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Abstract

3D object detection from point cloud data plays an es-

sential role in autonomous driving. Current single-stage

detectors are efficient by progressively downscaling the 3D

point clouds in a fully convolutional manner. However,

the downscaled features inevitably lose spatial information

and cannot make full use of the structure information of

3D point cloud, degrading their localization precision. In

this work, we propose to improve the localization precision

of single-stage detectors by explicitly leveraging the struc-

ture information of 3D point cloud. Specifically, we design

an auxiliary network which converts the convolutional fea-

tures in the backbone network back to point-level represen-

tations. The auxiliary network is jointly optimized, by two

point-level supervisions, to guide the convolutional features

in the backbone network to be aware of the object struc-

ture. The auxiliary network can be detached after training

and therefore introduces no extra computation in the infer-

ence stage. Besides, considering that single-stage detectors

suffer from the discordance between the predicted bounding

boxes and corresponding classification confidences, we de-

velop an efficient part-sensitive warping operation to align

the confidences to the predicted bounding boxes. Our pro-

posed detector ranks at the top of KITTI 3D/BEV detection

leaderboards and runs at 25 FPS for inference.

1. Introduction

3D object detection from point cloud data is a key com-

ponent in Autonomous Vehicle (AV) system. Unlike the or-

dinary 2D object detection which only estimates 2D bound-

ing box from an image plane, AV requires to estimate a

more informative 3D bounding box from the real world to

fulfill the high-level tasks like path planning and collision

avoidance. This motivates the recently emerged 3D object

detection approaches which apply the convolutional neural
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Figure 1: Predicted bounding boxes from sparse 3D point cloud by

(a) the representative single-stage detector SECOND [25] and (b)

our single-stage method guided by auxiliary tasks and point-level

supervisions. The object points, ground-truth box, center points

predicted by the auxiliary network and the final detection results

are shown in green, white, yellow and red colors, respectively.

network (CNN) to process more representative point cloud

data from a high-end LiDAR sensor.

Current 3D object detection from point cloud can be di-

vided into two streams, i.e., single-stage approaches and

two-stage approaches. Single-stage approaches [25, 30, 27,

8, 22, 9] parse the sparse 3D point cloud into a compact rep-

resentation, such as voxel grid or birds-eye-view (BEV) im-

age, and employ a CNN to directly predict the bounding box

in a fully convolutional manner. This makes the single-stage

approaches typically simple and efficient. However, the

progressively downscaled feature maps inevitably lose the

spatial resolution and cannot explicitly consider the struc-

ture information of point cloud data, making the single-

stage detectors less accurate to process the sparse point

cloud. As shown in Fig. 1(a), the single-stage detector fails

to achieve accurate localization when the object contains

insufficient points.

Compared to single-stage approaches, two-stage meth-
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Figure 2: Overview of the proposed structure aware single-stage 3D object detector. Our network contains three sub-networks, a backbone

network to extract the multi-stage features from point cloud, a back-end detection network to predict 3D bounding box and an auxiliary

network to exploit point-wise supervisions. The yellow points in the auxiliary network represent the nonzero feature vectors in the coor-

dinate system of the original point cloud. We also design a part-sensitive warping (PSWarp) scheme to align the classification confidences

with the predicted bounding boxes.

ods [16, 19, 2, 28, 15, 20] can leverage finer spatial in-

formation at the second stage, which focuses only on the

regions of interest (RoIs) predicted by the first stage, and

consequently predicts more accurate bounding box. This

reveals the importance of leveraging fine-grained spatial in-

formation of point cloud to achieve accurate localization.

However, to operate on each point and to re-extract features

for each RoI substantially increases the computational cost,

making two-stage methods hard to reach real-time speed.

Motivated by the high precision of two-stage detectors,

in this paper, we propose to exploit the fine-grained struc-

ture information to improve the localization accuracy and

simultaneously preserve the high efficiency of single-stage

approaches. We design a structure-aware single-stage 3D

object detector whose framework is shown in Fig. 2. In

addition to the backbone network which generates down-

scaled features for bounding box prediction, our detector

contains an auxiliary network which guides the backbone

network to learn more discriminative features with point-

level supervisions. Specifically, the auxiliary network first

converts the features from the backbone network back to

point-wise representations and then performs two auxiliary

tasks: foreground segmentation to drift the features to be

sensitive to the object boundary and point-wise center esti-

mation to make the features be aware of the intra-object re-

lationship. The auxiliary network is jointly optimized with

the backbone network in training stage and is removed after

training, introducing no extra computational cost at infer-

ence stage. As shown in Fig. 1(b), our model guided by the

auxiliary tasks can yield more accurate localization.

In addition, we notice that single-stage detectors usually

suffer from a misalignment between the predicted bound-

ing boxes and the corresponding classification confidences.

Specifically, classification confidences are related to the

current locations of employed feature maps while the pre-

dicted bounding boxes usually deviate from their current lo-

cations. This misalignment may lead to suboptimal results

in NMS post-processing. Inspired by PSRoIAlign [3], we

develop an efficient part-sensitive warping method (denoted

by PSWarp in detection network in Fig. 2) to align the clas-

sification confidences with the predicted bounding boxes by

performing spatial transformation on the classification fea-

ture maps, making our model generate more reliable confi-

dence maps. In summary, our contribution are twofold.

(1) We propose a structure-aware single-stage 3D object

detector, which employs a detachable auxiliary network to

learn structure information and exhibits better localization

performance without extra cost.

(2) We develop an efficient feature map warping method

to mitigate the discordance between the predicted bound-

ing boxes and corresponding classification confidences, im-

proving the detection accuracy at negligible cost.

We evaluate our proposed detector on KITTI [4]

3D/BEV object detection benchmarks. Our detector outper-

forms all the previous published methods and at the same

time achieves 25 FPS inference speed.

2. Related Work

Single-stage approaches. Single-stage approaches are pro-

posed to enhance the computational efficiency by process-

11874



ing the point cloud in a fully convolutional network with

a transformed compact representation. Typical methods of

this kind either apply a 2D CNN to extract features from

a BEV [22] and a frontal-view panorama [24], or apply a

3D CNN to a handcrafted voxel grid [9, 27]. Zhou et al.

[30] proposed to extracted voxel feature by a tinny PointNet

[17]. Lang et al. [8] proposed to reduce feature dimension

by stacking voxels feature along the height axis as a “pil-

lar”. Yan et al. [25] investigated an improved sparse con-

volution that optimizs the GPU usage in 3D convolutions.

Our proposed method is build on top of a general single-

stage architecture and we are the first one to consider using

point-level supervision to enhance the representative power

of convolutional feature.

Two-stage approaches. Unlike single-stage approach that

directly produce 3D bounding box, two-stage approaches

aim to produce more accurate detection by re-using the

point cloud with full resolution in the second stage. Some

image-driven methods [16, 23] have been proposed to lift a

set of 3D regions of interest (RoI) from the image and then

apply a PointNet to extract RoI feature by gathering the in-

terior points with transformed canonical coordinates. Shi et

al. [19] proposed to generate RoIs from purely point clouds

by using a PointNet to segment the foreground points from

the scene. Its variant work [2] generats RoIs by an efficient

voxel-based CNN. Yang et al. [28] divided the RoI into

voxels to enable using regular CNN for RoI feature extrac-

tion. Shi et al. [20] enriched the RoI features by performing

intra-object part-aware analysis and demonstrated the effec-

tiveness of reducing the ambiguity of bounding box. The

success of two-stage approach inspired us to exploit the full-

resolution spatial information encoded in the ground-truth

to guide the single-stage model learning more discrimina-

tive fine-grained patterns.

Auxiliary task learning. Learning from a group of side

tasks to enhance the main task’s performance has been re-

visited in autonomous driving applications. Yang et al. [26]

proposed to estimate the ground-level to enhance the detec-

tor’s awareness of road geometry. Liang et al.[10] proposed

to enhance the fusion of cross-modality inputs from multi-

task predictions. Our method is closely connected to them

by employing point-wise prediction tasks to improve 3D ob-

ject detection, meanwhile differing from them by regarding

the predictions as auxiliary tasks, which is detachable in the

time of inference. Auxiliary tasks can be heterogeneous to

the main task, providing a multi-fold regularization effect in

the optimization. For example, Zhao et al. [29] facilitated

the crowd segmentation task to learn a more attentive den-

sity map for crowd counting. Mordan et al.[14] facilitated

the depth estimation task to learn the scene-aware features,

improving the robustness of detecting occluded objects. By

taking advantage of auxiliary tasks, we can maintain the ef-

ficiency of single-stage network at inference.

3. Structure-Aware 3D Object Detection via

Auxiliary Network Learning

In this section, we develop an efficient structure-aware

single-stage network for point cloud detection. Sec. 3.1

introduces our backbone and detection networks. Sec.3.2

introduces the proposed auxiliary network to enrich the hid-

den features of the backbone network via two special aux-

iliary tasks. Sec. 3.3 introduces a part-sensitive warping

operation to generate a more accurate confidence map. Sec.

3.4 presents the loss functions for training.

3.1. Backbone and detection networks

Input data representation. Previous works normally en-

code the point cloud into a 3D sparse tensor by dividing

it into a voxel grid and representing each voxel feature as

the nonzero entry of the input tensor. However, the vox-

elization is a time-consuming pre-processing method. For

simplicity, we directly represent each point as a nonzero en-

try of the input tensor by quantizing the point’s coordinates

to tensor indices. Let {pi = (xi, yi, zi) : i = 1, ...N} be

the coordinates of point cloud and d = [dx, dy, dz] ∈ IR3

be the quantization step of input tensor. The tensor indices

can then be represented as {p̄i = (⌊ xi

dx
⌋, ⌊ yi

dy
⌋, ⌊ zi

dz
⌋) : i =

1, ..., N}, where ⌊·⌋ is the floor function. We iteratively

assign each point to the entry of input tensor according to

the associated index. If multiple points share the same in-

dex, we overwrite the entry with the latest point. We find

that this pre-processing method is efficient and adequate to

achieve reasonable performance with a finer quantization

step d = [0.05m, 0.05m, 0.1m].
Network architecture. As shown in Fig. 2, we employ

the commonly used backbone network [30, 25, 2] as our

feature extractor. The network contains four convolutional

blocks, each of which is composed of sub-manifold convo-

lutions with kernel size of 3. The last three blocks contain

an additional sparse convolution with a stride of 2. Each

convolution is followed by a batch normalization [5] and

ReLU non-linearity. As a result, the backbone network pro-

duces multi-stage feature maps at different spatial resolu-

tions. The detection network reshapes the feature map from

the backbone output to a BEV representation by concatenat-

ing the feature vectors along the depth dimension into one

channel. Then it applies six standard 3 × 3 convolutions

with non-linearity to further abstract the feature. Two sib-

ling 1 × 1 convolutions without non-linearity is applied to

generate task-specific pixel-wise predictions: a set of part-

sensitive classification maps and a regression map that en-

code the anchor-offsets for the oriented 3D objects.

3.2. Detachable auxiliary network

As discussed in Sec. 1, we propose to learn a detach-

able auxiliary network with point-wise supervisions, which
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Figure 3: (a) A vanilla example of predicting bounding box from

2D point cloud. The foreground points, background points and the

ground-truth bounding box are shown in green, black and white

colors respectively. (b) The predictions from the convolutional

features, the black and green squares denote the nonzero feature

vectors. (c) The predictions from boundary-sensitive convolu-

tional features. (d) The prediction from structure-aware convo-

lutional features. The yellow cross denotes the estimated object

center.

helps the feature extracted by backbone network be aware

of the structure information of 3D point cloud.

Motivation. Generally, the downsampled convolutional

features extracted from point cloud will inevitably lose

structure details which are vital to generate accurate local-

ization. A vanilla example of detecting objects from 2D

point set is illustrated in Fig. 3. As shown in Fig. 3(a), only

a few points from the object are detected and there are some

background points close to its boundary. This case is very

common in real scenario where the object is far from the

sensor and occluded with others of no interest. As the CNN

progressively decreases the spatial resolution of the point

cloud, some object points may be submerged in the back-

ground points, resulting in the feature at the object bound-

ary being misclassified in the low-resolution feature space,

as shown in Fig. 3(b). Consequently, the model is misled

and produces low-quality bounding boxes.

Our solution is to build an auxiliary network with point-

level supervisions to guide the intermediate features from

different stages of backbone CNN to learn the fine-grained

structure of the point cloud. To achieve this goal, we first

need to convert the extracted CNN features back to point-

wise representations.

Point-wise feature representation. The auxiliary network

is shown in Fig. 2. It first converts each nonzero index

of backbone feature to a real-world coordinates based on

the quantization step of current stage, so that each back-

bone feature can be represented in a point-wise form. We

denote it by {(fj , pj) : j = 1, ...,M} with f being the

feature vector and p being the point coordinates. To gen-

erate full-resolution point-wise features, we employ a fea-

ture propagation layer [18] at each stage to interpolate back-

bone features at the coordinates of original point cloud

{pi : i = 1, ..., N}. For interpolation, we use the inverse

distance weighted average among all the points in a neigh-

boring region. Let {(f̂i, pi) : i = 1, ..., N} be the interpo-

lated (propagated) feature, the feature vector at each point

can be calculated by:

f̂i =

∑M

j=1
wj(pi)fj

∑M

j=1
wj(pi)

, (1)

where

wj(pi) =

{

1

||pi−pj ||2
if pj ∈ N (pi)

0 otherwise.
(2)

N (pi) denotes a ball region, which has a radius of 0.05m,

0.1m, 0.2m, and 0.4m in each stage, respectively. We con-

catenate these point-wise features by a cross-stage link and

apply a shallow predictor to generate task-specific outputs.

The predictor is realized by a shared multi-layer perceptron

with neuron sizes of (64, 64, 64) and two task-specific out-

puts are generated by unit point convolutions.

Auxiliary tasks. We first introduce a point-wise foreground

segmentation task to guide the backbone CNN learn more

discriminative patterns in the object boundary. Specifically,

we employ a sigmoid function to the segmentation branch

to predict the foreground/background probability of each

point, denoted by s̃i. Let si be a binary label to indicate

whether a point falls into a ground-truth bounding box. The

foreground segmentation task can be optimized with a focal

loss [12], i.e.,

Lseg =
1

Npos

N
∑

i

−α(1− ŝi)
γ log(ŝi), (3)

where

ŝi =

{

s̃i if si = 1

1− s̃i otherwise.
(4)

α and γ are the hyper-parameters and we use the empirical

values 0.25 and 2 as specified in the original paper [12].

The above segmentation task enables the backbone net-

work to more precisely detect the object boundary, as shown

in Fig. 3(c). With more precise feature maps, the model can

generate more accurate bounding boxes. However, even

if the boundary points are precisely detected, there is still

ambiguity in determining the scale and shape of bounding

boxes since the feature maps are very sparse. To further

improve the localization accuracy, we employ another aux-

iliary task to learn the relative position of each object point

to the object center. As shown in Fig. 3(d), this intra-object

relationship can help determine the scale and shape of the

object, resulting in more precise localization.

Let ∆p̃ ∈ IRN×3 be the output of center estimation

branch and ∆p be the target offsets from object points to

the corresponding center. The center estimation task can be

optimized with the following Smooth-l1 [13] loss:

Lctr =
1

Npos

N
∑

i

Smooth-l1(∆p̃−∆p) · 1[si = 1], (5)
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where Npos is the number of foreground points and 1[·] is a

indicator function.

Combining the foreground segmentation and center es-

timation tasks enables the backbone network to learn

structure-aware features. As will be seen in Sec. 4.4, em-

ploying these two auxiliary tasks significantly improve the

localization accuracy of the backbone network. Besides, the

auxiliary network is only employed in the training stage, in-

troducing no extra computational cost for inference.

3.3. Partsensitive warping

To solve the misalignment between the predicted bound-

ing boxes and corresponding confidence maps, we propose

a part-sensitive warping operation, namely PSWarp, as an

efficient variant of PSRoIAlign [3], to align the classifica-

tion confidences with the predicted bounding boxes by per-

forming spatial transformation on the feature maps.

Similar to PSRoIAlign, we first modify the last clas-

sification layers to generate K part-sensitive classification

maps, denoted by {X k : k = 1, 2, ...,K}, each of which

encodes information of a certain part of the object, for ex-

ample, {upper-left, upper-right, bottom-left, bottom-right}
in the case of K = 4. At the same time, we divide the

predicted bounding box at each feature-map position into

K sub-windows and select the center position of each sub-

window as the sample point. In this way, we can generate

K sampling grids {Sk : k = 1, 2, ...,K} and each of which

associates with a classification map. Our PSWarp is com-

posed by a feature map sampler [6], as shown in Fig. 4,

which takes the classification maps and sampling grids as

input, producing output maps sampled from the input at grid

points. The final confidence map C is computed by taking

the average among K sampled classification maps. Given

a predicted bounding box p and its corresponding sample

points {(uk, vk) = Sk
p : k = 1, 2, ...,K}, the final confi-

dence of this bounding box can be calculated by:

Cp =
1

K

K
∑

k=1

∑

i∈{⌊uk⌋⌊uk
+1⌋}

j∈{⌊vk⌋,⌊vk
+1⌋}

X k
ij × b(i, j, uk, vk), (6)

where b is a bilinear sampling kernel which has a form of

b(i, j, u, v) = max(1− |i− u|, 0)×max(1− |j − v|, 0).
Compared to PSRoIAlign and other RoI-based methods,

PSWarp is more efficient since it mitigates the needs of gen-

erating RoIs from a dense feature map with NMS. It con-

siders only one pixel in each sub-window therefore has the

same computational complexity as a standard convolution.

In Sec. 4.4, we show that PSWarp can achieve comparable

performance to PSRoIAlign with only 1/10 of time.

3.4. Loss functions

We apply the common anchor-based setting [30, 25, 8]

to optimize the primary network. Let Lbox and Lcls be the

Figure 4: Part-sensitive warping. We generate K sampling grids

from the dense bounding boxes predicted by regression branch.

Each grid is used to sample the feature points from the classifica-

tion map using a bilinear interpolation kernel. The final confidence

map is computed by taking average among K sampled maps.

two losses that impose on the regression branch and classi-

fication branch, respectively. Lbox is a Smooth-l1 loss [13]

and Lcls is a focal loss [12]. We jointly optimize the de-

tection task and the auxiliary tasks by applying a gradient

descent method to minimize the weighted sum of the fol-

lowing losses:

L = Lcls + ωLbox + µLseg + λLctr, (7)

where ω is empirically set to 2 according to [30, 25], µ and λ
are the hyper-parameters to balance the auxiliary tasks from

detection tasks. We will conduct experiments to properly

select them in Sec. 4.2.

4. Experiments

We evaluate our proposed structure-aware single-stage

detector (SA-SSD) on the KITTI 3D/BEV object detec-

tion benchmark [4]. The dataset contains 7,481 training

samples and 7,518 testing samples. We further divide the

training data into a training set with 3,712 samples and a

validation set with 3,769 samples following the common

protocol. We conduct experiments on the most commonly

used car category and use average precision (AP) with an

(IoU) threshold 0.7 as evaluation metric. The benchmark

consider three levels of difficulties: easy, moderate, and

hard based on the object size, occlusion state, and trun-

cation level. The Average precision (AP) is calculated us-

ing 40 recall positions1. The source code is available at

https://github.com/skyhehe123/SA-SSD.

4.1. Implementation details

Training details. We use the common setting in [30, 25]

by selecting the interest LiDAR points that lie between the

range (0m, 70.4m), (-40m, 40m), (-3m, 1m) along X, Y, Z

axes, respectively, and dropping those points that are invis-

ible in the image view. In training, we use the matching

1On 08.10.2019, KITTI changed its evaluation setting by using 40 re-

call positions as suggested in [21].
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Method Modality
BEV 3D

FPS
Easy Moderate Hard Easy Moderate Hard

Two-stage:

MV3D[1] LiDAR+RGB 86.49 78.98 72.23 74.97 63.63 54.00 2.8

F-PointNet[16] LiDAR+RGB 91.17 84.67 74.77 82.19 69.79 60.59 5.9

AVOD[7] LiDAR+RGB 89.75 84.95 78.32 76.39 66.47 60.23 10

PointRCNN[19] LiDAR 92.13 87.39 82.72 86.96 75.64 70.70 -

F-ConvNet[23] LiDAR+RGB 91.51 85.84 76.11 87.36 76.39 66.69 2.1

Fast PointRCNN[2] LiDAR 90.87 87.84 80.52 85.29 77.40 70.24 15.4

MMF[10] LiDAR+RGB 93.67 88.21 81.99 88.40 77.43 70.22 12.5

STD[28] LiDAR 94.74 89.19 86.42 87.95 79.71 75.09 10

One-stage:

VoxelNet[30] LiDAR 87.95 78.39 71.29 77.82 64.17 57.51 4.4

ContFuse[11] LiDAR+RGB 94.07 85.35 75.88 83.68 68.78 61.67 16.7

SECOND[25] LiDAR 89.39 83.77 78.59 83.34 72.55 65.82 20

PointPillars[8] LiDAR 90.07 86.56 82.81 82.58 74.31 68.99 422

SA-SSD (ours) LiDAR 95.03 91.03 85.96 88.75 79.79 74.16 25

Table 1: Performance comparison with previous methods on KITTI test server. BEV and 3D object detection metric are used, reported by

the Average Precision(AP) with IoU threshold 0.7. The bold value indicates the top performance.

thresholds for the positive and negative anchors of 0.6 and

0.45, respectively. The matching IoU between the bounding

boxes and anchors is calculated by their nearest horizontal

rectangles in BEV. The anchor for detecting the car has a

size of 1.6m (width), 3.9m (length) and 1.56m (height). All

the anchors that contain no points are ignored.

The network is trained for 50 epochs using an SGD op-

timizer. The batch size, learning rate, and weight decay are

st to 2, 0.01 and 0.001, respectively. The learning rate is de-

cayed with a cosine annealing strategy. At inference stage,

we filter out the low-confidence bounding box by a thresh-

old of 0.3. The IoU threshold for non-maximum suppres-

sion (NMS) is 0.1.

Data augmentation. We perform a common cut-and-paste

strategy [30, 25, 2] for data augmentation. Specifically, we

collect all the ground-truth boxes and the associated points

that fall into these boxes as a pool of instance. For each ex-

ample, we randomly draw at most 10 instances from the

pool and place them into the current point cloud. Each

placement is followed by a collision test to avoid the vio-

lation of the physical rule. All ground-truth boxes are in-

dividually augmented. Each box is randomly rotated and

translated. The noise for the rotation is uniformly drawn

from [−π/15, π/15] and the noise for the translation is

drawn from N (0, 0, 0.25). In addition, we apply random

flipping, global rotation and global scaling to the whole

point cloud. The noise for global rotation is uniformly

drawn from [−π/15, π/15] and the scaling factor is uni-

formly drawn from [0.95, 1.05].

2PointPillars can run at 62 FPS by using TensorRT for GPU accelera-

tion. Here we show the run-time using its PyTorch pipeline, which is 42

FPS according to [8], for fair comparison.

(a) µ for foreground segmentation task (λ = 0).

(b) λ for center estimation task.

Figure 5: The selection weights for auxiliary tasks.

4.2. Weight selection of auxiliary tasks

The weights µ and λ in Eq. 7 determine the influence

of each auxiliary task on the main task, which is the key

hyper-parameters in our method. To find their optimal val-

ues, we conduct experiments by first tuning µ with λ fixed

to 0, and then tuning λ with the selected µ. As shown in

Fig. 5, when the weight µ for the foreground segmentation

task lies within a certain range, the detection performance

(reported by AP in the moderate subset) can be obviously

improved. A too small weight is difficult to contribute to

the main task, and a too large weight degrades the perfor-

mance by alienating the feature representation. A similar

tendency can be observed in the selection of λ. In the fol-

lowing experiments, we use µ = 0.9 and λ = 2.
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Figure 6: Evaluation results of different methods on KITTI 3D

object detection test set. For each method, we plot precision-recall

curve, the AP on most important moderate subset are reported.

The single-stage methods are shown in dotted line.

4.3. Comparison with stateofthearts

We compare our SA-SSD 3D point cloud detector with

other state-of-the-art approaches by submitting the detec-

tion results to the KITTI server for evaluation. As shown in

Table 1, our approach achieves the best performance among

all competitors in both 3D and BEV detection tasks. By the

time of submission, our method ranked the first on KITTI

3D/BEV object detection leaderboards in the most impor-

tant car category. In addition, our method is 2.5 times faster

than the second top method STD [28]. In BEV detection,

we achieve a significant improvement (1.8%) on AP com-

pared to the STD method on the most important moderate

subset. In the context of single-stage detector, our method

outperforms all competitors by a large margin. Specifically,

our model leads the PointPillars [8] by (6.2%, 5.5%, 5.2%)
in 3D detection and (5.0%, 4.5%, 3.1%) in BEV detec-

tion. Our backbone network is build on top of the architec-

ture of SECOND [25] while achieves (5.4%, 7.2%, 8.3%)
improvement over the baseline. This large improvement

mainly comes from the enriched hidden feature from the

auxiliary tasks. Owing to the single-stage architecture and

voxel-free pre-processing, our SA-SSD can run at 25 FPS

which is faster than most of the methods. Fig. 6 fur-

ther shows that our method outperforms state-of-the-art ap-

proaches with different recall settings, indicating that our

method achieves better detection coverage as well as accu-

racy. We also show some prediction results in Fig. 7 and

we project the 3D bounding boxes detected from LiDAR

to the RGB images for better visualization. As observed,

our method can produce high-quality 3D bounding boxes in

different kinds of scenes.

Moderate Easy Hard

MV3D [1] 62.68 71.29 56.56

AVOD [7] 74.44 84.41 68.65

VoxelNet [30] 65.46 81.97 62.85

F-PointNet [16] 70.92 83.76 63.65

SECOND [25] 76.48 87.43 69.10

PointRCNN [19] 78.63 88.88 77.38

STD [6] 79.8 89.7 79.3

SA-SSD (ours) 79.91 90.15 78.78

Table 2: 3D detection AP on KITTI val set of our model for

“Car”compared with other state-of-the-art methods. The AP is

calculated with 11 recall positions.

Segment Center PSWarp Moderate Easy Hard

82.88 92.10 79.96

X 83.36 92.53 80.13

X X 83.93 92.86 80.91

X X X 84.30 93.23 81.36

Table 3: Performance of proposed method with different config-

urations. The average precision on 3D object for easy, moderate,

and hard subsets on KITTI val split are reported.

2× 3 3× 5 4× 7 Time

PSWarp 84.05 84.13 84.30 ∼0.4ms

PSRoIAlign [3] 84.18 84.22 84.35 ∼ 4ms

Table 4: Comparison between our PSWarp and PSRoIAlign. The

AP value on moderate subsets are reported.

Data Input Net NMS Overall

SECOND[25] 1.5 6.6 37.5 0.7 46.3

SA-SSD (ours) 1.5 <0.01 37.9 0.7 40.1

Table 5: Runtime (in millisecond) analysis of different steps dur-

ing inference.

4.4. Ablation study

In this section, we conduct a comprehensive analysis of

the effectiveness of different proposed modules in our de-

tector. We first evaluate our method on the validation set

and report AP with 11 recall positions to compare with the

results from previous arts. As shown in Table 2, SA-SSD

outperforms previous state-of-the art methods in the both

moderate and easy subsets. Then we study the effects of

the auxiliary tasks and PSWarp on our model. Results are

shown in Table 3.

Effect of segmentation tasks. As shown in Table 3, lever-

aging segmentation auxiliary task contributes to a perfor-

mance improvement of around (0.5%, 0.4%, 0.2%) on each

subset. It can be observed that the performance gains on

easy and moderate subsets are higher than that on the hard

subset. This is because the objects from hard subset usually

contain only a few points, providing very limited useful in-
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Figure 7: Qualitative results on KITTI test set. The predicted bounding boxes are shown in green. The predictions are projected onto the

RGB images (upper row) for better visualization. Best viewed with color.

formation for the segmentation task.

Effect of center estimation task. The center estimation

task brings substantial improvements (0.6%, 0.3%, 0.8%)
on all the three subsets. The improvement is especially sig-

nificant on hard subset. This is consistent with our expecta-

tion that learning the internal structure of object is essential

for determining the object scale and shape when the data

points are relatively sparse.

Effect of part-sensitive warping. The proposed

PSWarp can further improve the performance by

(0.4%, 0.3%, 0.5%) on the three subsets, validating

the effectiveness of refining the classification confidences

to the predicted bounding boxes. We also compare PSWarp

with its counterpart PSRoIAlign with only re-scoring

functionality. Three spatial resolutions for bounding-box

alignment, 2 × 3, 3 × 5 and 4 × 7, are evaluated. As

can be seen from Table 4, PSWarp exhibits comparable

perfomance with PSRoIAlign in high-resolution cases

and is only slightly worse that it in low-resolution cases.

This is because the predicted bounding boxes typically

occupy only a few pixels in the final feature map, thus

the center point of each sub-window is representative

enough. However, PSWarp avoids enumerating RoIs from

a dense feature map, taking only around 1/10 runtime of

PSRoiAlign.

4.5. Runtime analysis

We evaluate the runtime of each step of our framework

during inference. We run our program as well as the base-

line single-stage counterpart SECOND [25] in a moderate

desktop equipped with an Intel i7 CPU and a 2080ti GPU.

The overall pipeline has the following steps: 1) read the

data from LiDAR file and remove the points that out of the

range and image scope (Data), 2) encode the point clouds

into a input tensor (Input), 3) process the encoded tensor

by a neural network (Net), 4) remove the duplicated predic-

tions (NMS). As shown in Table 5, our method has a total

runtime of 40.1 ms. Compared to the baseline method SEC-

OND [25], using a voxel-free encoding pre-process can help

to save ∼6.6 ms and PSWarp brings negligible extra cost

(only 0.4 ms).

5. Conclusion

In this work, we studied the limitations of current single-

stage 3D object detectors and proposed a new detector,

namely structure-aware single-stage detector, for 3D point

cloud detection. We first proposed to learn an auxiliary net-

work using two point-level supervisions to guide the fea-

tures learned in backbone network to be aware of the struc-

ture information of 3D objects. This significantly improved

the detection accuracy without introducing additional com-

putational cost at inference stage. We further developed

a part-sensitive warping operation to mitigate the discor-

dance between the predicted bounding boxes and their cor-

responding confidences in NMS post-processing. Experi-

ments on the KITTI 3D/BEV detection benchmark showed

that the proposed method achieved state-of-the-art perfor-

mance with high efficiency.
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