
Learning Filter Pruning Criteria

for Deep Convolutional Neural Networks Acceleration

Yang He1 Yuhang Ding2 Ping Liu1 Linchao Zhu1 Hanwang Zhang3 Yi Yang1∗

1ReLER, University of Technology Sydney 2Baidu Research 3Nanyang Technological University

yang.he-1@student.uts.edu.au, {dyh.ustc.uts,pino.pingliu,zhulinchao7}@gmail.com

hanwangzhang@ntu.edu.sg, yee.i.yang@gmail.com

Abstract

Filter pruning has been widely applied to neural net-

work compression and acceleration. Existing methods usu-

ally utilize pre-defined pruning criteria, such as ℓp-norm, to

prune unimportant filters. There are two major limitations

to these methods. First, prevailing methods fail to consider

the variety of filter distribution across layers. To extract

features of the coarse level to the fine level, the filters of

different layers have various distributions. Therefore, it is

not suitable to utilize the same pruning criteria to different

functional layers. Second, prevailing layer-by-layer prun-

ing methods process each layer independently and sequen-

tially, failing to consider that all the layers in the network

collaboratively make the final prediction.

In this paper, we propose Learning Filter Pruning Cri-

teria (LFPC) to solve the above problems. Specifically, we

develop a differentiable pruning criteria sampler. This sam-

pler is learnable and optimized by the validation loss of the

pruned network obtained from the sampled criteria. In this

way, we could adaptively select the appropriate pruning cri-

teria for different functional layers. Besides, when evaluat-

ing the sampled criteria, LFPC comprehensively considers

the contribution of all the layers at the same time. Exper-

iments validate our approach on three image classification

benchmarks. Notably, on ILSVRC-2012, our LFPC reduces

more than 60% FLOPs on ResNet-50 with only 0.83% top-5

accuracy loss.

1. Introduction

Convolutional neural networks have achieved significant

advancement in various computer vision research applica-

tions [43, 15, 47]. However, most of these manually de-

signed architectures, e.g., VGG [43], ResNet [15], usually

come with the enormous model size and heavy computa-

tion cost. It is hard to deploy these models in scenarios de-
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Figure 1. (a) Previous filter pruning methods manually select a

criterion and apply it to all layers; (b) our pruning method learns

appropriate criteria for different layers based on the filter distribu-

tion. In the blue dashed box, the solid boxes of different colors de-

note different pruning criteria. The yellow boxes without shadow

correspond to unpruned layers of the network, while the ones with

shadow are the layers pruned by a selected pruning criterion.

manding a real-time response. Recently, studies on model

compression and acceleration are emerging. Due to its effi-

cacy, the pruning strategy attracts attention in previous stud-

ies [14, 27, 20].

Recent developments on pruning can be divided into two

categories, i.e., weight pruning [14], and filter pruning [27].

Filter pruning is preferred compared to weight pruning be-

cause filter pruning could make the pruned model more

structural and achieve practical acceleration [20]. The exist-

ing filter pruning methods follow a three-stage pipeline. (1)

Training: training a large model on the target dataset. (2)

Pruning: based on a particular criterion, unimportant fil-

ters from the pre-trained model are pruned. (3) Fine-tuning

(retraining): the pruned model is retrained to recover the

original performance. During the three stages, select an ap-

propriate pruning criterion is the key ingredient.

However, the previous works have a few drawbacks and

might not be the best choice in real scenarios. First, previ-

12009



ous works manually specify a pruning criterion and utilize

the same pruning criterion for different layers. As shown

in [52], different layers have different filter distributions and

various functions. The lower layers tend to extract coarse

level features, such as lines, dots, and curves, while the

higher layers tend to extract fine level features, such as com-

mon objects and shapes. In this situation, fixing one pruning

criterion for all the functional layers may not be suitable.

Second, prevailing methods prune the network in a greedy

layer-by-layer manner, i.e., the pruning process at different

layers is independent of each other. Considering that dur-

ing training and inference, the filters of all the layers work

collaboratively to make a final prediction, it is natural to

suggest to conduct pruning in a collaborative, not an inde-

pendent, manner. In other words, it is preferred that the filter

importance of all layers could be evaluated concurrently.

We propose Learning Filter Pruning Criteria (LFPC) to

solve the mentioned problems. The core component of

LFPC is a Differentiable Criteria Sampler (DCS), which

aims to sample different criteria for different layers. This

sampler, since it is differentiable, can be updated efficiently

to find the appropriate criteria. First, DCS initializes a learn-

able criteria probability for all layers. For every layer, DCS

conducts criteria forward to get the criteria feature map

based on the filters and criteria probability. The process of

criteria forward is shown in Sec. 3.2.3. After criteria for-

ward for all the layers, we get the criteria loss and utilize

it as a supervision signal. The criteria loss can be back-

propagated to update the criteria probability distribution to

fit the filter distribution of the network better. Different

from previous layer-by-layer pruning works, our LFPC can

consider all the layers and all the pruning criteria simultane-

ously through the criteria loss. After finishing training the

DCS, the optimized criteria servers as the pruning criteria

for the network, as shown in Fig. 1. After pruning, we fine-

tune the pruned model once to get an efficient and accurate

model.

Contributions. Contributions are summarized as follows:

(1) We propose an effective learning framework, Learning

Filter Pruning Criteria (LFPC). This framework can learn to

select the most appropriate pruning criteria for each func-

tional layer. Besides, the proposed Differentiable Criteria

Sampler (DCS) can be trained end-to-end and consider all

the layers concurrently during pruning. To the best of our

knowledge, this is the first work in this research direction.

(2) The experiment on three benchmarks demonstrates the

effectiveness of our LFPC. Notably, it accelerates ResNet-

110 by two times, with even 0.31% relative accuracy im-

provement on CIFAR-10. Additionally, we reduce more

than 60% FLOPs on ResNet-50 with only 0.83% top-5 ac-

curacy loss.

2. Related Work

Previous work on pruning can be categorized into weight

pruning and filter pruning. Weight pruning [14, 13, 12, 48,

2, 56, 6] focuses on pruning fine-grained weight of filters,

so that leading to unstructured sparsity in models. In con-

trast, filter pruning [27] could achieve the structured spar-

sity, so the pruned model could take full advantage of high-

efficiency Basic Linear Algebra Subprograms (BLAS) li-

braries to achieve better acceleration.

Considering how to evaluate the filter importance, we

can roughly divide the filter pruning methods into two cate-

gories, i.e., weight-based criteria, and activation-based cri-

teria. Furthermore, the pruning algorithms could also be

roughly grouped by the frequency of pruning, i.e., greedy

pruning, and one-shot pruning. We illustrate the categoriza-

tion in Tab. 1.

Algorithms
Criteria
W | A

Frequency

O | G

PFEC [27], SFP [18], FPGM [20] W O

RSA [51], PRE [39] W G

SLIM [32], PFA [45], NISP [54],

CCP [41], GAL [30]
A O

CP [22], SLIM [32], ThiNet [36],

PRE [39], DCP [57], LPF [23],

AOFP [5], GATE [53]

A G

Table 1. Different categories of filter pruning algorithms. “W”

and “A” denote the weight-based and activation-based criteria. “O”

and “G” indicate the one-shot and greedy pruning.

Weight-based Criteria. Some methods [27, 18, 51, 20, 17,

21, 50] utilize the weights of the filters to determine the

importance of the filters. [27] prunes the filters with small

ℓ1-norm. [18] utilizes ℓ2-norm criterion to select filters and

prune those selected filters softly. [51] introduces sparsity

on the scaling parameters of batch normalization (BN) lay-

ers to prune the network. [20] claims that the filters near the

geometric median should be pruned. All the works utilize

the same pruning criteria for different layers and do not take

into account that different layers have various functions and

different filter distributions.

Activation-based Criteria. Some works [32, 36, 22, 39,

10, 45, 54, 57, 23, 19, 30, 29, 38, 24, 41] utilize the train-

ing data and filter activations to determine the pruned fil-

ters. [45] adopts the Principal Component Analysis (PCA)

method to specify which part of the network should be pre-

served. [36] proposes to use the information from the next

layer to guide the filter selection. [10] minimizes the recon-

struction error of training set sample activations and applies

Singular Value Decomposition (SVD) to obtain a decom-

position of filters. [49] explores the linear relationship in

different feature maps to eliminate the redundancy in con-
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volutional filters.

Greedy and One-shot Pruning. Greedy pruning [53, 5],

or oracle pruning, means the pruning and retraining should

be operated for multiple times. Although greedy pruning

is beneficial for accuracy, it is time-consuming and requires

a large number of computation resources. In contrast, one-

shot pruning [20, 27] prunes the network once and retrained

once to recover the accuracy. It is more efficient than the

greedy pruning, but it requires careful pruning criteria se-

lection. We focus on one-shot pruning in this paper.

Other Pruning and Searching Methods. Some works uti-

lize reinforcement learning [19, 23] or meta-learning [33]

for pruning. In contrast, we focus on learning the proper

pruning criteria for different layers via the differential sam-

pler. [4] proposes centripetal SGD to make several filters

to converge into a single point. [54] is a global prun-

ing method, but the importance of pruned neurons is not

propagated. The idea of our learning criteria shares some

similarities with the Neural Architecture Search (NAS)

works [58, 31] and Autoaugment [3], the difference is that

our search space is the pruning criteria instead of network

architectures or augmentation policies.

3. Methodology

3.1. Preliminaries

We assume that a neural network has L layers, and we

represent the weight for lth convolutional layers as W(l) ∈

R
K×K×C

(l)
I

×C
(l)
O , where K is the kernel size , C

(l)
I and C

(l)
O

is the number of input and output channels, respectively. In

this way, W
(l)
i ∈ R

K×K×C
(l)
I represents the ith filter of lth

convolutional layer. We denote the I and O as the input and

output feature maps, and I ∈ C
(l)
I ×H

(l)
I ×W

(l)
I and O ∈

C
(l)
O ×H

(l)
O ×W

(l)
O , where H

()
∗ and W

()
∗ is the height and

width of the feature map, respectively. The convolutional
operation of the ith layer can be written as:

Oi = W
(l)
i ∗ I for 1 ≤ i ≤ C

(l)
O , (1)

Assume the filter set F consists all the filters in the net-

work: F =
{

W
(l)
i , i ∈ [1, C

(l)
O ], l ∈ [1, L]

}

. We divide

F into two disjoint subsets: the kept filter set K and re-

moved filter setR, and we have:

K ∪R = F , K ∩R = ∅. (2)

Now our target becomes clear. Filter pruning aims to

minimize the loss function value under sparsity constraints

on filters. Given a dataset D = {(xn,yn)}
N
n=1 where xn

denotes the nth input and yn is the corresponding output,

the constrained optimization problem can be formulated as:

min
K

L(K;D) = min
K

1

N

N
∑

n=1

L(K; (xn,yn))

s.t.
C(K)

C(F )
≤ r

(3)
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The pruned filter
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Normal Forward
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& Update
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Figure 2. Criteria forward and backward in the network. Grey

boxes are the normal filters. The probability distribution of cri-

teria for three layers are initialized, as shown in the big orange

shadow. After pruning with four criteria, we obtain four “pruned

versions” for every layer, which are denoted as boxes in purple,

green, orange, and blue color. These filters are utilized to conduct

criteria forward. Then we get the criteria loss on the validation

set to update the “criteria distribution”.

where L(·) is a standard loss function (e.g., cross-entropy

loss), C(·) is the computation cost of the network built from

the filter set, and r is the ratio of the computation cost of be-

tween pruned network and the original unpruned network.

3.2. Learning Filter Pruning Criteria

In this section, we illustrate our proposed LFPC, which

can automatically and adaptively choose an appropriate cri-

terion for each layer based on their respective filter distribu-

tion. The overall learning process is shown in Fig. 2.

3.2.1 Pruning Criteria

For simplicity, we introduce the pruning criteria based on

lth layer. The filters in lth layer are denoted as a filter set

F (l) =
{

W
(l)
i , i ∈ [1, C

(l)
O ]

}

. In lth layer, a pruning crite-

rion, denoted as Crit(l)(·), is utilized to get the importance

scores for the filters. Then we have

score(l) = Crit(l)(F (l)) (4)

where score(l) ∈ R
C

(l)
O is the importance score vec-

tor of the filters in lth layer. For example, ℓ1-norm

criteria [27] could be formulated as Crit(l)(F (l)) =
{

Crit(l)(W
(l)
i ) = ‖W

(l)
i ‖1 for i ∈ [1, C

(l)
O ]

}

.

Then filter pruning is conducted based on score(l):

keepid(l) = Topk(score(l), n
(l))

K(l) = Prune(F (l), keepid(l)),
(5)
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Figure 3. Criteria forward within a layer. Boxes of different colors indicate the different pruning criteria. First, we evaluate the importance

of the filter based on different criteria. Second, we prune the filter with small importance scores and get four versions of pruned layers with

various probabilities. After that, the output feature map is the aligned weighted sum of four feature maps of the pruned layers.

where n(l) is the number of filters to be kept, and Topk(·)
returns the indexes of the k most important filter based

on their importance scores. The indexes are denoted as

keepid(l). Given keepid(l), Prune(·) keeps the critical fil-

ters with the indexes specified in keepid(l), and prunes the

other filters. The filter set after pruning is denoted as K(l).

3.2.2 Criteria Space Complexity

If we want to keep n(l) filters in lth layer, which has to-

tally C
(l)
O filters, then the number of selection could be

(

C
(l)
O

n(l)

)

=
C

(l)
O

!

n(l)! (C
(l)
O

−n(l))!
, where

()

denotes the com-

bination [1]. For those frequently used CNN architectures,

the number of selections might be surprisingly big. For ex-

ample, pruning 10 filters from a 64-filter-layer has

(

64

10

)

=

151, 473, 214, 816 selections. This number would increase

dramatically if the more layers are considered. Therefore, it

is impossible to learn the pruning criteria from scratch. For-

tunately, with the help of the proposed criteria of previous

works [27, 20], we could reduce the criteria space complex-

ity from
(C

(l)
O

n(l)

)

to S, which is the number of criteria that we

adopted.

3.2.3 Differentiable Criteria Sampler

Assuming there are S candidate criteria in the criteria space,

we could use α(l) ∈ R
S to indicate the distribution of the

possible criteria for lth layer. The probability of choosing

the ith criterion can be formulated as:

pi =
exp

(

α
(l)
i

)

∑S

j=1 exp
(

α
(l)
j

) where 1 ≤ i ≤ S (6)

However, since Eq. 6 needs to sample from a discrete

probability distribution, we cannot back-propagate gradi-

ents through pi to α
(l)
i . To allow back-propagation, inspired

from [9], we apply Gumbel-Softmax [25, 37] to reformulate

Eq. 6 as Eq. 7:

Algorithm 1: Algorithm Description of LFPC

Input : training data X, validation data Y ;

the pre-trained model with parameters

W = {W(l), 1 ≤ l ≤ L};
S candidate criteria and criteria parameters α ;

expected ratio of computational cost r ;

Output: The compact model and its parameters W∗

1 for epoch← 1 to epochmax do

2 for l← 1 to L do

3 Sample criteria based on Eq. 7 ;

4 Calculate criteria feature with Eq. 9 and r;

5 end

6 Update α based on Y using Eq. 11 ;

7 end

8 Get final criteria set T and conduct pruning ;

9 Re-training pruned model with X and obtain W∗.

p̂i =
exp ((log (pi) + oi) /τ)

∑S

j=1 exp ((log (pj) + oj) /τ)

s.t. oi = − log(− log(u)) & u ∼ U(0, 1)

(7)

where U(0, 1) is the uniform distribution between 0 and

1, u is a sample from the distributio U(0, 1), and τ is the

softmax temperature. We denote p̂ = [p̂1, . . . , p̂j , . . . ] as

the Gumbel-softmax distribution. Change the parameter τ

would lead to different p̂. When τ → ∞, p̂ becomes a uni-

form distribution. When τ → 0, samples from p̂ become

one-shot, and they are identical to the samples from the cat-

egorical distribution [25].

Criteria Forward. The illustration of criteria forward

for lth layer is shown in Fig 3. For simplicity, we rewrite

the Eq. 4 and Eq. 5 as K(l) = g(F (l),Crit(l), n(l)). For

lth layer, it has S sampled “pruned version” which can be

formulated as:

K(l)
s = g(F (l),Crit(l)s , n

(l)) for s ∈ [1, S] (8)

where Crit(l)s denotes the process of utilizing sth pruning

criterion to get the importance scores for the filters in lth

layer, and K
(l)
s is the kept filter set under sth criterion. To
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comprehensively consider the contribution of every crite-

rion during training, the output feature map is defined as

the Aligned Weighted Sum (AWS) of the feature maps from

different K
(l)
s , which can be formulated as:

O
AWS =

S
∑

s=1

Align(p̂s × Ôs),

Align(Ôs,i) = Ô
′

s,keepid
(l)
s [i]

i ∈ [1, n
(l)].

(9)

where OAWS is the criteria feature map of the layer, p̂s is

the probability for sth criteria, × denotes the scalar multi-

plication, Ôs is the output feature map of K
(l)
s , and Ô

′

s is

the aligned feature. For the second formulation, keepid
(l)
s [i]

is the ith element of the keepid (Eq. 5) under sth criteria in

lth layer. To explain the Align(·) function, we take the third

figure of Fig. 3 for example. The first channel of purple

network could only be added with the first channel of or-

ange network, not the green and blue one. This operation

can avoid the interference of the information from different

channels. Further we have:

Ôs =
[

Ôs,1, Ôs,2, ..., Ôs,n(l)

]

,

Ôs,i = K
(l)
s,i ∗ I, s ∈ [1, S], i ∈ [1, n

(l)],
(10)

where Ôs,i is the ith output feature ofK
(l)
s , and ∗ is the con-

volution operation. After criteria forward for all the layers,

we could get the criteria loss, as shown in Fig. 2.

Training Objectives. For a L-layer network, the crite-

ria parameter α =
{

α(1), α(2), ..., α(L)
}

. We aim to find a

proper α to give us guidance about which criterion is suit-

able for different layers. Specifically, α is found by mini-

mizing the validation loss Lval after trained the criteria net-

work θα by minimizing the training loss Ltrain:

min
α
Lval (θ

∗
α, α)

s.t. θ∗α = argmin
θα
Ltrain(θα, α),

(11)

where θ∗α is the optimized criteria network under the opti-

mized criteria set α. The training loss is the cross-entropy

classification loss of the networks. To further consider the

computation cost of the pruned network, the penalty for the

computation cost is also included in the validation loss:

Lval = Lcrit + λcompLcomp, (12)

where Lcrit is the standard classification loss of the criteria

network, namely the criteria loss, and Lcomp is the com-

putation loss of the pruned network. λcomp is a balance of

these two losses, whose details can be found in the supple-

mentary material. In this way, we could get the optimized

criteria parameters α for the network under different com-

putation constraints.

Criteria Backward. We backward Lval in Eq. 12 to α

to update these parameters collaboratively at the same time.

The illustration of this process is shown in Fig. 2.

After DCS Training. By choosing the criterion with the

maximum probability, we get the final criteria set T for all

the layers. Then we conduct a conventional pruning oper-

ation based on the optimized criteria T to get the pruned

network. The pruned network is then retrained to get the

final accurate pruned model. The whole process is shown

in the Alg. 1.

4. Experiments

4.1. Experimental Setting

Datasets. In this section, we validate the effectiveness

of our acceleration method on three benchmark datasets,

CIFAR-10, CIFAR-100 [26], and ILSVRC-2012 [42]. The

CIFAR-10 dataset contains 50, 000 training images and

10, 000 testing images, in total 60, 000 32×32 color images

in 10 different classes. CIFAR-100 has 100 classes, and

the number of images is the same as CIFAR-10. ILSVRC-

2012 [42] contains 1.28 million training images and 50k

validation images of 1, 000 classes.

Architecture Setting. As ResNet has the shortcut struc-

ture, existing works [7, 36, 22] claim that ResNet has less

redundancy than VGGNet [43] and accelerating ResNet is

more difficult than accelerating VGGNet. Therefore, we

follow [8] to focus on pruning the challenging ResNet.

Normal Training Setting. For ResNet on CIFAR-

10 and CIFAR-100, we utilize the same training schedule

as [55]. In the CIFAR experiments, we run each setting

three times and report the “mean ± std”. In the ILSVRC-

2012 experiments, we use the default parameter settings,

which are the same as [15, 16], and the same data argumen-

tation strategies as the official PyTorch [40] examples.

DCS training Setting. The weight-based criteria are se-

lected as our candidate criteria for their efficiency. Specif-

ically, ℓ1-norm [27], ℓ2-norm [18] and geometric me-

dian based [20] criteria. The criteria could be formu-

lated as Crit(l)(W
(l)
i ) = ‖W

(l)
i ‖p and Crit(l)(W

(l)
i ) =

2

√

∑C
(l)
O

j=1

∣

∣

∣
W

(l)
i −W

(l)
j

∣

∣

∣

2

for i ∈ [1, C
(l)
O ]. Note that our

framework is able to extend to more criteria.

We set desired FLOPs according to compared pruning

algorithms and set λcomp of Eq. 12 as 2. We randomly split

half of the training set as the validation set for Eq. 11. We

optimize the criteria parameters via Adam, and we use the

constant learning rate of 0.001 and a weight decay of 0.001.

On CIFAR, we train the DCS for 600 epochs with a batch

size of 256. On ILSVRC-2012, we train the DCS for 35

epochs with a batch size of 256. The τ in Eq. 7 is linearly

decayed from 5 to 0.1. During training DCS, we fix the

pre-trained weights [8] to reduce overfitting.

Pruning Setting. After training DCS, we prune the net-

work with the optimized criteria and fine-tune the network

with the full training set. We analyze the difference be-
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Depth Method Init pretrain Baseline acc. (%) Pruned acc. (%) Acc. ↓ (%) FLOPs FLOPs ↓(%)

32

MIL [7] ✗ 92.33 90.74 1.59 4.70E7 31.2

SFP [18] ✗ 92.63 (±0.70) 92.08 (±0.08) 0.55 4.03E7 41.5

FPGM [20] ✗ 92.63 (±0.70) 92.31 (±0.30) 0.32 4.03E7 41.5

Ours ✗ 92.63 (±0.70) 92.12 (±0.32) 0.51 3.27E7 52.6

56

PFEC [27] ✗ 93.04 91.31 1.75 9.09E7 27.6

Ours ✗ 93.59 (±0.58) 93.56 (±0.29) 0.03 6.64E7 47.1

CP [22] ✗ 92.80 90.90 1.90 – 50.0

SFP [18] ✗ 93.59 (±0.58) 92.26 (±0.31) 1.33 5.94E7 52.6

FPGM [20] ✗ 93.59 (±0.58) 92.89 (±0.32) 0.70 5.94E7 52.6

Ours ✗ 93.59 (±0.58) 93.34 (±0.08) 0.25 5.91E7 52.9

PFEC [27] ✓ 93.04 93.06 -0.02 9.09E7 27.6

NISP [54] ✓ – – 0.03 – 42.6

Ours ✓ 93.59 (±0.58) 93.72 (±0.29) -0.13 6.64E7 47.1

CP [22] ✓ 92.80 91.80 1.00 – 50.0

AMC [19] ✓ 92.80 91.90 0.90 – 50.0

FPGM [20] ✓ 93.59 (±0.58) 93.26 (±0.03) 0.33 5.94E7 52.6

Ours ✓ 93.59 (±0.58) 93.24 (±0.17) 0.35 5.91E7 52.9

110

PFEC [27] ✗ 93.53 92.94 0.61 1.55E8 38.6

MIL [7] ✗ 93.63 93.44 0.19 - 34.2

SFP [18] ✗ 93.68 (±0.32) 93.38 (±0.30) 0.30 1.50E8 40.8

Rethink [34] ✗ 93.77 (±0.23) 93.70 (±0.16) 0.07 1.50E8 40.8

FPGM [20] ✗ 93.68 (±0.32) 93.73 (±0.23) -0.05 1.21E8 52.3

Ours ✗ 93.68 (±0.32) 93.79 (±0.38) -0.11 1.01E8 60.3

PFEC [27] ✓ 93.53 93.30 0.20 1.55E8 38.6

NISP [54] ✓ – – 0.18 – 43.8

GAL [30] ✓ 93.26 92.74 0.81 – 48.5

FPGM [20] ✓ 93.68 (±0.32) 93.74 (±0.10) -0.16 1.21E8 52.3

Ours ✓ 93.68 (±0.32) 93.07 (±0.15) 0.61 1.01E8 60.3

Table 2. Comparison of the pruned ResNet on CIFAR-10. In “Init pretrain” column, “✓” and “✗” indicate whether to use the pre-trained

model as initialization or not, respectively. The “Acc. ↓” is the accuracy drop between pruned model and the baseline model, the smaller,

the better. A negative value in “Acc. ↓” indicates an improved model accuracy.

tween pruning a scratch model and the pre-trained model.

For pruning the scratch model, we utilize the regular train-

ing schedule without additional fine-tuning. For pruning the

pre-trained model, we reduce the learning rate to one-tenth

of the original learning rate. To conduct a fair comparison,

we use the same baseline model as [20] for pruning. During

retraining, we use the cosine scheduler [35, 8] for a stable

result. The pruning rate of every layer is sampled in the

same way as DCS1, so we could search the ratio automati-

cally and adaptively [8].

We compare our method with existing state-of-the-art ac-

celeration algorithms, e.g., MIL [7], PFEC [27], CP [22],

ThiNet [36], SFP [18], NISP [54], FPGM [20], LFC [44],

ELR [49], GAL [30], IMP [38], DDS [24]. Experiments

show that our LFPC achieves a comparable performance

with those works. Our experiments are based on the Py-

Torch [40] framework. No significant performance differ-

1See supplementary material for details.

ence has been observed with the PaddlePaddle framework.

4.2. ResNet on CIFAR10

For the CIFAR-10 dataset, we test our LFPC on ResNet

with depth 32, 56, and 110. As shown in Tab. 2, the ex-

periment results validate the effectiveness of our method.

For example, MIL [7] accelerates the random initialized

ResNet-32 by 31.2% speedup ratio with 1.59% accuracy

drop, but our LFPC achieves 52.6% speedup ratio with only

0.51% accuracy drop. When we achieve similar accuracy

with FPGM [20] on ResNet-32, our acceleration ratio is

much larger than FPGM [20]. Comparing to SFP [18],

when we prune similar FLOPs of the random initialized

ResNet-56, our LFPC has 1.07% accuracy improvement

over SFP [18]. For pruning the pre-trained ResNet-56, our

method achieves a higher acceleration ratio than CP [22]

with a 0.65% accuracy increase over CP [22]. Comparing

to PFEC [27], our method accelerates the random initialized

ResNet-110 by 60.3% speedup ratio with even 0.11% accu-
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Depth Method
Init

Pretrain

Baseline
top-1

acc.(%)

Pruned
top-1

acc.(%)

Baseline
top-5

acc.(%)

Pruned
top-5

acc.(%)

Top-1

acc. ↓(%)

Top-5

acc. ↓(%)

FLOPs↓
(%)

50

SFP [18] ✗ 76.15 74.61 92.87 92.06 1.54 0.81 41.8

FPGM [20] ✗ 76.15 74.13 92.87 91.94 2.02 0.93 53.5

Ours ✗ 76.15 74.18 92.87 91.92 1.97 0.95 60.8

DDS [24] ✓ 76.12 74.18 92.86 91.91 1.94 0.95 31.1

ThiNet [36] ✓ 72.88 72.04 91.14 90.67 0.84 0.47 36.7

SFP [18] ✓ 76.15 62.14 92.87 84.60 14.01 8.27 41.8

NISP [54] ✓ – – – – 0.89 – 44.0

IMP [38] ✓ 76.18 74.50 1.68 45.0

CP [22] ✓ – – 92.20 90.80 – 1.40 50.0

LFC [44] ✓ 75.30 73.40 92.20 91.40 1.90 0.80 50.0

ELR [49] ✓ – – 92.20 91.20 – 1.00 50.0

FPGM [20] ✓ 76.15 74.83 92.87 92.32 1.32 0.55 53.5

Ours ✓ 76.15 74.46 92.87 92.04 1.69 0.83 60.8

Table 3. Comparison of the pruned ResNet on ImageNet. “Init Pretrain” and ”acc. ↓” have the same meaning with Table 2.

racy improvement, while PFEC [27] achieves 21.7% less

acceleration ratio with 0.61% accuracy drop.

The reason for our superior result is that our proposed

method adaptively selects suitable criteria for each func-

tional layer based on their respective filter distribution. On

the contrary, none of previous works [18, 22, 27] did this.

We notice that pruning from a scratch model sometimes

achieves a slightly better performance than pruning a pre-

trained model, which is consistent with [34]. Note that we

achieve a higher acceleration ratio than [34] on ResNet-110

with similar accuracy. We conjecture that the optimized

criteria might change the random initialization to “biased”

random initialization, which is beneficial to the final perfor-

mance. This result is consistent with the conclusion of [11]

that a proper initialization is critical for the network.

Criteria Visualization. The learned pruning criteria for

ResNet-56 on CIFAR-10 is shown in Figure 4. The blue, or-

ange and green denote pruning this layer with ℓ1-norm, ℓ2-

norm and geometric median, respectively. The pruned net-

work achieve 93.54(±0.14)% accuracy with pruning 53.0%

FLOPs. In this figure, we find that the GM-based criterion

is adopted more at higher layers, while the ℓp-norm-based

criteria are preferred at lower layers. An explanation is that

filters of higher layers tend to extract semantic informa-

tion, and their activations are semantically related to each

other [46]. Therefore, our LFPC chooses the relation-based

criteria instead of magnitude-based criteria when pruning

higher layers. 2

4.3. ResNet on CIFAR100

The results of pruning ResNet-56 on CIFAR-100 is

shown in Tab. 4. We only list a few methods as other

2GM is a relation-based criterion, while ℓp-norm is a magnitude-based

criterion. See supplementary material for different filter distribution.
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Figure 4. Visualization of the learned criteria and kept filters for

ResNet-56 on CIFAR-10. The grey strip indicates the layers be-

fore pruning. The blue, orange and green color denote ℓ1-norm,

ℓ2-norm and geometric median criteria, respectively. For exam-

ple, the bottom green strip means that for all the 64 filters in 55th
layer, GM criterion is automatically selected to prune half of those

filters, base on the filter distribution on that layer.

methods have no experiment results on CIFAR-100. When

achieving a similar ratio of acceleration, our LFPC could

obtain much higher accuracies than the candidate algo-

rithms [18] and [20]. This result again validates the effec-

tiveness of our method.

Depth Method
Pruned

Acc.(%)
Acc.
↓ (%) FLOPs

FLOPs
↓ (%)

56

MIL [7] 68.37 2.96 7.63E7 39.3%

SFP [18] 68.79 2.61 5.94E7 52.6%

FPGM [20] 69.66 1.75 5.94E7 52.6%

Ours 70.83 0.58 6.08E7 51.6%

Table 4. Comparison of the pruned ResNet-56 on CIFAR-100.
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Figure 5. Visualization of the conventional and adversarial criteria

for ResNet-56 on CIFAR-10. The grey strip indicates the layers

before pruning. Different blue and green colors represent different

pruning criteria.

4.4. ResNet on ILSVRC2012

For the ILSVRC-2012 dataset, we test our method on

ResNet-50. Same as [20], we do not prune the projection

shortcuts. Tab. 3 shows that our LPFC outperforms exist-

ing methods on ILSVRC-2012. For the random initialized

ResNet-50, when our LFPC prunes 7.3% more FLOPs than

FPGM [20], the accuracy is even higher than FPGM [20].

For pruning the pre-trained ResNet-50, we achieve 92.04%

top-5 accuracy when we prune 60.8% FLOPs. While the

previous methods (CP [22], LFC [44], ELR [49]) have

lower top-5 accuracy when pruning less FLOPs (50%).

ThiNet [36] also has a lower accuracy than our LFPC when

its acceleration ratio is lower than ours. The superior perfor-

mance comes from that our method considers the different

filter distribution of different layers.

4.5. More Explorations

Adversarial Criteria. To further validate the effete-

ness of our LFPC, we add the adversarial criteria, which

is the adversarial version of the current pruning criteria, to

our system. For example, conventional norm-based crite-

ria keep the filters with large ℓp-norm. In contrast, ad-

versarial norm-based criteria keep the filters with small

ℓp-norm, which could be formulate as Crit(l)(W
(l)
i ) =

1

‖W
(l)
i

‖p

for i ∈ [1, C
(l)
O ].

The learned criteria for ResNet-56 on CIFAR-10 are

shown in Fig. 5. In this experiment, we utilize four criteria,

including ℓ1-norm, ℓ2-norm, adversarial ℓ1-norm, adversar-

ial ℓ2-norm. As shown in Tab. 5, for all the 55 criteria for

ResNet-56, the adversarial criteria only account for a small

proportion (16.4%). This means that our LFPC successfully

selects conventional criteria and circumvents the adversarial

criteria, which would be another evidence of the effective-

ness of our LFPC.

Criteria During Training The learned criteria during

Setting
Adversarial
criteria (%)

Conventional
criteria(%)

FLOPs
↓(%)

Accuracy

(%)

w Adv 16.4% 83.6% 58.0 93.09 (±0.09)

w/o Adv 0 100% 53.0 93.45 (±0.13)

Table 5. Analysis of adversarial criteria. “w Adv” and “w/o Adv”

denote containing the adversarial criteria or not, respectively.
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Figure 6. The learned criteria during training the criteria sampler.

The L1, L2, and GM denote conventional ℓ1-norm, ℓ2-norm, and

geometric median criteria, respectively.

training DCS is shown in Fig. 6. A small strip of a specific

color means the layer of the network utilizes a correspond-

ing pruning criterion at the current epoch. We find that the

sampler gradually converges to a regular pattern of criteria,

which provides stable guidance for the next pruning step.

Retraining Scheduler. We compare the cosine sched-

uler [35] and step scheduler [20] during retraining. When

pruning 47.6% FLOPs of the ResNet-56, cosine scheduler

can achieve 93.56(±0.15)% accuracy, while step scheduler

can obtain 93.54(±0.16)% accuracy. It shows that LFPC

can achieve a slightly stable result with a cosine scheduler.

5. Conclusion and Future Work

In this paper, we propose a new learning filter prun-

ing criteria (LFPC) framework for deep CNNs acceleration.

Different from the existing methods, LFPC explicitly con-

siders the difference between layers and adaptively selects

a set of suitable criteria for different layers. To learn the

criteria effectively, we utilize Gumbel-softmax to make the

criteria sampler process differentiable. LFPC achieves com-

parable performance with state-of-the-art methods in sev-

eral benchmarks. In the future, we could consider utilizing

more kinds of criteria into LFPC and combine it with other

acceleration algorithms, e.g., matrix decomposition [28], to

improve the performance further. Moreover, it is meaning-

ful to adopt the proposed method to recent compact Con-

vNets such as MobileNets.
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