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Abstract

In this work, we present a novel data-driven method for

robust 6DoF object pose estimation from a single RGBD im-

age. Unlike previous methods that directly regressing pose

parameters, we tackle this challenging task with a keypoint-

based approach. Specifically, we propose a deep Hough

voting network to detect 3D keypoints of objects and then

estimate the 6D pose parameters within a least-squares fit-

ting manner. Our method is a natural extension of 2D-

keypoint approaches that successfully work on RGB based

6DoF estimation. It allows us to fully utilize the geomet-

ric constraint of rigid objects with the extra depth infor-

mation and is easy for a network to learn and optimize.

Extensive experiments were conducted to demonstrate the

effectiveness of 3D-keypoint detection in the 6D pose esti-

mation task. Experimental results also show our method

outperforms the state-of-the-art methods by large margins

on several benchmarks. Code and video are available at

https://github.com/ethnhe/PVN3D.git.

1. INTRODUCTION

In this paper, we study the problem of 6DoF pose esti-

mation, i.e. recognize the 3D location and orientation of an

object in a canonical frame. It is an important component in

many real-world applications, such as robotic grasping and

manipulation [6, 48, 55], autonomous driving [11, 5, 53],

augmented reality [31] and so on.

6DoF estimation has been proven a quite challenging

problem due to variations of lighting, sensor noise, occlu-

sion of scenes and truncation of objects. Traditional meth-

ods like [19, 30] used hand-crafted features to extract the

correspondence between images and object mesh models.

Such empirical human-designed features would suffer from

limited performance with changing illumination conditions

This work is supported by The National Key Research and Develop-

ment Program of China (2018YFC0831700).

Figure 1. Pipeline of PVN3D: With an input RGBD image (a),

we use a deep Hough voting network to predict the per-point trans-

lation offset to the selected keypoint (b). Each point on the same

object votes for the selected keypoint and the center of the clus-

ter is selected as a predicted keypoint (c). A least-squares fitting

method is then applied to estimate 6D pose parameters (d)-(e). The

model transformed by estimated pose parameters is shown in Fig-

ure (f).

and scenes with heavy occlusion. More recently, with the

explosive growth of machine learning and deep learning

techniques, Deep Neural Network (DNN) based methods

have been introduced into this task and reveal promising

improvements. [50, 52] proposed to regress rotation and

translation of objects directly with DNNs. However, these

methods usually had poor generalization due to the non-

linearity of the rotation space explained by [37]. Instead,

recent works utilized DNNs to detect 2D keypoints of an

object, and computed 6D pose parameters with Perspective-

n-Point (PnP) algorithms [37, 36, 41, 47]. Although these

two-stage approaches performed more stable, most of them

were built on top of the 2D projection. Errors that are small

in projection can be large in real 3D space. Also, differ-

ent keypoints in 3D space may be overlapped after 2D pro-

jection, making them hard to be distinguished. Moreover,

geometric constraint information of rigid objects would be
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partially lost due to projection.

On the other hand, with the development of inexpensive

RGBD sensors, more and more RGBD datasets are avail-

able. The extra depth information allows 2D algorithms to

be extend into 3D space with better performance, like Point-

Fusion [53], Frustum pointnets[39] and VoteNet[38]. To-

wards this end, we extend 2D-keypoint-based approaches

to 3D keypoint to fully utilize geometric constraint infor-

mation of rigid objects and significantly improved the ac-

curacy of 6DoF estimation. More specifically, we develop a

deep 3D keypoints Hough voting neural network to learn the

point-wise 3D offset and vote for 3D keypoints, as shown

in Figure 1. Our key observation is a simple geometric

property that positional relationship between two points of

a rigid object in 3D space is fixed. Hence, given a visible

point on the object surface, its coordinate and orientation

can be obtained from depth images and its translation offset

to selected keypoint is also fixed and learnable. Meanwhile,

learning point-wise Euclidean offset is straightforward for

network and easier to optimize.

To handle scenes with multiple objects, we also intro-

duce an instance semantic segmentation module into the

network and jointly optimized with keypoint voting. We

find that jointly training these tasks boosts the performance

of each other. Specifically, semantic information improves

translation offset learning by identifying which part a point

belongs to and the size information contained in translation

offsets helps the model to distinguish objects with similar

appearance but different size.

We further conduct experiments on YCB-Video and

LineMOD datasets to evaluate our method. Experimental

results show that our approach outperforms current state-

of-the-art methods by a significant margin.

To summarize, the main contributions of this work are as

follows:

• A novel deep 3D keypoints Hough voting network with

instance semantic segmentation for 6DoF Pose Esti-

mation of single RGBD image.

• State-of-the-art 6DoF pose estimation performance on

YCB and LineMOD datasets.

• An in-depth analysis of our 3D-keypoint-based

method and comparison with previous approaches,

demonstrating that 3D-keypoint is a key factor to boost

performance for 6DoF pose estimation. We also show

that jointly training 3D-keypoint and semantic seg-

mentation can further improve the performance.

2. Related Work

2.1. Holistic Methods

Holistic methods directly estimate the 3D position and

orientation of objects in a given image. Classical template-

based methods construct rigid templates and scan through

the image to compute the best matched pose [21, 13, 17].

Such templates are not robust to clustered scenes. Recently,

some Deep Neural Network (DNN) based methods are pro-

posed to directly regress the 6D pose of cameras or ob-

jects [52, 50, 14]. However, non-linearity of the rotation

space making the data-driven DNN hard to learn and gener-

alize. To address this problem, some approaches use post-

refinement procedure [26, 50] to refine the pose iteratively,

others discrete the rotation space and simplify it to be a

classification problem [49, 43, 45]. For the latter approach,

post-refinement processes are still required to compensate

for the accuracy sacrificed by the discretization.

2.2. Keypointbased Methods

Current keypoint-based methods first detect the 2D key-

points of an object in the images, then utilize a PnP algo-

rithm to estimate the 6D pose. Classical methods [30, 42, 2]

are able to detect 2D keypoint of objects with rich texture

efficiently. However, they can not handle texture-less ob-

jects. With the development of deep learning techniques,

some neural-network-based 2D keypoints detection meth-

ods are proposed. [41, 47, 20] directly regress the 2D coor-

dinate of the keypoints, while [33, 24, 34] use heatmaps to

locate the 2D keypoints. To better deal with truncated and

occluded scenes, [37] proposes a pixel-wise voting network

to vote for the 2D keypoints location. These 2D keypoint

based methods aim to minimize the 2D projection errors of

objects. However, errors that are small in projection may be

large in the real 3D world. [46] extracts 3D keypoints from

two views of synthetic RGB images to recover 3D poses.

Nevertheless, they only utilize the RGB images, on which

geometric constraint information of rigid objects partly lost

due to projection, and different keypoints in 3D space may

be overlapped and hard to be distinguished after projected

to 2D. The advent of cheap RGBD sensors enables us to do

everything in 3D with captured depth images.

2.3. Dense Correspondence Methods

These approach utilize Hough voting scheme [28, 44, 12]

to vote for final results with per-pixel prediction. They ei-

ther use random forest [3, 32] or CNNs [23, 9, 27, 35, 51]

to extract feature and predict the corresponding 3D object

coordinates for each pixel and then vote for the final pose

results. Such dense 2D-3D correspondence making these

methods robust to occluded scenes, while the output space

is quite large. PVNet [37] uses per-pixel voting for 2D Key-

points to combine the advantages of Dense methods and

keypoint-based methods. We further extend this method to

3D keypoints with extra depth information and fully utilize

geometric constraints of rigid objects.
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Figure 2. Overview of PVN3D. The Feature Extraction module extracts the per-point feature from an RGBD image. They are fed into

module MK, MC and MS to predict the translation offsets to keypoints, center point and semantic labels of each point respectively. A

clustering algorithm is then applied to distinguish different instances with the same semantic label and points on the same instance vote for

their target keypoints. Finally, a least-square fitting algorithm is applied to the predicted keypoints to estimate 6DoF pose parameters.

3. Proposed Method

Given an RGBD image, the task of 6DoF pose estimation

is to estimate the rigid transformation that transforms an ob-

ject from its object world coordinate system to the camera

world coordinate system. Such transformation consists of a

3D rotation R ∈ SO(3) and a translation t ∈ R
3.

3.1. Overview

To tackle this task, we develop a novel approach based

on a deep 3D Hough voting network, as shown in Figure 2.

The proposed method is a two-stage pipeline with 3D key-

point detection followed by a pose parameters fitting mod-

ule. More specifically, taking an RGBD image as input, a

feature extraction module would be used to fuse the appear-

ance feature and geometry information. The learned fea-

ture would be fed into a 3D keypoint detection module MK

which was trained to predict the per-point offsets w.r.t key-

points. Additionally, we include an instance segmentation

module for multiple objects handling where a semantic seg-

mentation module MS predicts the per-point semantic la-

bel, and a center voting module MC predicts the per-point

offsets to object center. With the learned per-point offset,

the clustering algorithm [7] is applied to distinguish differ-

ent instances with the same semantic label and points on

the same instance vote for their target keypoints. Finally,

a least-square fitting algorithm is applied to the predicted

keypoints to estimate 6DoF pose parameters.

3.2. Learning Algorithm

The goal of our learning algorithm is to train a 3D key-

point detection module MK for offset prediction as well

as a semantic segmentation module MS and center voting

module MC for instance-level segmentation. This naturally

makes training our network multi-task learning, which is

achieved by a supervised loss we designed and several train-

ing details we adopt.

3D Keypoints Detection Module. As shown in Figure

2, with the per-point feature extracted by the feature extrac-

tion module, a 3D keypoint detection module MK is used to

detect the 3D keypoints of each object. To be specific, MK

predicts the per-point Euclidean translation offset from visi-

ble points to target keypoints. These visible points, together

with the predicted offsets then vote for the target keypoints.

The voted points are then gathered by clustering algorithms

and centers of clusters are selected as the voted keypoints.

We give a deeper view of MK as follows. Given a set of

visible seed points {pi}
N
i=1

and a set of selected keypoints

{kpj}
M
j=1

belonging to the same object instance I , we de-

note pi = [xi; fi] with xi the 3D coordinate and fi the ex-

tracted feature. We denote kpj = [yj ] with yj the 3D coor-

dinate of the keypoint. MK absorbs feature fi of each seed

point and generates translation offset {of j
i }

M
j=1

for them,

where of
j
i denotes the translation offset from the ith seed

point to the jth keypoint. Then the voted keypoint can be

denoted as vkp
j
i = xi + of

j
i . To supervise the learning of

of
j
i , we apply an L1 loss:

Lkeypoints =
1

N

N∑

i=1

M∑

j=1

||of j
i − of

j∗
i ||I(pi ∈ I) (1)

where of
j∗
i is the ground truth translation offset; M is the

total number of selected target keypoints; N is the total

number of seeds and I is an indicating function equates to 1
only when point pi belongs to instance I , and 0 otherwise.

Instance Semantic Segmentation Module. To handle

scenes with multi objects, previous methods [50, 53, 39]

utilize existing detection or semantic segmentation archi-

tecture to pre-process the image and obtain RoIs (regions
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of interest) containing only single objects. Then build the

pose estimation models with the extracted ROIs as input to

simplify the problem. However, as we have formulated the

pose estimation problem to first detect keypoints of objects

with a translation offsets to keypoints learning module, we

believe that the two tasks can enhance the performance of

each other. On the one hand, the semantic segmentation

module forces the model to extract global and local features

on instance to distinguish different objects, which helps to

locate a point on the object and does good to the keypoint

offset reasoning procedure. On the other hand, size infor-

mation learned for the prediction of offsets to the keypoints

helps distinguish objects with similar appearance but differ-

ent in size. Under such observation, we introduce a point-

wise instance semantic segmentation module MS into the

network and jointly optimized it with module MK.

To be specific, given the per-point extracted feature, the

semantic segmentation module MS predicts the per-point

semantic labels. We supervise this module with Focal Loss

[29]:

Lsemantic =− α(1− qi)
γ log(qi)

where qi = ci · li
(2)

with α the α-balance parameter, γ the focusing parameter,

ci the predicted confidence for the ith point belongs to each

class and li the one-hot representation of ground true class

label.

Meanwhile, the center voting module MC is applied to

vote for centers of different object so as to distinguish differ-

ent instance. We propose such module under the inspiration

of CenterNet [10] but further extend the 2D center point to

3D. Compared to 2D center points, different center points

in 3D won’t suffer from occlusion due to camera projection

in some viewpoints. Since we can regard the center point as

a special keypoint of an object, module MC is similar to the

3D keypoint detection module MK. It takes in the per-point

feature but predicts the Euclidean translation offset ∆xi to

the center of objects it belongs to. The learning of ∆xi is

also supervised by an L1 loss:

Lcenter =
1

N

N∑

i=1

||∆xi −∆x∗
i ||I(pi ∈ I) (3)

where N denotes the total number of seed points on the ob-

ject surface and ∆x∗
i is the ground truth translation offset

from seed pi to the instance center. I is an indication func-

tion indicating whether point pi belongs to that instance.

Multi-task loss. We supervise the learning of module

MK, MS and MC jointly with a multi-tasks loss:

Lmulti-task =λ1Lkeypoints + λ2Lsemantic + λ3Lcenter (4)

where λ1, λ2 and λ3 are the weights for each task. Experi-

mental results shows that jointly training these tasks boosts

the performance of each other.

3.3. Training and Implementation

Network Architecture. The first part in Figure 2 is a

feature extraction module. In this module, a PSPNet [54]

with an ImageNet [8] pretrained ResNet34 [16] is applied

to extract the appearance information in RGB images. A

PointNet++ [40] extracts the geometry information in point

clouds and their normal maps. They are further fused by

a DenseFusion block [50] to obtain the combined feature

for each point. After the process of this module, each point

pi has a feature fi ∈ R
C of C dimension. The following

module MK, MS and MC are composed of shared Multi-

Layer Perceptrons (MLPs) shown in Figure 2. We sample

N = 12288 points (pixels) for each frame of RGBD image

and set λ1 = λ2 = λ3 = 1.0 in Formula 4.

Keypoint Selection. The 3D keypoints are selected

from 3D object models. In 3D object detection algorithms

[39, 53, 38], eight corners of the 3D bounding box are se-

lected. However, These bounding box corners are virtual

points that are far away from points on the object, making

point-based networks difficult to aggregate scene context in

the vicinity of them. The longer distance to the object points

results in larger localization errors, which may do harm to

the compute of 6D pose parameters. Instead, points selected

from the object surface will be quite better. Therefore, we

follow [37] and use the farthest point sampling (FPS) al-

gorithm to select keypoints on the mesh. Specifically, we

initial the selection procedure by adding the center point of

the object model in an empty keypoint set. Then update

it by adding a new point on the mesh that is farthest to all

the selected keypoints repeatedly, until M keypoints are ob-

tained.

Least-Squares Fitting. Given two point sets of an ob-

ject, one from the M detected keypoints {kpj}
M
j=1

in the

camera coordinate system, and another from their corre-

sponding points {kp
′

j}
M
j=1

in the object coordinate system,

the 6D pose estimation module computes the pose parame-

ters (R, t) with a least-squares fitting algorithm [1], which

finds R and t by minimizing the following square loss:

Lleast-squares =

M∑

j=1

||kpj − (R · kp
′

j + t)||2 (5)

where M is the number of selected keypoints of a object.

4. Experiments

4.1. Datasets

We evaluate our method on two benchmark datasets.

YCB-Video Dataset contains 21 YCB [4] objects of

varying shape and texture. 92 RGBD videos of the subset of

objects were captured and annotated with 6D pose and in-

stance semantic mask. The varying lighting conditions, sig-

nificant image noise, and occlusions make this dataset chal-
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Without Iterative Refinement With Iterative Refinement

PoseCNN[52] DF(per-pixel)[50] PVN3D PoseCNN+ICP[52] DF(iterative)[50] PVN3D+ICP

ADDS ADD(S) ADDS ADD(S) ADDS ADD(S) ADDS ADD(S) ADDS ADD(S) ADDS ADD(S)

002 master chef can 83.9 50.2 95.3 70.7 96.0 80.5 95.8 68.1 96.4 73.2 95.2 79.3

003 cracker box 76.9 53.1 92.5 86.9 96.1 94.8 92.7 83.4 95.8 94.1 94.4 91.5

004 sugar box 84.2 68.4 95.1 90.8 97.4 96.3 98.2 97.1 97.6 96.5 97.9 96.9

005 tomato soup can 81.0 66.2 93.8 84.7 96.2 88.5 94.5 81.8 94.5 85.5 95.9 89.0

006 mustard bottle 90.4 81.0 95.8 90.9 97.5 96.2 98.6 98.0 97.3 94.7 98.3 97.9

007 tuna fish can 88.0 70.7 95.7 79.6 96.0 89.3 97.1 83.9 97.1 81.9 96.7 90.7

008 pudding box 79.1 62.7 94.3 89.3 97.1 95.7 97.9 96.6 96.0 93.3 98.2 97.1

009 gelatin box 87.2 75.2 97.2 95.8 97.7 96.1 98.8 98.1 98.0 96.7 98.8 98.3

010 potted meat can 78.5 59.5 89.3 79.6 93.3 88.6 92.7 83.5 90.7 83.6 93.8 87.9

011 banana 86.0 72.3 90.0 76.7 96.6 93.7 97.1 91.9 96.2 83.3 98.2 96.0

019 pitcher base 77.0 53.3 93.6 87.1 97.4 96.5 97.8 96.9 97.5 96.9 97.6 96.9

021 bleach cleanser 71.6 50.3 94.4 87.5 96.0 93.2 96.9 92.5 95.9 89.9 97.2 95.9

024 bowl 69.6 69.6 86.0 86.0 90.2 90.2 81.0 81.0 89.5 89.5 92.8 92.8

025 mug 78.2 58.5 95.3 83.8 97.6 95.4 94.9 81.1 96.7 88.9 97.7 96.0

035 power drill 72.7 55.3 92.1 83.7 96.7 95.1 98.2 97.7 96.0 92.7 97.1 95.7

036 wood block 64.3 64.3 89.5 89.5 90.4 90.4 87.6 87.6 92.8 92.8 91.1 91.1

037 scissors 56.9 35.8 90.1 77.4 96.7 92.7 91.7 78.4 92.0 77.9 95.0 87.2

040 large marker 71.7 58.3 95.1 89.1 96.7 91.8 97.2 85.3 97.6 93.0 98.1 91.6

051 large clamp 50.2 50.2 71.5 71.5 93.6 93.6 75.2 75.2 72.5 72.5 95.6 95.6

052 extra large clamp 44.1 44.1 70.2 70.2 88.4 88.4 64.4 64.4 69.9 69.9 90.5 90.5

061 foam brick 88.0 88.0 92.2 92.2 96.8 96.8 97.2 97.2 92.0 92.0 98.2 98.2

ALL 75.8 59.9 91.2 82.9 95.5 91.8 93.0 85.4 93.2 86.1 96.1 92.3

Table 1. Quantitative evaluation of 6D Pose (ADD-S AUC [52], ADD(S) AUC [19]) on the YCB-Video Dataset. Symmetric objects’ names

are in bold.

w/o iter. ref. w/ iter. ref.

DF(p.p.) PVN3D DF(iter.) PVN3D+ICP

large clamp ADD-S 87.7 93.9 90.3 96.2

extra large clamp ADD-S 75.0 90.1 74.9 93.6

ALL
ADD-S 93.3 95.7 94.8 96.4

ADD(S) 84.9 91.9 89.4 92.7

Table 2. Quantitative evaluation results on the YCB-Video dataset

with ground truth instance semantic segmentation result.

lenging. We follow [52] and split the dataset into 80 videos

for training and another 2,949 keyframes chosen from the

rest 12 videos for testing. Following [52], we add the syn-

thetic images into our training set. A hole completion al-

gorithm [25] is also applied to improve the quality of depth

images.

LineMOD Dataset [18] consists of 13 low-textured ob-

jects in 13 videos, annotated 6D pose and instance mask.

The main challenge of this dataset is the cluttered scenes,

texture-less objects, and lighting variations. We follow prior

works [52] to split the training and testing set. Also, we fol-

low [37] and add synthesis images into our training set.

4.2. Evaluation Metrics

We follow [52] and evaluate our method with the aver-

age distance ADD and ADD-S metric [52]. The average

distance ADD metric [19] evaluates the mean pair-wise dis-

tance between object vertexes transformed by the predicted

6D pose [R, t] and the ground true pose [R∗, t∗]:

ADD =
1

m

∑

x∈O

||(Rx+ t)− (R∗x+ t∗)|| (6)

where x is a vertex of totally m vertexes on the object mesh

O. The ADD-S metric is designed for symmetric objects

and the mean distance is computed based on the closest

point distance:

ADD-S =
1

m

∑

x1∈O

min
x2∈O

||(Rx1 + t)− (R∗x2 + t∗)||

(7)

For evaluation, we follow [52, 50] and compute the ADD-S

AUC, the area under the accuracy-threshold curve, which

is obtained by varying the distance threshold in evaluation.

The ADD(S)[19] AUC is computed in a similar way but cal-

culate ADD distance for non-symmetric objects and ADD-

S distance for symmetric objects.

4.3. Evaluation on YCBVideo & LineMOD Dataset

Table 1 shows the evaluation results for all the 21 ob-

jects in the YCB-Video dataset. We compare our model

with other single view methods. As shown in the Ta-

ble, our model without any iterative refinement procedure

(PVN3D) surpasses all other approaches by a large margin,

even when they are iterative refined. On the ADD(S) met-

ric, our model outperforms PoseCNN+ICP [52] by 6.4%
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RGB RGBD

PoseCNN
DeepIM
[26, 52]

PVNet
[37]

CDPN
[27]

Implicit
ICP[45]

SSD-6D
ICP[22]

Point-
Fusion[50]

DF(per-
pixel)[50]

DF(ite-
rative)[50]

PVN3D

ape 77.0 43.6 64.4 20.6 65.0 70.4 79.5 92.3 97.3

benchvise 97.5 99.9 97.8 64.3 80.0 80.7 84.2 93.2 99.7

camera 93.5 86.9 91.7 63.2 78.0 60.8 76.5 94.4 99.6

can 96.5 95.5 95.9 76.1 86.0 61.1 86.6 93.1 99.5

cat 82.1 79.3 83.8 72.0 70.0 79.1 88.8 96.5 99.8

driller 95.0 96.4 96.2 41.6 73.0 47.3 77.7 87.0 99.3

duck 77.7 52.6 66.8 32.4 66.0 63.0 76.3 92.3 98.2

eggbox 97.1 99.2 99.7 98.6 100.0 99.9 99.9 99.8 99.8

glue 99.4 95.7 99.6 96.4 100.0 99.3 99.4 100.0 100.0

holepuncher 52.8 82.0 85.8 49.9 49.0 71.8 79.0 92.1 99.9

iron 98.3 98.9 97.9 63.1 78.0 83.2 92.1 97.0 99.7

lamp 97.5 99.3 97.9 91.7 73.0 62.3 92.3 95.3 99.8

phone 87.7 92.4 90.8 71.0 79.0 78.8 88.0 92.8 99.5

ALL 88.6 86.3 89.9 64.7 79.0 73.7 86.2 94.3 99.4

Table 3. Quantitative evaluation of 6D Pose on ADD(S) [19] metric on the LineMOD dataset. Objects with bold name are symmetric.

DF(RT)[50] DF(3D KP)[50] Ours(RT) Ours(2D KPC) Ours(2D KP) PVNet[37] Ours(Corr) Ours(3D KP)

ADD-S 92.2 93.1 92.8 78.2 81.8 - 92.8 95.5

ADD(S) 86.9 87.9 87.3 73.8 77.2 73.4 88.1 91.8

Table 4. Quantitative evaluation of 6D Poses on the YCB-Video dataset with different formulations. All with our predicted segmentation.

VoteNet[38] BBox 8 FPS 4 FPS 8 FPS 12

ADD-S 89.9 94.0 94.3 95.5 94.5

ADD(S) 85.1 90.2 90.5 91.8 90.7

Table 5. Effect of different keypoint selection methods of PVN3D.

Results of VoteNet[38], another 3D bounding box detection ap-

proach are added as a simple baseline to compare with our BBox8.

and exceeds DF(iterative) [50] by 5.7%. With iterative re-

finement, our model (PVN3D+ICP) achieves even better

performance. Note that one challenge of this dataset is to

distinguish the large clamp and extra-large clamp, on which

previous methods [50, 52] suffer from poor detection re-

sults. We also report evaluation results with ground truth

segmentation in Table 2, which shows that our PVN3D still

achieves the best performance. Some Qualitative results are

shown in Figure 3. Table 3 demonstrates the evaluation re-

sults on LineMOD dataset. Our model also achieves the

best performance.

Robust to Occlusion Scenes. One of the biggest advan-

tages of our 3D-keypoint-based method is that it’s robust

to occlusion naturally. To explored how different methods

are influenced by different degrees of occlusion, we follow

[50] and calculate the percentage of invisible points on the

object surface. Accuracy of ADD-S < 2cm under different

invisible surface percentage is shown in Figure 4. The per-

formance of different approaches is very close when 50%

of points are invisible. However, with the percentage of in-

visible part increase, DenseFusion and PoseCNN+ICP fall

faster comparing with ours. Figure 3 shows that our model

performs well even when objects are heavily occluded.

4.4. Ablation Study

In this part, we explore the influence of different formu-

lation for 6DoF pose estimation and the effect of keypoint

selection methods. We also probe the effect of multi-task

learning.

Comparisons to Directly Regressing Pose. To compare

our 3D keypoint based formulation with formulations that

directly regressing the 6D pose parameters [R, t] of an ob-

ject, we simply modify our 3D keypoint voting module MK

to directly regress the quaternion rotation R and the transla-

tion parameters t for each point. We also add a confidence

header following DenseFusion [50] and select the pose with

the highest confidence as the final proposed pose. We super-

vise the training process using ShapeMatch-Loss [52] with

confidence regularization term [50] following DenseFusion.

Experimental results in Table 4 shows that our 3D keypoint

formulation performs quite better.

To eliminate the influence of different network architec-

ture, we also modify the header of DenseFusion(per-pixel)

to predict the per-point translation offset and compute the

6D pose following our keypoint voting and least-squares fit-

ting procedure. Table 4 reveals that the 3D keypoint formu-

lation, DF(3D KP) in the Table, performs better than the RT

regression formulation, DF(RT). That’s because the 3D key-

point offset search space is smaller than the non-linearity of

rotation space, which is easier for neural networks to learn,

enabling them to be more generalizable.

Comparisons to 2D Keypoints. In order to contrast

the influence of 2D and 3D keypoints, we project the voted

3D keypoints back to 2D with the camera intrinsic param-

eters. A PnP algorithm with Random Sample Consensus

(RANSAC) is then applied to compute the 6D pose param-

eters. Table 4 shows that algorithms with 3D keypoint for-

mulation, denoted as Ours(3D KP) in the table, outperforms

2D keypoint, denoted Ours(2D KP) in the table, by 13.7%

under ADD-S metric. That’s because PnP algorithms aim

to minimize the projection error. However, pose estimation
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Figure 3. Qualitative results on the YCB-Video dataset. Points on different meshes in the same scene are in different colors. They are

projected back to the image after being transformed by the predicted pose. We compare our PVN3D without any iterative refinement

procedure to DenseFusion with iterative refinement (2 iterations). Our model distinguishes the challenging large clamp and extra-large

clamp and estimates their poses well. Our model is also robust in heavily occluded scenes.

Figure 4. Performance of different approaches under increasing

levels of occlusion on the YCB-Video dataset.

errors that are small in projection may be quite large in the

3D real world.

To compare the influence between 2D and 3D center

point in our instance semantic segmentation module, we

also project our voted 3D center point to 2D in the Instance

Semantic Segmentation module(Ours(2D KPC)). We apply

a similar Mean Shift algorithm to cluster the voted 2D cen-

ter points to distinguish different instance, finding that in

occlusion scenes, different instances are hard to be differ-

entiated when their centers are close to each other after pro-

jected on 2D, while they are far away from each other and

can be easily differentiated in 3D real world. Note that other

existing 2D keypoints detection approaches, such as heat-

map [33, 24, 34] and vector voting [37] models may also

suffer from overlapped keypoints. By definition, centers of

most objects in our daily life won’t be overlapped as they

usually lie within the object while they may be overlapped

after projected to 2D. In a word, the object world is in 3D,

we believe that building models on 3D is quite important.

Comparisons to Dense Correspondence Exploring.

We modify our 3D keypoint offset module MK to output

the corresponding 3D coordinate of each point in the object

coordinate system and apply the least-squares fitting algo-

rithm to computes the 6DoF pose. An L1 loss similar to

Formula 3 is applied to supervise the training of the corre-

sponding 3D coordinate. Evaluation results are shown as

Ours(corr) in Tabel 4, which shows that our 3D keypoints

formulation still performs quite better. We believe that re-

gressing object coordinates is more difficult than keypoint

detection. Because the model has to recognize each point

of a mesh in the image and memorize its coordinate in the

object coordinate system. However, detecting keypoints on

objects in the camera system is easier since many keypoints

are visible and the model can aggregate scene context in the

vicinity of them.

Effect of 3D Keypoints Selection. In this part, we select

8 corners of the 3D bounding box and compares them with

points selected from the FPS algorithm. Different number

of keypoints generated by FPS are also taken into consid-

eration. Table 5 shows that keypoints selected by the FPS

algorithm on the object enable our model to perform bet-

ter. That’s because the bounding box corners are virtual

points that are far away from points on the object. There-

fore, point-based networks are difficult to aggregate scene

context in the vicinity of these virtual corner points. Also,

8 keypoints selected from FPS algorithm is a good choice

for our network to learn. More keypoints may better elimi-

nate errors when recovering pose in the least-squares fitting

module, but harder for the network to learn as the output
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Figure 5. Qualitative results of semantic segmentation on the challenging YCB-Video dataset. (a) shows the ground truth label.

Different objects are labeled in different colors, with large clamp colored green and extra-large clamp colored orange. In (b)-(c), the simple

baselines PoseCNN[52] and Mask R-CNN [15] are confused by the two objects. In (d), our semantic segmentation module MS , trained

separately, can not distinguish them well either. In (e), jointly training MS with the keypoints offset voting module MK performs better.

In (f), with the voted center and Mean-Shift clustering algorithm, our model can distinguish them well.

MK

+MRC
MK

+GT
MK,S

+GT
MK,S,C MK,S,C

+GT

ADD-S 93.5 94.8 95.2 95.5 95.7

ADD(S) 89.7 90.6 91.3 91.8 91.9

Table 6. Performance of PVN3D with different instance semantic

segmentation on all objects in the YCB-Video dataset. MK,MS

and MC denote keypoint offset module, semantic segmentation

and center point offset module of PVN3D respectively. +MRC

and +GT denotes inference with segmentation result of Mask R-

CNN and ground truth segmentation respectively.

PoseCNN
[52]

Mask R-
CNN[15]

PVN3D
(MS )

PVN3D
(MS,K)

PVN3D
(MS,K,C)

large clamp 43.1 48.4 58.6 62.5 70.2

extra-large
clamp

30.4 36.1 41.5 50.7 69.0

Table 7. Instance semantic segmentation results (mIoU(%)) of dif-

ferent methods on the YCB-Video dataset. Jointly training seman-

tic segmentation module with keypoint offset module (MS,K) ob-

tains size information from the offset module and performs better,

especially on large clamp and extra-large clamp. With the cen-

ter voting module MC and the Mean-Shift clustering algorithm,

further improvement of performance is obtained.

space is bigger. Selecting 8 keypoints is a good trade-off.

Effect of Multi-task learning. In this part, we discuss

how the joint learning of semantic segmentation and key-

point (center) translation offset boosts the performance. In

Table 6, we explore how semantic segmentation enhances

keypoint offset learning. We remove semantic segmentation

and center voting modules MS ,MC , and train our keypoint

voting module MK individually. During inference time,

the instance semantic segmentation predicted by Mask R-

CNN [15] (MK+MRC) and the ground truth (MK+GT)

are applied. Experimental results show that jointly trained

with semantic segmentation (MK,S+GT) boosts the perfor-

mance of keypoint offset voting and improves the accuracy

of 6D pose estimation by 0.7% on ADD(S) metric. We

believe that the semantic module extracts global and local

features to distinguish different objects. Such features also

help the model to recognize which part of an object a point

belongs to and improve offset prediction.

In Table 7, we explore how keypoint and center point

offset learning improve the instance semantic segmentation

result. Point mean intersection over union (mIoU) is used

as evaluation metric. We report the results of the chal-

lenging large clamp and extra-large clamp in YCB-Video

dataset. They look same in appearance but are different

in size, as shown in Figure 5. We trained Mask R-CNN

(ResNeXt-50-FPN) [15] with the recommended setting as

a simple baseline and found it was completely confused by

the two objects. With extra depth information, our seman-

tic segmentation module (PVN3D(MS )), trained individ-

ually, didn’t perform well either. However, jointly trained

with our keypoint offset voting module (PVN3D(MS,K)),

the mIoU was improved by 9.2% on the extra-large clamp.

With voted centers obtained from the center voting module

MC , we can split up objects with the Mean-Shift clustering

algorithm and assign points to its closest object cluster. The

mIoU of the extra-large clamp is further improved by 18.3%

in this way. Some qualitative results are shown in Figure 5.

5. Conclusion

We propose a novel deep 3D keypoints voting network

with instance semantic segmentation for 6DoF pose estima-

tion, which outperforms all previous approaches in several

datasets by large margins. We also show that jointly training

3D keypoint with semantic segmentation can boost the per-

formance of each other. We believe the 3D keypoint based

approach is a promising direction to explore for the 6DoF

pose estimation problem.
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