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Abstract

Conventional cell tracking methods detect multiple cells

in each frame (detection) and then associate the detec-

tion results in successive time-frames (association). Most

cell tracking methods perform the association task indepen-

dently from the detection task. However, there is no guar-

antee of preserving coherence between these tasks, and lack

of coherence may adversely affect tracking performance. In

this paper, we propose the Motion and Position Map (MPM)

that jointly represents both detection and association for not

only migration but also cell division. It guarantees coher-

ence such that if a cell is detected, the corresponding mo-

tion flow can always be obtained. It is a simple but powerful

method for multi-object tracking in dense environments. We

compared the proposed method with current tracking meth-

ods under various conditions in real biological images and

found that it outperformed the state-of-the-art (+5.2% im-

provement compared to the second-best).

1. Introduction

Cell behavior analysis is an important research topic in

the fields of biology and medicine. Individual cells must be

detected and tracked in populations to analyze cell behav-

ior metrics including cell migration speed and frequency of

cell division. However, it is too time consuming to man-

ually track a large number of cells. Therefore, automatic

cell tracking is required. Cell tracking in phase-contrast mi-

croscopy is a challenging multi-object tracking task. This is

because the cells tend to have very similar appearance and

their shapes severely deform. Therefore, it is difficult to

identify the same cell among frames based on only its ap-

pearance. Moreover, cells in contact with each other often

have blurry intercellular boundaries. In this case, it is diffi-

cult to identify touching cells from only one image. Finally,

a cell may divide into two cells (cell mitosis), which is a

very different situation from that of general object tracking.

The tracking-by-detection method is the most popular

tracking paradigm because of the good quality of the de-

tection algorithms that use convolutional neural networks

(CNNs) for the detection step. These methods detect cells

in each frame and then associate the detection results among

the time-frames by maximizing the sum of association

scores of hypotheses, where the association step is often

performed independently from the detection step [21, 31, 8].

They basically use hand-crafted association scores based on

the proximity and similarity in shape of cells, but the scores

only evaluate the similarity of individual cells; i.e., they do

not use the context of nearby cells. Moreover, the scores

depend on the conditions of the time-lapse images, such as

the frame interval, cell type, and cell density.

On the other hand, the positional relationship of nearby

cells is important to identify the association when the den-

sity is high. Several methods have been proposed for using

context information [32, 17]. Hayashida et al. [17] pro-

posed a cell motion field (CMF) that represents the cell

association between successive frames in order to directly

predict cell motion (association) by using a CNN. This en-

ables cell tracking at low frame rates. This method outper-

formed the previous methods that use hand-crafted associ-

ation scores. However, it still independently performs the

detection and association inference. This raises the possi-

bility of incoherence between the two steps; e.g., although a

cell is detected, there is no response at the detected position

in the CMF, and this would affect the tracking performance.

Many applications use multi-task learning [16, 19, 11,

45], i.e., learning multiple-related tasks. This method basi-

cally has common layers express task-shared features and

output branches that represent task-specific features. Multi-

task learning improves the accuracy of the tasks compared

with individual learning. However, it is not easy to preserve

the coherence between the detection and association tasks in

multi-task learning. If we simply apply a branch network,

there is no guarantee that the coherence between these tasks

will be preserved: e.g., the network may detect a cell but

not produce a corresponding association for the cell, which

would adversely affect tracking performance.

Unlike such multi-task learning methods, we propose the

Motion and Position Map (MPM) that jointly represents

both detection and association for not only migration but

also cell division, as shown in Fig. 1, where the distri-

bution of magnitudes of MPM indicates the cell-position

likelihood map at frame t; the direction of the 3D vector

encoded on a pixel in MPM indicates the motion direction
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Figure 1. Overview of the proposed method. (a) Input images in two successive frames and manual annotations of cell positions in each

frame and their association. (b) Motion and position map (MPM) that jointly represents both detection and association. MPM encodes the

following two pieces of information: (c) a cell-position likelihood map, which is a magnitude map of MPM. The peaks of this map indicate

the cells’ positions; (d) motion vector for a cell from t to t − 1. (e) Estimating the MPM for all frames by using siamese MPM-Nets. (f)

The overall tracking results when using MPM.

from the pixel at t to the cell centroid at t− 1. Since MPM

represents both detection and association, it guarantees co-

herence; i.e., if a cell is detected, an association of the cell

is always produced. In addition, we can obtain the cell po-

sitions and their association for all frames by using siamese

MPM networks, as shown in Fig. 1(e). Accordingly, even a

very simple tracking method can be used to construct over-

all cell trajectories with high accuracy (Fig. 1(f)). In the

experiments, our method outperformed the state-of-the-arts

under various conditions in real biological images.

Our main contributions are summarized as follows:

• We propose the motion and position map (MPM) that

jointly represents detection and association for not

only migration but also cell division. It guarantees co-

herence such that if a cell is detected, the correspond-

ing motion flow can always be obtained. It is a simple

but powerful method for multi-object tracking in dense

environments.

• By applying MPM-Net to the entire image sequence,

we can obtain the detection and association informa-

tion for the entire sequence. By using the estimation

results, we can easily obtain the overall cell trajecto-

ries without any complex process.

2. Related work

Cell tracking: Cell tracking methods can be roughly clas-

sified into two groups: those with model-based evolution

and those based on detection-and-association. The first

group uses sequential Bayesian filters such as particle fil-

ters [30, 38], or active contour models [24, 40, 43, 46]. They

update a probability map or energy function of cell regions

by using the tracking results of the previous frame as the

initial state for the updates. These methods work well if

cells are sparsely distributed. However, these methods may

get confused when cells are close together with blurry inter-

cellular boundaries or move over a long distance.

The second group of cell-tracking methods are based on

detection and association: first they detect cells in each

frame; then they determine associations between succes-

sive frames. Many cell detection/segmentation methods

have been proposed to detect individual cells, by using

level set [25], watershed [28], graph-cut [4], optimization

using intensity features [7], physics-based-restoration [44,

39, 23], weakly-supervised [29] and CNN-based detection

methods [33, 34, 1, 27, 3]. Moreover, many optimiza-

tion methods have been proposed to associate the detected

cells. They maximize an association score function, in-

cluding linear programming for frame-by-frame associa-

tion [21, 5, 6, 46, 42] and graph-based optimization for

global data association [8, 36, 39, 15]. These methods ba-

sically use the proximity and shape similarity of cells for

making hand-crafted association scores. These association

scores depend on the cell culture conditions, such as the

frame interval, cell types and cell density. In addition, the

scores only evaluate the similarity of individual cells, not

the context of nearby cells. On the other hand, a human ex-

pert empirically uses the positional relationship of nearby
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cells in dense cases. Several methods have been proposed

on how to use such context information [32, 17, 33]. Payer

et al. [32] proposed a recurrent stacked hourglass network

(ConvGRU) that not only extracts local features, but also

memorizes inter-frame information. However, this method

requires annotations for all cell regions as training data, and

it does not perform well when the cells are small. Hayashida

et al. [17] proposed a cell motion field that represents the

cell association between successive frames that can be esti-

mated with a CNN. Their method is a point-level tracking,

and thus it dramatically reduces annotation costs compared

with pixel-level cell boundary annotation. These methods

have been shown to outperform those that use hand-crafted

association scores. However, the method still performs the

detection and association inference independently. This

causes incoherence between steps, which in turn affects

tracking performance.

Object tracking for general object: For single-object

tracking that finds the bounding box corresponding to given

initial template, Siamese networks have been often used

to estimate the similarity of semantic features between the

template and target images [20, 22]. To obtain a good sim-

ilarity map, this approach is based on representation learn-

ing. However, in the cell tracking problem, there may be

many cells that have similar appearances; thus, the simi-

larity map would have a low confidence level. Tracking-

by-detection (detection-and-association) is also a standard

approach in multi-object tracking (MOT) for general ob-

jects. In the association step, features of objects and mo-

tion predictions [26, 12] are used to compute a similar-

ity/distance score between pairs of detection and/or track-

lets. Re-identification is often used for feature represen-

tation [14, 2]. This method does not use the global spa-

tial context, and the detection and association processes are

separated. Optimization techniques [41, 35] have been pro-

posed for jointly performing the detection and association

processes; they jointly find the optimal solution of detection

and association from a candidate set of detections and asso-

ciations. Sun et al. [37] proposed the Deep Affinity Net-

work (DAN). Although this method jointly learns a feature

representation for identification and association, the detec-

tion step is independent of these learnings.

Multi-task learning: Multi task learning (MTL) has been

widely used in computer vision for learning similar tasks

such as pose estimation and action recognition [16]; depth

prediction and semantic classification [19, 11]; and for

room floor plans [45]. Most multi-task learning network ar-

chitectures for computer vision are based on existing CNN

architectures [19, 9, 18]. These architectures basically have

common layers and output branches that express both task-

shared and task-specific features. For example, cross-stitch

networks [19] contain one standard CNN per task, with

cross-stitch units to allow features to be shared across tasks.

Such architectures require a large number of network pa-

rameters and scale linearly with the number of tasks. In ad-

dition, there is no guarantee of coherence among the tasks

if we simply apply the network architecture to a multi-task

problem such as detection and association. This means that

we need to design a new loss function or architecture to

preserve the coherence depending on the pairs of the tasks.

To the best of our knowledge, multi-task learning methods

specific to our problem have not been proposed.

Unlike these methods, we propose MPM for jointly rep-

resenting the detection and association tasks at once. The

MPM can be estimated using simple U-net architecture, and

it guarantees coherence such that if a cell is detected, the

corresponding motion flow can always be obtained.

3. Motion and Position Map (MPM)

Our tracking method estimates the Motion and Position

Map (MPM) with a CNN. The MPM jointly represents the

position and moving direction of each cell between succes-

sive frames by storing a 3D vector on a 2D plane. From

the distribution of the 3D vectors in the map, we can ob-

tain the positions of the cells and their motion information.

First, the distribution of the magnitudes of the vectors in the

MPM shows the likelihoods of the cell positions in frame

t. Second, the direction of the 3D vector on a cell indicates

the motion direction from the pixel at t to the cell centroid at

t−1. Note that we treat the cell motion from t to t−1 in or-

der to naturally define a cell division event when a mother

cell divides into two daughter cells by one motion from a

cell. By using MPM as the ground-truth, it is possible to

use a simple CNN model that has a U-net architecture, that

we call MPM-Net, to perform the simultaneous cell detec-

tion and association tasks.

First, we explain how to generate the ground truth of

MPM from the manual annotation. Fig. 2 shows the sim-

ple example of the annotations for the motion of a single

cell and it’s MPM. The manual annotation for an image se-

quence expresses the position of each cell position in terms

of 3D orthogonal coordinates by adding a frame index to the

annotated 2D coordinate, where the same cell has the same

ID from frame to frame. We denote the annotated cell posi-

tions for cell i at frame t− 1 and t as ait−1, ait respectively.

They are defined as:

{

ait−1 = (xi
t−1, y

i
t−1, t− 1)T,

ait = (xi
t, y

i
t, t)

T.
(1)

Although the annotated position for a cell is a single

point at t, manual annotation may not always correspond to

the true position. Similar to [17], we make a likelihood map

of cell positions, where an annotated cell position becomes

a peak and the value gradually decreases in accordance with

a Gaussian distribution, as shown in Fig. 2. Similarly, the
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Figure 2. Example of the generated MPM from the given anno-

tated cell positions at t and t − 1. Note that this example shows

the enlarged images for a single cell for explanation. (a) Input

images with the annotation points. The red points indicate the an-

notated points on the rough centroids of cells. (b) Motion vectors

from the neighbor points around the annotated point at t to the an-

notated point t− 1. (c) Cell position likelihood map that indicates

the weight map of the vector of MPM. (d) MPM that represents

both the motion vector and the position likelihood map, where it

encodes the 3D vector at each pixel and the magnitude of the vec-

tor indicates the cell position likelihood, the direction of the vector

indicates the direction of the motion. (e) Example of the cell divi-

sion case, where two cells are associated to the single cell.

motion vectors are represented as the 3D vectors pointing

to ait−1 from the nearby pixels of ait.

To generate ground truth MPM Ct−1,t, we first generate

individual MPM Ci
t−1,t for each cell i in frame t − 1 and

t. Each individual MPM is obtained by storing 3D vectors

pointing to ait−1 from the neighboring region of ait. Let

v
i
t−1,t = ait−1 − pt be the motion vector from each coor-

dinate pt = (xt, yt, t)
T at frame t to the annotated position

ait−1. Ci
t−1,t is defined as:

Ci
t−1,t(pt,v

i
t−1,t) = w(pt)

v
i
t−1,t

||vi
t−1,t||2

, (2)

where w(·) is a weight function that takes each coordinate

at frame t as input and returns a scalar value. Since the mo-

tion vector vi
t−1,t/||v

i
t−1,t||2 is a unit vector in Eq.(2), w(·)

is a function that represents the magnitude of each vector

in MPM. w(·) is a Gaussian function with the annotation

coordinate ait as the peak, and is defined as:

w(pi
t) = exp

(

−
||ait − pt||

2
2

σ2

)

, (3)

where σ is a hyper-parameter that indicates the standard

deviation of the distribution and controls the spread of the

peak.

The vector stored at each coordinate of MPM Ct−1,t is

the vector of the individual MPMs with the largest value of

the coordinates among all the magnitudes of the individual

MPMs. The MPM Ct−1,t that aggregates all the individual

MPM is defined as:

Ct−1,t(pt) = Cî
t−1,t(pt), (4)

î = argmax
i

||Ci
t−1,t(pt)||. (5)

Fig. 2(d) shows an example of the MPM generated based

on the annotation (a). One of the advantage of the MPM is

that can represent the cell division case that two daughter

cells are associated to a mother cell, as shown in Fig. 2(e).

A U-Net is trained with the ground truth of the MPM by

using a loss function that is the mean squared error (MSE)

between the training data and the estimated data, where two

images are treated as two channels of the input, and the out-

puts of a pixel are 3 channels of the 3D vector. Let the

ground-truth of MPM be c and the estimated MPM be ĉ.

The loss function is defined as:

Loss(c, ĉ) =
1

n

n
∑

i=1

(||ci − ĉi||
2
2 + (||ci||2 − ||ĉi||2)

2) (6)

where the first term ||ci − ĉi||
2
2 is a square error between

c and ĉ, and the second term (||ci||2 − ||ĉi||2)
2 is a square

error between the magnitudes of c and ĉ. Here, we empir-

ically added the second term that directly reflects the error

of the magnitude (i.e., detection). Even though we use only

the first term, it works, but the proposed loss function was

stable.

4. Cell tracking by MPM

Fig. 3 shows an overview of cell detection and associ-

ation in inference. For frame t and t − 1 (Fig. 3(a)), we

estimate the MPM Ct−1,t by using the trained MPM-Net

(Fig. 3(b)). The positions of cells in frame t are detected

from the magnitude of Ct−1,t (Fig. 3(c)(d)), and the cells

in frame t − 1 are associated with each 3D vector stored at

the detected positions (Fig. 3(e)).

4.1. Cell detection by the magnitude of MPM

The cell-position likelihood map Lt−1,t at frame t is ob-

tained from the distribution of magnitudes of MPM Ct−1,t.
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Figure 3. Overview of cell detection and association in inference.

(a) Input images. (b) MPM estimated by MPM-Net. (c) Cell-

position likelihood map determined from the magnitude of MPM.

(d) The peaks are detected as cells at t. (e) The cell motion from

t to t− 1 is estimated by the direction vector at the detected peak

point of MPM.

The detected cell positions are the coordinates of the each

local maximum of Lt−1,t. In the implementation, we ap-

plied Gaussian smoothing as a pre-processing against noise

to Lt−1,t.

4.2. Cell association by MPM

The direction of each 3D vector of MPM Ct−1,t indi-

cates the direction from position of the cell at t to position of

the same cell at t−1. The position at frame t−1 is estimated

using the triangle ratio from each vector of Ct−1,t stored at

each detected position in frame t, as shown in Fig. 4. Let the

detected position of each cell i be m
i
t = (xi

t, y
i
t, t)

T, and

the 3D vector stored in mi
t be v

i
t−1,t = (∆x,∆y,∆t)T.

The estimated position m̂i
t−1 for each cell i at frame t − 1

is defined as:

m̂i
t−1 = (xi

t +
∆x

∆t
, yit +

∆y

∆t
, t− 1)T. (7)

We associate the detected cells in frame t with the

tracked cells in frame t − 1 on the basis of m̂i
t−1 and the

previous confidence map Lt−2,t−1 used for the cell detec-

tion in frame t − 1, as shown in Fig. 5. The estimated

position m̂i
t−1 of cell i at t − 1 may be different from the

tracked point at t − 1 which is located at a local maximum

of cell-position likelihood map. Thus, we update the esti-

mated position mi
t−1 to a certain local maximum that is the

position of a tracked cell T
j
i−1

by using the hill-climbing

algorithm to find the peak (the position of the tracked cell).

Here, the j-th cell trajectory from sj until t − 1 is denoted

as Tj = {Tj
sj
, ...,Tj

t−1}, where sj indicates the frame in

𝑥|𝑧=𝑡−1
𝑥|𝑧=𝑡

𝑧

𝒎𝑡𝑖

ෝ𝒎𝑡−1𝑖
Δ𝑡 Δ𝑥1

Figure 4. Estimation of the cell position at frame t− 1
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𝑻𝑻𝒕𝒕−𝟏𝟏𝒋𝒋

Figure 5. Illustration of association process. (a) The case of cell

migration (one-to-one matching): the estimated position m
i
t−1 is

associated with the nearest tracked cell T
j
t−1

. (b) The case of

cell division (one-to-two matching): two cells m
l
t−1, mk

t−1 are

associated as daughter cells of T
j
t−1

.

which the j-th cell trajectory started. If m̂i
t−1 was updated

to a position with T
j
i−1

, we associate mi
t with T

j
t−1 as the

tracked cell T
j
t = mi

t. If the confidence value at the esti-

mated position at t − 1 is zero (i.e., the point is not associ-

ated with any cell), mi
t−1 is registered as a newly appearing

cell TNt−1+1, where Nt−1 is the number of cell trajectories

until time t before the update.

If two estimated cell positions mk
t−1, ml

t−1 were

updated to one tracked cell position T
j
t−1, these de-

tected cells are registered as new born cells TN+1 =
{mk

t−1}, TN+2 = {ml
t−1}, i.e., daughter cells of Tj ,

and the division information is also registered Tj →
TNt−1+1,TNt−1+2. The cell tracking method using MPM

can be performed very simply for both cell migration and

division.

4.3. Interpolation for undetected cells

The estimated MPM at t may have a few false negatives

because the estimation performance is not perfect. In this

case, the trajectory Tj is not associated with any cell and

the frame-by-frame tracking for the cell is terminated at t−1
for the moment. The tracklet Tj is registered as a temporar-

ily track-terminated cell. During the tracking process using

MPM, if there are newly detected cells including daughter

cells from cell division at t − 1 + q, the method tries to
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The newly detected cells (red) are associated with the track-

terminated cells (green) using MPM.

associate the temporarily track-terminated cell using MPM

again, where the MPM is estimated by inputting the images

at t− 1 and t− 1+ q (i.e., the time interval of the images is

q). Next, the cell position is estimated and updated by us-

ing frame-by-frame association. If the newly detected cell

is associated with one of the temporarily track-terminated

cells, the cell is then associated with the cell and the posi-

tions in the interval of frames, in which corresponding cells

were not detected, are interpolated based on the vector of

the MPM. If there are multiple temporarily track-terminated

cells, this process is iterated on all track-terminated cells in

ascending order of time. The method excludes a cell from

the list of the track-terminated cells when the interval from

the endpoint of the track-terminated cell to the current frame

is larger than a threshold. Here, we should note that cells at

t tend to be associated with another cell as cell divisions

when a false negative occurs at t − 1. To avoid such false-

positives of cell-division detection, the method tries to as-

sociate such daughter cells with the track-terminated cells.

This cell tracking algorithm can be performed online.

Fig. 6 shows an example of this process, in which the

tracking of the green trajectory is terminated at t − 1 due

to false negatives at t, t + 1, and the red cell is detected at

t + 2. In this case, the MPM is estimated for three frame

intervals (the inputs are the images at t− 1 and t+ 2), and

it is associated with the track-terminated cell. Then, the cell

positions at t and t + 1 are interpolated using the vector of

MPM and the tracking starts again.

5. Experiments

5.1. Data set

In the experiments, we used the open dataset [13] that

includes time-lapse image sequences captured by phase-

contrast microscopy since this is the same setup with our

target to track. In this data-set, the point-level ground truth

is given, in which the rough cell centroid was annotated

with cell ID, and hundreds of mouse myoblast stem cells

were cultured under four cell culture conditions that are dif-

ferent growth-factor mediums; a) Control (no growth fac-

tor), b) FGF2, c) BMP2, d) BMP2+FGF2, where there

学習

学習 学習

(a) (b)

(c) (d)

(e)

(f)

(g)

(h)

Figure 7. Example images from four conditions. a) Control, b)

FGF2, c) BMP2, d) BMP2+FGF2, (e)-(h) the enlarged images of

the red box in (a)-(d), respectively. The appearance of cells are dif-

ferent depending on the culture conditions. Cells often shrink and

partially overlapped in FGF2, cells tend to be spread under BMP2,

there are both cells who are spread or shrunk under BMP2+FGF2.

are four image sequences for each condition (total: 16 se-

quences). Since a stem cell is differentiated depending on

the growth factor, the cell appearance changes over the four

culture conditions as shown in Fig. 7.

The images were captured every 5 minutes and each

sequence consists of 780 images with the resolution of

1392×1040 pixels. All cells were annotated in a sequence

in BMP2, and three cells were randomly picked up at the

beginning of the sequence, and then the three cell’s family

trees through the 780-th image were annotated for all the

other 15 sequences, where the number of the annotated cells

increased with time due to cell division. The total number

of annotated cells in the 16 sequences is 135859 [21].

Since our method requires the training data that all cells

should be fully annotated in each frame, we additionally

annotated cells in a part of frames under three conditions;

Control: 100 frames, BMP2: 100 frames, FGF2+BMP2:

200 frames. Totally the annotated 400 frames were used as

the training data, and the rest of the data was used as ground

truth in the test. To show the robustness for the cross-

domain data (the different culture conditions from training

data) in the test, we did not make the annotation for FGF2.

In all experiments, we set the interval value q for interpola-

tion as 5.

5.2. Performance of cell Detection

The detection performance of our method compared with

the three other methods including the state-of-the-art; Ben-

sch [4] that is based-on graph-cut, Bise [8] that is based

on physics model of phase-contrast microscopy [44], and

Hayashida [17] (the state-of-the-art for this data-set) that is

based on deep learning that estimates the cell-position like-

lihood map that is similar to ours. Here, the annotation of

this dataset is the point-level annotation, and thus we could
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Figure 8. Examples of our cell detection results. Top: detection

results. Green ’+’ indicates the true positive, red ’+’ indicates

the false negative. Middle: cell position likelihood map generated

from the estimated MPM (Bottom).

not apply the learning-based segmentation methods that re-

quire the pixel-level annotation for the individual cell re-

gions. We used the fully-annotated sequence to measure

the precision, recall, and F1-score as the detection perfor-

mance metrics. For the training and tuning the parameters,

we used the same training sequences.

Fig. 8 shows examples of our cell detection results.

Our method successfully detected the cells that have var-

ious appearances, including spread cells, small brighter

cells, and touching cells. Table 1 shows the results of the

cell detection evaluation. The deep learning-based meth-

ods (Hayashida’s and ours) outperformed the other two

methods. The detection method in [17] estimated the cell-

position likelihood map by U-net, in which their method

represents the detection but not for the association. The

terms of recall and F1-score of our method are slightly bet-

ter (+1.4%) than those of their method. Since our method

uses the context from two successive frames in contrast to

their method that detects cells each frame independently,

we consider that it would be possible to improve the perfor-

mance of detection.

5.3. Performance of cell Tracking

Next, we evaluated the tracking performance of our

method with four other methods; Bensch [4] based-on

frame-by-frame association with graph-cut segmentation;

Chalfoun [10] based-on optimization for the frame-by-

frame association with the segmentation results by [44];

Bise[8] based on spatial-temporal global data association;

Hayashida [17] based on motion flow estimation by CNN.

Hayashida’s method is the most related to the proposed

method. Their method estimates the cell position map and

motion flow by CNN, independently.

We used two quantitative criteria to assess the per-

Table 1. Cell detection performance on the terms of precision, re-

call and F1-score.

Method
Bensh

[4]

Bise

[8]

Hayashida

[17]
Ours

precision 0.583 0.850 0.968 0.964

recall 0.623 0.811 0.902 0.932

F1-score 0.602 0.830 0.934 0.948

Table 2. Association Accuracy.

Method Cont. FGF2 BMP2
FGF2+

BMP2
Ave.

Bensh[4] 0.604 0.499 0.801 0.689 0.648

Chalfoun[10] 0.762 0.650 0.769 0.833 0.753

Bise[8] 0.826 0.775 0.855 0.942 0.843

Hayashida[17] 0.866 0.884 0.958 0.941 0.912

Ours (MPM) 0.947 0.952 0.991 0.987 0.969

Table 3. Target Effectiveness.

Method Cont. FGF2 BMP2
FGF2+

BMP2
Ave.

Bensh[4] 0.543 0.448 0.621 0.465 0.519

Chalfoun[10] 0.683 0.604 0.691 0.587 0.641

*Li[23] 0.700 0.570 0.630 0.710 0.653

*Kanade[21] 0.830 0.640 0.800 0.790 0.765

Bise[8] 0.733 0.710 0.788 0.633 0.771

Hayashida[17] 0.756 0.761 0.939 0.841 0.822

Ours (MPM) 0.803 0.829 0.958 0.911 0.875

formance: association accuracy and target effectiveness

[21]. To compute association accuracy, each target (human-

annotated) was assigned to a track (computer-generated) for

each frame. The association accuracy was computed as the

number of true positive associations divided by the number

of associations in the ground-truth. If a switch error oc-

curred between two cells A and B, we count the two false

positives (A→ B, B→ A). To compute target effectiveness,

we first assign each target to a track that contains the most

observations from that ground-truth. Then target effective-

ness is computed as the number of the assigned track ob-

servations over the total number of frames of the target.

It indicates how many frames of targets are followed by

computer-generated tracks. This metric is a stricter metric.

If a switching error occurs in the middle of the trajectory,

the target effectiveness is 0.5.

Table 2 and 3 show the performance of the association

accuracy and the target effectiveness, respectively. In these

tables, the average scores for each condition (three or four

sequences in each condition) are denoted 1. In Table 3, we

show the additional two methods as the reference; Li [23]

1The scores of the target effectiveness of *Li and *Kanade were eval-

uated by the same data-set in their papers. Since the association accuracy

of their methods [23, 21] were not described in their papers, we could not

add their performance at the Table 2.
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Figure 9. Tracking results from each compared method under

BMP2. (a) Bise, (b) Chalfoun, (c) Hayashida, (d) ours. Horizontal

axis indicate the time.

based on level-set tracking and Kande [21] based on frame-

by-frame optimization. The performances of Bensh, Chal-

foun, Li were sensitive depending on the culture condi-

tions, and the performances were not good on both the met-

ric terms, in particular, (FGF2) and (BMP2+FGF2). We

consider that the sensitivity of their detection methods ad-

versely affects the tracking performance. The methods of

Bise and Kanade that use the same detection method [44]

achieved better accuracy compared to the three methods

thanks to the better detection. The state-of-the-art method

(Hayashida) furthermore improved the performances (Fig.

9(c)) compared with the other current methods by esti-

mating cell motion flow and position map independently.

Our method (MPM) outperformed all the other methods

(Fig. 9(d)). It improved +5.7% of association accuracy and

+5.1% of the target-effectiveness on the average score com-

pared to the second-best (Hayashida).

Fig. 10 shows the tracking results from ours under each

condition, in which our method correctly tracked the vari-

ous appearance of cells. Fig. 11 shows the tracking results

in the case when a cell divided into two cells in the enlarged

image-sequence. Our method could correctly identify the

cell division and track all cells in the region.

6. Conclusion

In this paper, we proposed the motion and position map

(MPM) that jointly represents both detection and associa-

tion, which can be represented in the cell division case not

only migration. The MPM encodes a 3D vector into each

pixel, where the distribution of magnitudes of the vectors

indicates the cell-position likelihood map, and the direc-

tion of the vector indicates the motion direction from the

pixel at t to the cell centroid at t − 1. Since MPM rep-

resents both detection and association, it guarantees coher-

Figure 10. Tracking results from our method under each culture

conditions; (a) Control, (b) FGF2, (c) BMP2+FGF2. Although

the cell appearances are different depending on the conditions, our

method correctly tracked the cells.

Figure 11. Examples of our tracking results. (a) Entire image. (b)

3D view of estimated cell trajectories. The z-axis indicates the

time, and each color indicates the trajectory of a single cell. (c) En-

larged image sequence at the red box in (a), in which our method

correctly identified the cell division and tracked all cells.

ence; i.e., if a cell is detected, the association of the cell

is always produced, and thus it improved the tracking per-

formance. In the experiments, our method outperformed

the state-of-the-art method with over 5% improvement of

the tracking performance under various conditions in real

biological images. In future work, we will develop an end-

to-end tracking method that can estimate the entire cell tra-

jectories from the entire sequence in order to use the global

spatial-temporal information on CNN.
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