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Abstract

Learning to navigate in a visual environment follow-
ing natural-language instructions is a challenging task, be-
cause the multimodal inputs to the agent are highly vari-
able, and the training data on a new task is often limited.
We present the first pre-training and fine-tuning paradigm
for vision-and-language navigation (VLN) tasks. By train-
ing on a large amount of image-text-action triplets in a
self-supervised learning manner, the pre-trained model pro-
vides generic representations of visual environments and
language instructions. It can be easily used as a drop-in
for existing VLN frameworks, leading to the proposed agent
PREVALENT'. It learns more effectively in new tasks and
generalizes better in a previously unseen environment. The
performance is validated on three VLN tasks. On the Room-
to-Room [3] benchmark, our model improves the state-of-
the-art from 47% to 51% on success rate weighted by path
length. Further, the learned representation is transferable
to other VLN tasks. On two recent tasks, vision-and-dialog
navigation [30] and “Help, Anna!” [22], the proposed
PREVALENT leads to significant improvement over existing
methods, achieving a new state of the art.

1. Introduction

Learning to navigate in a photorealistic home environ-
ment based on natural language instructions has attracted
increasing research interest [23, 14, 7, 3, 6], as it pro-
vides insight into core scientific questions about multimodal
representations. It also takes a step toward real-world ap-
plications, such as personal assistants and in-home robots.
Vision-and-language navigation (VLN) presents a challeng-
ing reasoning problem for agents, as the multimodal inputs
are highly variable, inherently ambiguous, and often under-
specified.
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Most previous methods build on the sequence-to-
sequence architecture [26], where the instruction is encoded
as a sequence of words, and the navigation trajectory is de-
coded as a sequence of actions, enhanced with attention
mechanisms [3, 32, 18] and beam search [9]. While a num-
ber of methods [20, 21, 33] have been proposed to improve
language understanding, common to all existing work is that
the agent learns to understand each instruction from scratch
or in isolation, without collectively leveraging prior vision-
grounded domain knowledge.

However, each instruction in practice only loosely aligns
with the desired navigation path, making it imperfect for
the existing paradigm of learning to understand the instruc-
tion from scratch. This is because (i) every instruction only
partially characterizes the trajectory. It can be ambiguous
to interpret the instructions, without grounding on the vi-
sual states. (ii) The objects in visual states and language in-
structions may share various common forms/relationships,
and therefore it is natural to build an informative joint rep-
resentation beforehand, and use this “common knowleldge”
for transfer learning in downstream tasks.

To address this natural ambiguity of instructions more
effectively, we propose to pre-train an encoder to align lan-
guage instructions and visual states for joint representa-
tions. The image-text-action triplets at each time step are
independently fed into the model, which is trained to pre-
dict the masked word tokens and next actions, thus formu-
lating the VLN pre-training in the self-learning paradigm.
The complexity of VLN learning can then be reduced by
eliminating language understandings which lack consensus
from visual states. The pre-trained model plays the role
of providing generic image-text representations, and is ap-
plicable to most existing approaches to VLN, leading to
our agent PREVALENT. We consider three VLN scenarios
as downstream tasks: Room-to-room (R2R) [3], coopera-
tive vision-and-dialog navigation (CVDN) [30], and “Help,
Anna!” (HANNA) [22]. The overall pre-training and fine-
tuning pipeline is shown in Figure 1.

Comprehensive experiments demonstrate strong empir-
ical performance of PREVALENT. The proposed PREVA-
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Figure 1: Illustration of the proposed pre-training and fine-
tuning paradigm for VLN. The image-text-action triplets
are collected from the R2R dataset. The model is pre-
trained with two self-supervised learning objectives, and
fine-tuned for three tasks: R2R, CVND and HANNA. R2R
is an in-domain task, where the language instruction is given
at the beginning, describing the full navigation path. CVND
and HANNA are out-of-domain tasks; the former is to nav-
igate based on dialog history, while the latter is an interac-
tive environment, where intermediate instructions are given
in the middle of navigation.

LENT achieves a new state of the art on all three tasks 2.
Comparing with existing methods, it adapts faster, and gen-
eralizes better to unseen environments and new tasks. Our
code and pre-trained model is released on GitHub *.

2. Related Work

Vision-language pre-training Vision-Language Pre-
trainig (VLP) is a rapidly growing research area. The ex-
isting approaches employ BERT-like objectives [8] to learn
cross-modal representation for various vision-language
problems, such as visual question-answering, image-text
retrieval and image captioning etc. [25, 27, 17, 34, 24, 15].
However, these VLP works focus on learning representa-
tions only for vision-language domains. This paper presents
the first pre-trained models, grounding vision-language
understanding with actions in a reinforcement learning
setting.  Further, existing VLP methods require faster
R-CNN features as visual inputs [10, 2], which are not
readily applicable to VLN. State-of-the-art VLN systems
are based on panoramic views (e.g., 36 images per view
for R2R), and therefore it is computationally infeasible to
extract region features for all views and feed them into the
agent.

Vision-and-language navigation Various methods have
been proposed for learning to navigate based on vision-
language cues. In [9] a panoramic action space and a

2 Among all public results at the time of this submission.
3https://github.com/weituol2321/PREVALENT

“speaker” model were introduced for data augmentation. A
novel neural decoding scheme was proposed in [12] with
search, to balance global and local information. To improve
the alignment of the instruction and visual scenes, a visual-
textual co-grounding attention mechanism was proposed
in [18], which is further improved with a progress moni-
tor [19]. To improve the generalization of the learned policy
to unseen environments, reinforcement learning has been
considered, including planning [33], and exploration of un-
seen environments using a off-policy method [32]. An envi-
ronment dropout was proposed [28] to generate more envi-
ronments based on the limited data, so that it can generalize
well to unseen environments. These methods are specifi-
cally designed for particular tasks, and hard to generalize
for new tasks. In this paper, we propose the first generic
agent that is pre-trained to effectively understand vision-
language inputs for a broad range of navigation tasks, and
can quickly adapt to new tasks. The most related agent to
ours is PRESS [16]. However, our work is different from
[16] from two perspectives: (i) PRESS employs an off-the-
shelf BERT [8] model for language instruction understand-
ing, while we pre-train a vision-language encoder from
scratch, specifically for the navigation tasks. (i) PRESS
only focuses on the R2R task, while we verify the effective-
ness of our pre-trained model on three tasks, including two
out-of-domain navigation tasks.

3. Background

The VLN task can be formulated as a Partially Ob-
servable Markov Decision Process (POMDP) M =
(S, A, Ps,7), where S is the visual state space, A is a dis-
crete action space, P is the unknown environment distri-
bution from which we draw the next state, and » € R is
the reward function. At each time step ¢, the agent first
observes an RGB image s; € S, and then takes an action
a; € A. This leads the simulator to generate a new im-
age observation 841 ~ Ps(-|s¢, at) as the next state. The
agent interacts with the environment sequentially, and gen-
erates a trajectory of length T'. The episode ends when the
agent selects the special STOP action, or when a pre-defined
maximum trajectory length is reached. The navigation is
successfully completed if the trajectory 7 terminates at the
intended target location.

In a typical VLN setting, the instructions are represented
asaset X = {x;}M,, where M is the number of alternative
instructions, and each instruction x; consists of a sequence
of L; word tokens, ®; = [z;1,i2,...,%; r,;]. The train-
ing dataset Dy = {7, x} consists of pairs of the instruc-
tion & together with its corresponding expert trajectory .
The agent then learns to navigate via performing maximum

likelihood estimation (MLE) of the policy 7, based on the
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individual sequences:

T
max Lo (7, ) =logme(7|a) =) _logme(ars, ), (1)
t=1

where @ are the policy parameters. The policy is usually
parameterized as an attention-based Seq2Seq model [3, 9],
trained in the teacher-forcing fashion, i.e., the ground-truth
states s; are provided at every step in training. This allows
reparameterization of the policy as an encoder-decoder ar-
chitecture, by considering a function decomposition mg =
for o fop:
e A vision-language encoder fo, : {s;,x} — =z,
where a joint representation z, at time step ¢ is learned
over the visual state s, and the language instruction x.

e An action decoder fo, : {st,z:} — a:. For each
joint representation s;, we ground it with s; via neural

attention, and decode into actions a;.
Successful navigation largely depends on precise joint

understanding of natural language instructions and the vi-
sual states [29]. We isolate the encoder stage, and focus on
pre-training a generic vision-language encoder for various
navigation tasks.

4. Pre-training Models

Our pre-training model aims to provide joint representa-
tions for image-text inputs in VLN.

4.1. Input Embeddings

The input embedding layers convert the inputs (i.e.,
panoramic views and language instruction) into two se-
quences of features: image-level visual embeddings and
word-level sentence embeddings.

Visual Embedding Following [9], we employ panoramic
views as visual inputs to the agent. Each panoramic view
consists of 36 images in total (12 angles, and 3 cam-
era poses per angle): s = [s1,---,836]. Each image
is represented as a 2176-dimensional feature vector s =
[Sv, Sp), as a result of the concatenation of two vectors:
(i) The 2048-dimensional visual feature s, output by a
Residual Network (ResNet) of the image [11]; (ii) the
128-dimensional orientation feature vector s, that repeats
[sin t; cos ; sin w; cos w] 32 times, where 1 and w are the
heading and elevation poses, respectively [9]. The embed-
ding for each image is:

h = Layer-Norm(W_.s + b.)) )

where W, € R *2176 g 3 weight matrix, and b, € R% is
the bias term; dj, = 768 in our experiments. Layer normal-
ization (LN) [4] is used on the output of this fully connected
(FC) layer. An illustration of the visual embedding is shown
in Figure 2(a).

Word Embedding

Visual Embedding

=3 1 1

Orientation ResNet [ Token ] Position]
Feature Feature
(a) Visual embedding (b) Text embedding

Figure 2: Illustration for the representation procedure of (a)
visual embedding and (b) text embedding. FC is the fully-
connected layer, and LN is the layer-normalization layer.

Text Embedding The embedding layer for the language
instruction follows the standard Transformer, where LN is
applied to the summation of the token embedding and po-
sition embedding. An illustration of the text embedding is
shown in Figure 2(b).

4.2. Encoder Architecture

Our backbone network has three principal modules: two
single-modal encoders (one for each modality), followed by
a cross-modal encoder. All modules are based on a multi-
layer Transformer [31]. For the ¢-th Transformer layer, its
output is

H( - T(He—h H/a M) (3)

where H;_; € RE*dn is the previous layer’s features (L
is the sequence length), H' € RL'*d is the feature ma-
trix to attend, and M € RL*L’ is the mask matrix, de-
termining whether a pair of tokens can be attended to each
other. More specifically, in each Transformer block, the out-
put vector is the concatenation of multiple attention heads
H; = [As1,---,Agyp] (b is the number of heads). One
attention head A is computed via:

QK'
Vi

M., — 0, allow to attend
77 1 —oco, not to attend

Q=W/H K=W{H,_;,V=W/H_; (©

A, = Softmax( + M)V, 4

&)

where H;_; and H’ are linearly projected to a triple
of queries, keys and values using parameter matrices
W?, WE WY e Ran*dk | respectively; dj, is the projec-
tion dimension. In the following, we use different mask
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Figure 3: Illustration of the proposed pre-training model. In this example, two learning objectives are considered: (z) image-
attended masked language modeling is performed on the masked word right in the instruction; (i¢) action prediction is
performed to make the decision to navigate toward direction 180. Only the language features are used for fine-tuning in

downstream tasks.

matrices M and attended feature matrices H' to construct
the contextualized representation for each module.

Single-modal Encoder The standard self-attention layer
is used in the single-modal encoder. All of the keys, val-
ues and queries come from the output of the previous layer
in the encoder. Each position in the encoder can attend to
all positions that belong to its own modality in the previous
layer. Specifically, M is a full-zero matrix, and H' = H;_;.
Similar to the self-attention encoder module in the stan-
dard Transformer, the position-wise feed-forward network
(FFN) is used.

Cross-modal Encoder To fuse the features from both
modalities, a cross-attention layer is considered. The
queries H' come from the previous layer of the other modal-
ity, and the memory keys and values come from the output
H,_ of the current modality. It allows every position in the
encoder to attend over all positions in the different modality.
This mimics the typical encoder-decoder attention mecha-
nisms in the Transformer, but here we consider two different
modalities, rather than input-output sequences. This cross-
attention layer is followed by a self-attention layer and an
FEN layer.

The overall model architecture is illustrated in Figure 3.
Following [27], Liext = 9, Lyision = 1 and L¢oss = 3. The
last layer output of the encoder is denoted as z = hr_ .,
which is used as the features in the downstream tasks.

4.3. Pre-training Objectives

We introduce two main tasks to pre-train our model:
Image-attended masked language modeling (MLM) and
action prediction (AP). For an instruction-trajectory pair
{x, 7} from the training dataset Dg, we assume a state-

action pair from the trajectory follows an independent iden-
tical distribution given the instruction in the pre-training

iid
stage: (s¢, ar) ~ p(T).

Attended Masked Language Modeling We randomly
mask out the input words with probability 15%, and replace
the masked ones x; with special token [MASK]. The goal is
to predict these masked words based on the observation of
their surrounding words @\ ; and all images s by minimizing
the negative log-likelihood:

‘CMLM = _ESNp(T),(T,:E)N'DE 10gp($l|$\“ S) (7)

This is in analogy to the cloze task in BERT, where the
masked word is recovered from surrounding words, but with
additional image information to attend. It helps the learned
word embeddings to be grounded in the context of visual
states. This is particularly important for VLN tasks, where
the agent is required to monitor the progress of completed
instruction by understanding the visual images.

Action Prediction The output on the special token [CLS]
indicates the fused representation of both modalities. We
apply an FC layer on top of the encoder output of [CLS] to
predict the action. It scores how well the agent can make the
correct decision conditioned on the current visual image and
the instruction, without referring to the trajectory history.
During training, we sample a state-action pair (s, a) from
the trajectory 7 at each step, and then apply a cross-entropy
loss for optimization:

Lap = —E(a,8)~p(r).(r,z)~Dr 108 P(a|T[cLs]: 8).  (8)

The full pre-training objective is:

Lpre-training = LymLm + Lap. )
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Discussion Other loss designs can be considered for the
pre-training objective. Our results on masked image model-
ing did not show better results, and thus are excluded in the
experiments.

4.4. Pre-training Datasets

We construct our pre-training dataset based on the Mat-
terport3D Simulator, a photo-realistic visual reinforcement
learning (RL) simulation environment for the development
of intelligent agents based on the Matterport3D dataset [5].
Specifically, it consists of two sets: (/) The training datasets
of R2R, which has 104K image-text-action triplets; (ii) we
employed the Speaker model in [9] to synthesize 1,020K
instructions for the shortest-path trajectories on the train-
ing environments. This leads to 6,482K image-text-action
triplets. Therefore, the pre-training dataset size is 6,582K.

5. Adapting to new tasks

We focus on three downstream VLN tasks that are based
on the Matterport3D simulator. Each task poses a very dif-
ferent challenge to evaluate the agent. (i) The R2R task is
used as an in-domain task; it can verify the agent’s general-
ization capability to unseen environments. (ii) CVDN and
HANNA are considered as out-of-domain tasks, to study
the generalization ability of the agent to new tasks. More
specifically, CVDN considers indirect instructions (i.e., di-
alog history), and HANNA is an interactive RL task.

5.1. Room-to-Room

In R2R, the goal is to navigate from a starting position to
a target position with the minimal trajectory length, where
the target is explicitly informed via language instruction.
To use the pre-trained model for fine-tuning in R2R, the
attended contextualized word embeddings are fed into an
LSTM encoder-decoder framework, as in [9, 16]. In prior
work, random initialization is used in [9], and BERT is used
in [16]. In contrast, our word embeddings are pre-trained
from scratch with VLN data and tasks.

5.2. Cooperative Vision-and-Dialogue Navigation

In the CVDN environment, the Navigation from Dialog
History (NDH) is defined, where the agent searches an en-
vironment for a goal location, based on the dialog history
that consists of multiple turns of question-answering inter-
actions between the the agent and to its partner. The partner
has privileged access to the best next steps that the agent
should take according to a shortest path planner. CVDN is
more challenging than R2R, in that the instructions from the
dialog history are often ambiguous, under-specified, and in-
direct to the final target. The fine-tuning model architecture
for CVDN is the same as R2R, except that CVND usually
has much longer text input. We limit the sequence length to

300. Words that are longer than 300 in a dialog history are
removed.

5.3. HANNA: Interactive Imitation Learning

HANNA simulates a scenario where a human requester
asks an agent via language to find an object in an indoor en-
vironment, without specifying the process of how to com-
plete the task. The only source of help the agent can lever-
age in the environment is the assistant, who helps the agent
by giving subtasks in the form of (i) a natural language in-
struction that guides the agent to a specific location, and (ii)
an image of the view at that location. When the help mode
is triggered, we use our pre-trained model to encode the lan-
guage instructions, and the features are used for the rest of
their system.

6. Experimental Results
6.1. Training details

Pre-training We pre-train the proposed model on eight
V100 GPUs, and the batch size for each GPU is 96. The
AdamW optimizer [ 3] is used, and the learning rate is 5 x
10~°. The total number of training epochs is 20.

Fine-tuning The fine-tuning is performed on NVIDIA
1080Ti GPU. For the R2R task, we follow the same learn-
ing schedule as [28]. When training the augmented listener,
we use batch size 20. We continue to fine-tune the cross-
attention encoder for 20k iterations, with the batch size 10
and learning rate 2 X 10~%. For the NDH task, we follow
the same learning schedule as in [30], and choose the batch
size as 15 and learning rate as 5 x 10~*. For HANNA, the
training schedule is the same as [22]. The batch size is 32
and learning rate is 1 x 1074,

6.2. Room-to-Room

Dataset The R2R dataset [3] consists of 10,800
panoramic views (each panoromic view has 36 images) and
7,189 trajectories. Each trajectory is paired with three natu-
ral language instructions. The R2R dataset consists of four
splits: train, validation seen and validation unseen, test un-
seen. The challenge of R2R is to test the agent’s generaliza-
tion ability in unseen environments.

Evaluation Metrics The performance of different agents
is evaluated using the following metrics:

TL Trajectory Length measures the average length of the
navigation trajectory.

NE Navigation Error is the mean of the shortest path dis-
tance in meters between the agent’s final location and
the target location.
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Validation Seen

Validation Unseen

Test Unseen

Agent TL}) NEJ| SRT SPLT TLJ) NEJ SRT SPL?T TL) NEJ SRT SPLT
RANDOM 9.58 9.45 16 - 9.77 9.23 16 - 993 9.77 13 12
SEQ2SEQ 11.33 6.01 39 - 839 7.81 22 - 8.13 785 20 18
RPA - 556 43 - - 765 25 - 9.15 753 25 23
"; SPEAKER-FOLLOWER - 336 66 - - 6.62 35 - 1482 6.62 35 28
'9'3 SMNA - - - - - - - - 18.04 5.67 48 35
& RCM+SIL(TRAIN)  10.65 3.53 67 - 1146 6.09 43 - 11.97 6.12 43 38
REGRETFUL - 323 69 63 - 532 50 41 13.69 5.69 48 40
FAST - - - - 21.17 497 56 43 2208 5.14 54 41
ENVDROP 11.00 3.99 62 59 10.70 522 52 48 11.66 523 51 47
PRESS 10.57 4.39 58 55 10.36 528 49 45 10.77 549 49 45
PREVALENT (ours) 1032 3.67 69 65 10.19 4.71 58 53 10.51 530 54 51
M PRESS 1035 3.09 71 67 10.06 4.31 59 55 10.52 4.53 57 53
PREVALENT 10.31 331 67 63 998 4.12 60 57 10.21 452 59 56
Human - - - - - - - - 11.85 1.61 86 76

Table 1: Comparison with the state-of-the-art methods on R2R

. Blue indicates the best value in a given setting. S indicates

the single-instruction setting, M indicates the multiple-instruction setting.

SR Success Rate is the percentage of the agent’s final lo-
cation that is less than 3 meters away from the target
location.

SPL Success weighted by Path Length [1] trades-off SR
against TL. A higher score represents more efficiency
in navigation.

Among these metrics, SPL is the recommended primary
metric, and other metrics are considered as auxiliary mea-
sures.

Baselines We compare our approach with nine recently
published systems:

e RANDOM: an agent that randomly selects a direction
and moves five step in that direction [3].

e S2S-ANDERSON: a sequence-to-sequence model us-
ing a limited discrete action space [3].

e RPA [33]: an agent that combines model-free and
model-based reinforcement learning, using a look-
ahead module for planning.

e SPEAKER-FOLLOWER [9]: an agent trained with data
augmentation from a speaker model on the panoramic
action space.

e SMNA [I18]: an agent trained with a visual-textual
co-grounding module and a progress monitor on the
panoramic action space.

e RCM+SIL [32]: an agent trained with cross-modal
grounding locally and globally via RL.

e REGRETFUL [19]: an agent with a trained progress
monitor heuristic for search that enables backtracking.

e FAST[12]: an agent that uses a fusion function to score
and compare partial trajectories of different lengths,
which enables the agent to efficiently backtrack after
a mistake.

e ENVDROP [28]: an agent is trained with environment
dropout, which can generate more environments based
on the limited seen environments.

e PRESS [16]: an agent is trained with pre-trained lan-
guage models and stochastic sampling to generalize
well in the unseen environment.

Comparison with SoTA Table | compares the perfor-
mance of our agent against the existing published top sys-
tems.*. Our agent PREVALENT outperforms the existing
models on SR and SPL by a large margin. On both vali-
dation seen and unseen environments, PREVALENT outper-
forms other agents on nearly all metrics.

In PRESS [16], multiple introductions are used. To have
a fair comparison, we follow [16], and report PREVALENT
results. We see that testing SPL is improved. Further, the
gap between seen and unseen environments of PREVALENT
is smaller than PRESS, meaning that image-attended lan-
guage understanding is more effective to help the agent gen-
eralize better to an unseen environment.

6.3. Cooperative Vision-and-Dialogue Navigation

Dataset & Evaluation Metric The CVDN dataset has
2050 human-human navigation dialogs, comprising over
7K navigation trajectories punctuated by question-answer
exchanges, across 83 MatterPort houses [5] . The metrics
for R2R can be readily used for the CVDN dataset. Further,
one new metric is proposed for the NDH task:

GP Goal Progress measures the difference between com-
pleted distance and left distance to the goal. Larger

4The full list of leaderboard is publicly available: https://
evalai.cloudcv.org/web/challenges/challenge-page/
97/leaderboard/270

13142



Validation Unseen

Test Unseen

Agent Oracle Navigator Mixed Oracle Navigator Mixed
RANDOM 1.09 1.09 1.09 0.83 0.83 0.83
SEQ2SEQ 1.23 1.98 2.10 1.25 2.11 2.35
PREVALENT (Ours) 2.58 2.99 3.15 1.67 2.39 2.44
SHORTEST PATH AGENT 8.36 7.99 9.58 8.06 8.48 9.76

Table 2: Results on CVDN measured by Goal Progress. Blue indicates the best value in a given setting.

SEEN-ENV UNSEEN-ALL

Agent SRT SPLT NEJ] #RJ] SRT SPLT NEJ] #R]
2 RANDOM WALK 054 033 1538 0.0 046 023 1534 0.0
& FORWARD 10 598 419 1461 0.0 6.36 478 1381 0.0

NO ASSISTANCE 1721 13776 1148 0.0 8.10 423 1322 00

ANNA 88.37 6392 133 29 4745 2550 7.67 5.8

PREVALENT (Ours) 83.82 59.38 147 34 5291 28.72 529 6.6
E SHORTEST 100.00 100.00 0.00 0.0 100.00 100.00 0.00 0.0
g Perfect assistance 90.99 6887 091 25 83.56 56.88 1.83 3.2

Table 3: Results on test splits of HANNA. The agent with “perfect assistance” uses the teacher navigation policy to make
decisions when executing a subtask from the assistant. Blue indicates the best value.

values indicate a more efficient agent.

Three settings are considered, depending on which
ground-truth action/path is employed [30]. Oracle indicates
the shortest path, and Navigator indicates the path taken by
the navigator. The Mixed supervision path means to take the
navigator path if available, otherwise the shortest path. The
results are in Table 2. The proposed PREVALENT signifi-
cantly outperforms the Seq2Seq baseline on both validation
and testing unseen environments in all settings, leading to
the top position on the leaderboard °. Note that our en-
coder is pre-trained on R2R dataset. We observe that it can
provide significant improvement when used the new task
built on the CVDN dataset. This shows that the pre-trained
model can adapt well on new tasks, and yields better gener-
alization.

6.4. HANNA

Dataset & Evaluation Metric The HANNA dataset fea-
tures 289 object types; the language instruction vocabulary
contains 2,332 words. The numbers of locations on the
shortest paths to the requested objects are restricted to be
between 5 and 15. With an average edge length of 2.25 me-
ters, the agent has to travel about 9 to 32 meters to reach its
goals. Similar to R2R, SR, SPL and NE are used to eval-
uate the navigation. Further, one new metric is considered
for this interactive task:

5The full list of leaderboard is publicly available: https://
evalai.cloudcv.org/web/challenges/challenge-page/
463/leaderboard/1292

#R Number of requests measures how many helps are re-
quested by the agent.

The results are shown in Table 3. Two rule-based meth-
ods and two skyline methods are reported as references;
see [22] for details. Our PREVALENT outperforms the base-
line agent ANNA on the test unseen environments in terms
of SR, SPL and NE, while requesting a slightly higher
number of helps (#R). When measuring the performance
gap between seen and unseen environments, we see that
PREVALENT shows a significantly smaller difference than
ANNA, e.g., (59.38-28.72=30.66) vs (63.92-25.50=38.42)
for SPL. This means that the pre-trained joint representa-
tion by PREVALENT can reduce over-fitting, and generalise
better to unseen environments.

6.5. Ablation Studies

Is pre-training with actions helpful? Our pre-training
objective in (9) includes two losses, Lpa and Lyypy. To
study the impact of each loss, we pre-train two model vari-
ants: one is based on the full objective Lpa + Lyvim, the
other only uses Lym. To verify its impact on new tasks,
we consider CVDN first, and the results are shown in Ta-
ble 4. Three types of text inputs are considered: Navigation
QA, Orcale Answer, and All (a combination of both). More
details are provided in the Appendix.

When Lpa is employed in the objective, we see consis-
tent improvement on nearly all metrics and settings. Note
that our MLM is different from BERT in that the attention
over images is used in the cross-layer. To verify whether the
image-attended learning is necessary, we consider BERT in
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Navigation QA Oracle Answer All
Methods Oracle Navigator Mixed A Oracle Navigator Mixed & Oracle Navigator Mixed
Lea + Lym 2.80 3.01 3.28 3.44 3.38 2.58 2.99 3.15
Lyvim 2.69 3.00 3.25 3.35 3.19 2.52 2.98 3.14
BERT pre-trainig ~ 2.26 2.71 2.94 2.68 3.06 2.46 2.74 2.64
BERT fine-tuning 2.39 2.03 2.51 241 2.52 2.32 293 2.28

Table 4: Ablation study of the pre-training objectives on CVDN, measured by Goal Progress. Blue indicates the best value.

Validation Seen

Validation Unseen

Test Unseen

Methods TL]l NE| SRT SPLtT , TL] NE| SRY SPLt , TL] NE| SRY SPL?
Two-stage 10.32  3.67 0.69 0.66 10.19 4.71 0.58 0.53 10.51 5.30 0.54 0.51
Feature-based 10.13 3.98 0.66 0.64 9.70 5.01 054 0.51 999 554 052 049

Table 5: Ablation study on R2R: feature-based vs fine-tuning. Blue indicates the better value.

two ways. (i) BERT pre-training: we apply the original
MLM loss in BERT on our R2R pre-training dataset. The
newly pre-trained BERT is used for fine-tuning on CVDN.
(ii) BERT fine-tuning: we directly fine-tune off-the-shelf
BERT on CVDN. Their performances are lower than the
two variants of the proposed PREVALENT. This means our
image-attended MLM is more effective for navigation tasks.
More ablation studies on the pre-training objectives are con-
ducted for HANNA, with results shown in the Appendix.

Feature-based vs Fine-tuning The pre-trained encoder
can be used in two modes: (i) fine-tuning approach, where a
task-specific layer is added to the pre-trained model, and all
parameters are jointly updated on a downstream task. (if)
feature-based approach, where fixed features are extracted
from the pre-trained model, and only the task-specific layer
is updated. In this paper, all PREVALENT presented results
generally have used the feature-based approach, as there
are major computational benefits to pre-computing an ex-
pensive representation of the training data once, and then
running many experiments with cheaper models on top of
this representation. In the R2R dataset, we consider a two-
stage scheme, where we fine-tune the cross-attention layers
of the agent, after training via the feature-based approach.
The results are reported in Table 5. We observe notable im-
provement with this two-stage scheme on nearly all metrics,
expect the trajectory length.

How does pre-training help generalization? We plot the
learning curves on the seen/unseen environments for R2R in
Figure 4(a), and CVDN in Figure 4(b). Compared with the
random initialized word embeddings in EnvDrop [28], the
pre-trained word embeddings can adapt faster (especially in
the early stage), and converge to higher performance in un-
seen environments. This is demonstrated by the SPL values
in the Figure 4(a). By comparing the learning curves in Fig-
ure 4(b), we see a much smaller gap between seen and un-

Seen Env Unseen Env
YAV I O~ PREVALENT
05 E = 05 O~ EnvDrop
- Q v ° ]
o o fr\ /vl
wn 04 0.4 [ - o © Q
(0]
O C
0.3 0.3
o) )
0 25 50 75 100 0 25 50 75 100
# Iter (x100) # Iter (x100)
(a) R2R
6 Seen Env 6 Unseen Env
O~ PREVALENT
- ow\@ [©)
55 g Y 5] 5 O- Seq2Seq
§ 4 ¥ = 4
S ]
g3 3
o m/V\E
g 2 (| 2 o) -
O\ @
%16 1 0 S
o
0 25 50 75 100 0 25 50 75 100

# Iter (x100) # Iter (x100)

(b) CVDN
Figure 4: Learning curves on (a) R2R and (b) CVDN.

seen environments for PREVALENT than the Seq2Seq base-
line [30], meaning pre-training is an effective tool to help
reduce over-fitting in learning.

7. Conclusions

We present PREVALENT, a new pre-training and fine-
tuning paradigm for vision-and-language navigation prob-
lems. This allows for more effective use of limited train-
ing data to improve generalization to previously unseen en-
vironments, and new tasks. The pre-trained encoder can
be easily plugged into existing models to boost their per-
formance. Empirical results on three benchmarks (R2R,
CVDN and HANNA) demonstrate that PREVALENT sig-
nificantly improves over existing methods, achieving new
state-of-the-art performance.
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