of PREVALENT. The proposed PREVA-
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Action Prediction

Figure 1: Illustration of the proposed pre-training and fine-

tuning paradigm for VLN. The image-text-action triplets

are collected from the R2R dataset. The model is pre-

trained with two self-supervised learning objectives, and

fine-tuned for three tasks: R2R, CVND and HANNA. R2R

is an in-domain task, where the language instruction is given

at the beginning, describing the full navigation path. CVND

and HANNA are out-of-domain tasks; the former is to nav-

igate based on dialog history, while the latter is an interac-

tive environment, where intermediate instructions are given

in the middle of navigation.

LENT achieves a new state of the art on all three tasks 2.

Comparing with existing methods, it adapts faster, and gen-

eralizes better to unseen environments and new tasks. Our

code and pre-trained model is released on GitHub 3.

2. Related Work

Vision-language pre-training Vision-Language Pre-

trainig (VLP) is a rapidly growing research area. The ex-

isting approaches employ BERT-like objectives [8] to learn

cross-modal representation for various vision-language

problems, such as visual question-answering, image-text

retrieval and image captioning etc. [25, 27, 17, 34, 24, 15].

However, these VLP works focus on learning representa-

tions only for vision-language domains. This paper presents

the first pre-trained models, grounding vision-language

understanding with actions in a reinforcement learning

setting. Further, existing VLP methods require faster

R-CNN features as visual inputs [10, 2], which are not

readily applicable to VLN. State-of-the-art VLN systems

are based on panoramic views (e.g., 36 images per view

for R2R), and therefore it is computationally infeasible to

extract region features for all views and feed them into the

agent.

Vision-and-language navigation Various methods have

been proposed for learning to navigate based on vision-

language cues. In [9] a panoramic action space and a

2Among all public results at the time of this submission.
3https://github.com/weituo12321/PREVALENT

“speaker” model were introduced for data augmentation. A

novel neural decoding scheme was proposed in [12] with

search, to balance global and local information. To improve

the alignment of the instruction and visual scenes, a visual-

textual co-grounding attention mechanism was proposed

in [18], which is further improved with a progress moni-

tor [19]. To improve the generalization of the learned policy

to unseen environments, reinforcement learning has been

considered, including planning [33], and exploration of un-

seen environments using a off-policy method [32]. An envi-

ronment dropout was proposed [28] to generate more envi-

ronments based on the limited data, so that it can generalize

well to unseen environments. These methods are specifi-

cally designed for particular tasks, and hard to generalize

for new tasks. In this paper, we propose the first generic

agent that is pre-trained to effectively understand vision-

language inputs for a broad range of navigation tasks, and

can quickly adapt to new tasks. The most related agent to

ours is PRESS [16]. However, our work is different from

[16] from two perspectives: (i) PRESS employs an off-the-

shelf BERT [8] model for language instruction understand-

ing, while we pre-train a vision-language encoder from

scratch, specifically for the navigation tasks. (ii) PRESS

only focuses on the R2R task, while we verify the effective-

ness of our pre-trained model on three tasks, including two

out-of-domain navigation tasks.

3. Background

The VLN task can be formulated as a Partially Ob-

servable Markov Decision Process (POMDP) M =
hS,A, Ps, ri, where S is the visual state space, A is a dis-

crete action space, Ps is the unknown environment distri-

bution from which we draw the next state, and r 2 R is

the reward function. At each time step t, the agent first

observes an RGB image st 2 S , and then takes an action

at 2 A. This leads the simulator to generate a new im-

age observation st+1 ⇠ Ps(·|st,at) as the next state. The

agent interacts with the environment sequentially, and gen-

erates a trajectory of length T . The episode ends when the

agent selects the special STOP action, or when a pre-defined

maximum trajectory length is reached. The navigation is

successfully completed if the trajectory τ terminates at the

intended target location.

In a typical VLN setting, the instructions are represented

as a set X = {xi}
M
i=1, where M is the number of alternative

instructions, and each instruction xi consists of a sequence

of Li word tokens, xi = [xi,1, xi,2, ..., xi,Li
]. The train-

ing dataset DE = {τ ,x} consists of pairs of the instruc-

tion x together with its corresponding expert trajectory τ .

The agent then learns to navigate via performing maximum

likelihood estimation (MLE) of the policy ⇡, based on the
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individual sequences:

max
θ

Lθ(τ ,x)=log ⇡θ(τ |x)=

T
X

t=1

log ⇡θ(at|st,x), (1)

where θ are the policy parameters. The policy is usually

parameterized as an attention-based Seq2Seq model [3, 9],

trained in the teacher-forcing fashion, i.e., the ground-truth

states st are provided at every step in training. This allows

reparameterization of the policy as an encoder-decoder ar-

chitecture, by considering a function decomposition ⇡θ =
fθE

� fθD
:

• A vision-language encoder fθE
: {st,x} ! zt,

where a joint representation zt at time step t is learned

over the visual state st and the language instruction x.

• An action decoder fθD
: {st, zt} ! at. For each

joint representation st, we ground it with st via neural

attention, and decode into actions at.
Successful navigation largely depends on precise joint

understanding of natural language instructions and the vi-

sual states [29]. We isolate the encoder stage, and focus on

pre-training a generic vision-language encoder for various

navigation tasks.

4. Pre-training Models

Our pre-training model aims to provide joint representa-

tions for image-text inputs in VLN.

4.1. Input Embeddings

The input embedding layers convert the inputs (i.e.,

panoramic views and language instruction) into two se-

quences of features: image-level visual embeddings and

word-level sentence embeddings.

Visual Embedding Following [9], we employ panoramic

views as visual inputs to the agent. Each panoramic view

consists of 36 images in total (12 angles, and 3 cam-

era poses per angle): s = [s1, · · · , s36]. Each image

is represented as a 2176-dimensional feature vector s =
[sv, sp], as a result of the concatenation of two vectors:

(i) The 2048-dimensional visual feature sv output by a

Residual Network (ResNet) of the image [11]; (ii) the

128-dimensional orientation feature vector sp that repeats

[sin ; cos ; sin!; cos!] 32 times, where  and ! are the

heading and elevation poses, respectively [9]. The embed-

ding for each image is:

h = Layer-Norm(Wes+ be)) (2)

where We 2 R
dh⇥2176 is a weight matrix, and be 2 R

dh is

the bias term; dh = 768 in our experiments. Layer normal-

ization (LN) [4] is used on the output of this fully connected

(FC) layer. An illustration of the visual embedding is shown

in Figure 2(a).

(a) Visual embedding (b) Text embedding

Figure 2: Illustration for the representation procedure of (a)

visual embedding and (b) text embedding. FC is the fully-

connected layer, and LN is the layer-normalization layer.

Text Embedding The embedding layer for the language

instruction follows the standard Transformer, where LN is

applied to the summation of the token embedding and po-

sition embedding. An illustration of the text embedding is

shown in Figure 2(b).

4.2. Encoder Architecture

Our backbone network has three principal modules: two

single-modal encoders (one for each modality), followed by

a cross-modal encoder. All modules are based on a multi-

layer Transformer [31]. For the `-th Transformer layer, its

output is

H` = T (H`�1,H
0,M) (3)

where Hl�1 2 R
L⇥dh is the previous layer’s features (L

is the sequence length), H0 2 R
L0

⇥dh is the feature ma-

trix to attend, and M 2 R
L⇥L0

is the mask matrix, de-

termining whether a pair of tokens can be attended to each

other. More specifically, in each Transformer block, the out-

put vector is the concatenation of multiple attention heads

H` = [A`,1, · · · ,A`,h] (h is the number of heads). One

attention head A is computed via:

A` = Softmax(
QK>

p
dk

+M)V, (4)

Mij =

⇢

0, allow to attend

�1, not to attend
(5)

Q = W
Q
`
H0,K = WK

` Hl�1,V = WV
` Hl�1 (6)

where Hl�1 and H0 are linearly projected to a triple

of queries, keys and values using parameter matrices

W
Q
`
,WK

`
,WV

`
2 R

dh⇥dk , respectively; dk is the projec-

tion dimension. In the following, we use different mask

13139
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Figure 3: Illustration of the proposed pre-training model. In this example, two learning objectives are considered: (i) image-

attended masked language modeling is performed on the masked word right in the instruction; (ii) action prediction is

performed to make the decision to navigate toward direction 180. Only the language features are used for fine-tuning in

downstream tasks.

matrices M and attended feature matrices H0 to construct

the contextualized representation for each module.

Single-modal Encoder The standard self-attention layer

is used in the single-modal encoder. All of the keys, val-

ues and queries come from the output of the previous layer

in the encoder. Each position in the encoder can attend to

all positions that belong to its own modality in the previous

layer. Specifically, M is a full-zero matrix, and H0 = Hl�1.

Similar to the self-attention encoder module in the stan-

dard Transformer, the position-wise feed-forward network

(FFN) is used.

Cross-modal Encoder To fuse the features from both

modalities, a cross-attention layer is considered. The

queries H0 come from the previous layer of the other modal-

ity, and the memory keys and values come from the output

Hl�1 of the current modality. It allows every position in the

encoder to attend over all positions in the different modality.

This mimics the typical encoder-decoder attention mecha-

nisms in the Transformer, but here we consider two different

modalities, rather than input-output sequences. This cross-

attention layer is followed by a self-attention layer and an

FFN layer.

The overall model architecture is illustrated in Figure 3.

Following [27], Ltext = 9, Lvision = 1 and Lcross = 3. The

last layer output of the encoder is denoted as z = hLcross
,

which is used as the features in the downstream tasks.

4.3. Pre-training Objectives

We introduce two main tasks to pre-train our model:

Image-attended masked language modeling (MLM) and

action prediction (AP). For an instruction-trajectory pair

{x, τ} from the training dataset DE , we assume a state-

action pair from the trajectory follows an independent iden-

tical distribution given the instruction in the pre-training

stage: (st,at)
iid⇠ p(τ ).

Attended Masked Language Modeling We randomly

mask out the input words with probability 15%, and replace

the masked ones xi with special token [MASK]. The goal is

to predict these masked words based on the observation of

their surrounding words x\i and all images s by minimizing

the negative log-likelihood:

LMLM = �E
s⇠p(τ ),(τ ,x)⇠DE

log p(xi|x\i, s) (7)

This is in analogy to the cloze task in BERT, where the

masked word is recovered from surrounding words, but with

additional image information to attend. It helps the learned

word embeddings to be grounded in the context of visual

states. This is particularly important for VLN tasks, where

the agent is required to monitor the progress of completed

instruction by understanding the visual images.

Action Prediction The output on the special token [CLS]
indicates the fused representation of both modalities. We

apply an FC layer on top of the encoder output of [CLS] to

predict the action. It scores how well the agent can make the

correct decision conditioned on the current visual image and

the instruction, without referring to the trajectory history.

During training, we sample a state-action pair (s,a) from

the trajectory τ at each step, and then apply a cross-entropy

loss for optimization:

LAP = �E(a,s)⇠p(τ ),(τ ,x)⇠DE
log p(a|x[CLS], s). (8)

The full pre-training objective is:

LPre-training = LMLM + LAP. (9)
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Discussion Other loss designs can be considered for the

pre-training objective. Our results on masked image model-

ing did not show better results, and thus are excluded in the

experiments.

4.4. Pre-training Datasets

We construct our pre-training dataset based on the Mat-

terport3D Simulator, a photo-realistic visual reinforcement

learning (RL) simulation environment for the development

of intelligent agents based on the Matterport3D dataset [5].

Specifically, it consists of two sets: (i) The training datasets

of R2R, which has 104K image-text-action triplets; (ii) we

employed the Speaker model in [9] to synthesize 1,020K

instructions for the shortest-path trajectories on the train-

ing environments. This leads to 6,482K image-text-action

triplets. Therefore, the pre-training dataset size is 6,582K.

5. Adapting to new tasks

We focus on three downstream VLN tasks that are based

on the Matterport3D simulator. Each task poses a very dif-

ferent challenge to evaluate the agent. (i) The R2R task is

used as an in-domain task; it can verify the agent’s general-

ization capability to unseen environments. (ii) CVDN and

HANNA are considered as out-of-domain tasks, to study

the generalization ability of the agent to new tasks. More

specifically, CVDN considers indirect instructions (i.e., di-

alog history), and HANNA is an interactive RL task.

5.1. Room-to-Room

In R2R, the goal is to navigate from a starting position to

a target position with the minimal trajectory length, where

the target is explicitly informed via language instruction.

To use the pre-trained model for fine-tuning in R2R, the

attended contextualized word embeddings are fed into an

LSTM encoder-decoder framework, as in [9, 16]. In prior

work, random initialization is used in [9], and BERT is used

in [16]. In contrast, our word embeddings are pre-trained

from scratch with VLN data and tasks.

5.2. Cooperative Vision-and-Dialogue Navigation

In the CVDN environment, the Navigation from Dialog

History (NDH) is defined, where the agent searches an en-

vironment for a goal location, based on the dialog history

that consists of multiple turns of question-answering inter-

actions between the the agent and to its partner. The partner

has privileged access to the best next steps that the agent

should take according to a shortest path planner. CVDN is

more challenging than R2R, in that the instructions from the

dialog history are often ambiguous, under-specified, and in-

direct to the final target. The fine-tuning model architecture

for CVDN is the same as R2R, except that CVND usually

has much longer text input. We limit the sequence length to

300. Words that are longer than 300 in a dialog history are

removed.

5.3. HANNA: Interactive Imitation Learning

HANNA simulates a scenario where a human requester

asks an agent via language to find an object in an indoor en-

vironment, without specifying the process of how to com-

plete the task. The only source of help the agent can lever-

age in the environment is the assistant, who helps the agent

by giving subtasks in the form of (i) a natural language in-

struction that guides the agent to a specific location, and (ii)
an image of the view at that location. When the help mode

is triggered, we use our pre-trained model to encode the lan-

guage instructions, and the features are used for the rest of

their system.

6. Experimental Results

6.1. Training details

Pre-training We pre-train the proposed model on eight

V100 GPUs, and the batch size for each GPU is 96. The

AdamW optimizer [13] is used, and the learning rate is 5⇥
10�5. The total number of training epochs is 20.

Fine-tuning The fine-tuning is performed on NVIDIA

1080Ti GPU. For the R2R task, we follow the same learn-

ing schedule as [28]. When training the augmented listener,

we use batch size 20. We continue to fine-tune the cross-

attention encoder for 20k iterations, with the batch size 10

and learning rate 2⇥10�6. For the NDH task, we follow

the same learning schedule as in [30], and choose the batch

size as 15 and learning rate as 5⇥10�4. For HANNA, the

training schedule is the same as [22]. The batch size is 32

and learning rate is 1⇥10�4.

6.2. Room-to-Room

Dataset The R2R dataset [3] consists of 10,800

panoramic views (each panoromic view has 36 images) and

7,189 trajectories. Each trajectory is paired with three natu-

ral language instructions. The R2R dataset consists of four

splits: train, validation seen and validation unseen, test un-

seen. The challenge of R2R is to test the agent’s generaliza-

tion ability in unseen environments.

Evaluation Metrics The performance of different agents

is evaluated using the following metrics:

TL Trajectory Length measures the average length of the

navigation trajectory.

NE Navigation Error is the mean of the shortest path dis-

tance in meters between the agent’s final location and

the target location.
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Validation Seen Validation Unseen Test Unseen

Agent TL ↓ NE ↓ SR ↑ SPL ↑ TL ↓ NE ↓ SR ↑ SPL ↑ TL ↓ NE ↓ SR ↑ SPL ↑

RANDOM 9.58 9.45 16 - 9.77 9.23 16 - 9.93 9.77 13 12

SEQ2SEQ 11.33 6.01 39 - 8.39 7.81 22 - 8.13 7.85 20 18

RPA - 5.56 43 - - 7.65 25 - 9.15 7.53 25 23

G
re

ed
y,

S SPEAKER-FOLLOWER - 3.36 66 - - 6.62 35 - 14.82 6.62 35 28

SMNA - - - - - - - - 18.04 5.67 48 35

RCM+SIL(TRAIN) 10.65 3.53 67 - 11.46 6.09 43 - 11.97 6.12 43 38

REGRETFUL - 3.23 69 63 - 5.32 50 41 13.69 5.69 48 40

FAST - - - - 21.17 4.97 56 43 22.08 5.14 54 41

ENVDROP 11.00 3.99 62 59 10.70 5.22 52 48 11.66 5.23 51 47

PRESS 10.57 4.39 58 55 10.36 5.28 49 45 10.77 5.49 49 45

PREVALENT (ours) 10.32 3.67 69 65 10.19 4.71 58 53 10.51 5.30 54 51

M
PRESS 10.35 3.09 71 67 10.06 4.31 59 55 10.52 4.53 57 53

PREVALENT 10.31 3.31 67 63 9.98 4.12 60 57 10.21 4.52 59 56

Human - - - - - - - - 11.85 1.61 86 76

Table 1: Comparison with the state-of-the-art methods on R2R. Blue indicates the best value in a given setting. S indicates

the single-instruction setting, M indicates the multiple-instruction setting.

SR Success Rate is the percentage of the agent’s final lo-

cation that is less than 3 meters away from the target

location.

SPL Success weighted by Path Length [1] trades-off SR

against TL. A higher score represents more efficiency

in navigation.

Among these metrics, SPL is the recommended primary

metric, and other metrics are considered as auxiliary mea-

sures.

Baselines We compare our approach with nine recently

published systems:

• RANDOM: an agent that randomly selects a direction

and moves five step in that direction [3].

• S2S-ANDERSON: a sequence-to-sequence model us-

ing a limited discrete action space [3].

• RPA [33]: an agent that combines model-free and

model-based reinforcement learning, using a look-

ahead module for planning.

• SPEAKER-FOLLOWER [9]: an agent trained with data

augmentation from a speaker model on the panoramic

action space.

• SMNA [18]: an agent trained with a visual-textual

co-grounding module and a progress monitor on the

panoramic action space.

• RCM+SIL [32]: an agent trained with cross-modal

grounding locally and globally via RL.

• REGRETFUL [19]: an agent with a trained progress

monitor heuristic for search that enables backtracking.

• FAST [12]: an agent that uses a fusion function to score

and compare partial trajectories of different lengths,

which enables the agent to efficiently backtrack after

a mistake.

• ENVDROP [28]: an agent is trained with environment

dropout, which can generate more environments based

on the limited seen environments.

• PRESS [16]: an agent is trained with pre-trained lan-

guage models and stochastic sampling to generalize

well in the unseen environment.

Comparison with SoTA Table 1 compares the perfor-

mance of our agent against the existing published top sys-

tems.4. Our agent PREVALENT outperforms the existing

models on SR and SPL by a large margin. On both vali-

dation seen and unseen environments, PREVALENT outper-

forms other agents on nearly all metrics.

In PRESS [16], multiple introductions are used. To have

a fair comparison, we follow [16], and report PREVALENT

results. We see that testing SPL is improved. Further, the

gap between seen and unseen environments of PREVALENT

is smaller than PRESS, meaning that image-attended lan-

guage understanding is more effective to help the agent gen-

eralize better to an unseen environment.

6.3. Cooperative Vision-and-Dialogue Navigation

Dataset & Evaluation Metric The CVDN dataset has

2050 human-human navigation dialogs, comprising over

7K navigation trajectories punctuated by question-answer

exchanges, across 83 MatterPort houses [5] . The metrics

for R2R can be readily used for the CVDN dataset. Further,

one new metric is proposed for the NDH task:

GP Goal Progress measures the difference between com-

pleted distance and left distance to the goal. Larger

4The full list of leaderboard is publicly available: https://

evalai.cloudcv.org/web/challenges/challenge-page/

97/leaderboard/270
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Validation Unseen Test Unseen

Agent Oracle Navigator Mixed Oracle Navigator Mixed

RANDOM 1.09 1.09 1.09 0.83 0.83 0.83

SEQ2SEQ 1.23 1.98 2.10 1.25 2.11 2.35

PREVALENT (Ours) 2.58 2.99 3.15 1.67 2.39 2.44

SHORTEST PATH AGENT 8.36 7.99 9.58 8.06 8.48 9.76

Table 2: Results on CVDN measured by Goal Progress. Blue indicates the best value in a given setting.

SEEN-ENV UNSEEN-ALL

Agent SR ↑ SPL ↑ NE ↓ #R ↓ SR ↑ SPL ↑ NE ↓ #R ↓

R
u

le RANDOM WALK 0.54 0.33 15.38 0.0 0.46 0.23 15.34 0.0

FORWARD 10 5.98 4.19 14.61 0.0 6.36 4.78 13.81 0.0

NO ASSISTANCE 17.21 13.76 11.48 0.0 8.10 4.23 13.22 0.0

ANNA 88.37 63.92 1.33 2.9 47.45 25.50 7.67 5.8

PREVALENT (Ours) 83.82 59.38 1.47 3.4 52.91 28.72 5.29 6.6

S
k
y

li
n

e

SHORTEST 100.00 100.00 0.00 0.0 100.00 100.00 0.00 0.0

Perfect assistance 90.99 68.87 0.91 2.5 83.56 56.88 1.83 3.2

Table 3: Results on test splits of HANNA. The agent with “perfect assistance” uses the teacher navigation policy to make

decisions when executing a subtask from the assistant. Blue indicates the best value.

values indicate a more efficient agent.

Three settings are considered, depending on which

ground-truth action/path is employed [30]. Oracle indicates

the shortest path, and Navigator indicates the path taken by

the navigator. The Mixed supervision path means to take the

navigator path if available, otherwise the shortest path. The

results are in Table 2. The proposed PREVALENT signifi-

cantly outperforms the Seq2Seq baseline on both validation

and testing unseen environments in all settings, leading to

the top position on the leaderboard 5. Note that our en-

coder is pre-trained on R2R dataset. We observe that it can

provide significant improvement when used the new task

built on the CVDN dataset. This shows that the pre-trained

model can adapt well on new tasks, and yields better gener-

alization.

6.4. HANNA

Dataset & Evaluation Metric The HANNA dataset fea-

tures 289 object types; the language instruction vocabulary

contains 2,332 words. The numbers of locations on the

shortest paths to the requested objects are restricted to be

between 5 and 15. With an average edge length of 2.25 me-

ters, the agent has to travel about 9 to 32 meters to reach its

goals. Similar to R2R, SR, SPL and NE are used to eval-

uate the navigation. Further, one new metric is considered

for this interactive task:

5The full list of leaderboard is publicly available: https://

evalai.cloudcv.org/web/challenges/challenge-page/

463/leaderboard/1292

#R Number of requests measures how many helps are re-

quested by the agent.

The results are shown in Table 3. Two rule-based meth-

ods and two skyline methods are reported as references;

see [22] for details. Our PREVALENT outperforms the base-

line agent ANNA on the test unseen environments in terms

of SR, SPL and NE, while requesting a slightly higher

number of helps (#R). When measuring the performance

gap between seen and unseen environments, we see that

PREVALENT shows a significantly smaller difference than

ANNA, e.g., (59.38-28.72=30.66) vs (63.92-25.50=38.42)

for SPL. This means that the pre-trained joint representa-

tion by PREVALENT can reduce over-fitting, and generalise

better to unseen environments.

6.5. Ablation Studies

Is pre-training with actions helpful? Our pre-training

objective in (9) includes two losses, LPA and LMLM. To

study the impact of each loss, we pre-train two model vari-

ants: one is based on the full objective LPA + LMLM, the

other only uses LMLM. To verify its impact on new tasks,

we consider CVDN first, and the results are shown in Ta-

ble 4. Three types of text inputs are considered: Navigation

QA, Orcale Answer, and All (a combination of both). More

details are provided in the Appendix.

When LPA is employed in the objective, we see consis-

tent improvement on nearly all metrics and settings. Note

that our MLM is different from BERT in that the attention

over images is used in the cross-layer. To verify whether the

image-attended learning is necessary, we consider BERT in
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Navigation QA Oracle Answer All

Methods Oracle Navigator Mixed Oracle Navigator Mixed Oracle Navigator Mixed

LPA + LMLM 2.80 3.01 3.28 2.78 3.44 3.38 2.58 2.99 3.15

LMLM 2.69 3.00 3.25 2.84 3.35 3.19 2.52 2.98 3.14

BERT pre-trainig 2.26 2.71 2.94 2.70 2.68 3.06 2.46 2.74 2.64

BERT fine-tuning 2.39 2.03 2.51 2.23 2.41 2.52 2.32 2.93 2.28

Table 4: Ablation study of the pre-training objectives on CVDN, measured by Goal Progress. Blue indicates the best value.

Validation Seen Validation Unseen Test Unseen

Methods TL ↓ NE ↓ SR ↑ SPL ↑ TL ↓ NE ↓ SR ↑ SPL ↑ TL ↓ NE ↓ SR ↑ SPL ↑

Two-stage 10.32 3.67 0.69 0.66 10.19 4.71 0.58 0.53 10.51 5.30 0.54 0.51

Feature-based 10.13 3.98 0.66 0.64 9.70 5.01 0.54 0.51 9.99 5.54 0.52 0.49

Table 5: Ablation study on R2R: feature-based vs fine-tuning. Blue indicates the better value.

two ways. (i) BERT pre-training: we apply the original

MLM loss in BERT on our R2R pre-training dataset. The

newly pre-trained BERT is used for fine-tuning on CVDN.

(ii) BERT fine-tuning: we directly fine-tune off-the-shelf

BERT on CVDN. Their performances are lower than the

two variants of the proposed PREVALENT. This means our

image-attended MLM is more effective for navigation tasks.

More ablation studies on the pre-training objectives are con-

ducted for HANNA, with results shown in the Appendix.

Feature-based vs Fine-tuning The pre-trained encoder

can be used in two modes: (i) fine-tuning approach, where a

task-specific layer is added to the pre-trained model, and all

parameters are jointly updated on a downstream task. (ii)
feature-based approach, where fixed features are extracted

from the pre-trained model, and only the task-specific layer

is updated. In this paper, all PREVALENT presented results

generally have used the feature-based approach, as there

are major computational benefits to pre-computing an ex-

pensive representation of the training data once, and then

running many experiments with cheaper models on top of

this representation. In the R2R dataset, we consider a two-

stage scheme, where we fine-tune the cross-attention layers

of the agent, after training via the feature-based approach.

The results are reported in Table 5. We observe notable im-

provement with this two-stage scheme on nearly all metrics,

expect the trajectory length.

How does pre-training help generalization? We plot the

learning curves on the seen/unseen environments for R2R in

Figure 4(a), and CVDN in Figure 4(b). Compared with the

random initialized word embeddings in EnvDrop [28], the

pre-trained word embeddings can adapt faster (especially in

the early stage), and converge to higher performance in un-

seen environments. This is demonstrated by the SPL values

in the Figure 4(a). By comparing the learning curves in Fig-

ure 4(b), we see a much smaller gap between seen and un-

(a) R2R

(b) CVDN

Figure 4: Learning curves on (a) R2R and (b) CVDN.

seen environments for PREVALENT than the Seq2Seq base-

line [30], meaning pre-training is an effective tool to help

reduce over-fitting in learning.

7. Conclusions

We present PREVALENT, a new pre-training and fine-

tuning paradigm for vision-and-language navigation prob-

lems. This allows for more effective use of limited train-

ing data to improve generalization to previously unseen en-

vironments, and new tasks. The pre-trained encoder can

be easily plugged into existing models to boost their per-

formance. Empirical results on three benchmarks (R2R,

CVDN and HANNA) demonstrate that PREVALENT sig-

nificantly improves over existing methods, achieving new

state-of-the-art performance.
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