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Abstract

Under the conventional diffuse shading model with un-

known directional lighting, the set of quadratic surface

shapes that are consistent with the spatial derivatives of

intensity at a single image point is a two-dimensional al-

gebraic variety embedded in the five-dimensional space of

quadratic shapes. We describe the geometry of this variety,

and we introduce a concise feedforward model that computes

an explicit, differentiable approximation of the variety from

the intensity and its derivatives at any single image point.

The result is a parallelizable processor that operates at each

image point and produces a lighting-invariant descriptor of

the continuous set of compatible surface shapes at the point.

We describe two applications of this processor: two-shot un-

calibrated photometric stereo and quadratic-surface shape

from shading.

1. Introduction

The shading variations in an image I(x, y) of a diffuse,

curved surface—say, a surface with height function f(x, y)—
induce a perception of the surface shape. Mimicking this

perceptual capability in machines is referred to as recovering

“shape from shading.”

There exist established techniques for recovering shape

from shading in special cases where the strengths and loca-

tions of the light sources around the surface are known a

priori, or are somehow accurately inferred. These techniques

can be understood as using a connected two-dimensional ar-

ray of image “point processors”, where each point processor

reads the intensity I at a single image point and, based on

the known or estimated lighting conditions, calculates an in-

termediate numerical representation of the set of compatible

local shapes at that point, comprising a set of (or probabil-

ity density over) local surface orientations {(fx, fy)} at the

point. Each of the intermediate per-point orientation sets is

ambiguous on its own, but when the array of point proces-

sors is connected together—by enforcing surface continuity

and by including supplementary visual cues like occluding

contours or top-down semantics—one can begin to recover
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Figure 1. The set of local second order surface shapes

{(fx, fy ,fxx,fxy, fyy)} that are consistent with the derivatives

I = (I, Ix, Iy, Ixx, Ixy, Iyy) at one image point (black circle, left)

satisfy three polynomial equations. The zero locus (i.e., variety) is

two-dimensional and is visualized here projected to three dimen-

sions (fxx, fxy, fyy). Each element of the variety is a local shape

(four are called out) that produces the image derivatives under some

light direction. We show that for any non-degenerate I the two-

dimensional variety has four isomorphic components (colored in

this example) and can be efficiently approximated by a coupled

pair of shallow neural networks.

shapes f(x, y).

This has been the dominant paradigm for shape from

shading for nearly fifty years [10], but it is far from satisfac-

tory. Despite a half-century of research, it remains sensitive

to non-idealities and is rarely deployed without substantial

aid from a human annotator who first indicates occluding

contours in an image or provides a segmentation of a relevant

diffuse surface region. One reason for this fragility is that

lighting is typically non-uniform across surfaces, due to self-

shadowing and other physical effects. This makes it hard to

infer the lighting conditions for each image point, which in

turn distorts the per-point orientation sets {(fx, fy)} upon

which reconstruction is based. Moreover, even when light-

ing is uniform across a surface, the veridical location and

strength of a scene’s dominant light source can be impos-

sible to infer from an image due to inherent mathematical

ambiguities [3]. In comparison, monocular human vision
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seems to perform quite well at perceiving diffusely-shaded

shape, at least modulo these ambiguities [12], despite being

quite poor at inferring lighting [4].

This paper introduces a point processor for shading that

might help address these deficiencies, by providing per-point

constraints on shape without requiring knowledge of lighting.

The input to the processor is a measurement comprising a

vector of spatial derivatives of intensity at one point, denoted

by I := (I, Ix, Iy, Ixx, Ixy, Iyy), Koenderink’s 2-jet [11].

The internal structure of the processor is a coupled pair of

shallow neural networks, and the processor’s output is a

compact representation of a continuous set of compatible

local second-order shapes F (I) := {(fx, fy, fxx, fxy, fyy)}
in the form of a parametrized two-dimensional manifold

in R
5. The processor provides useful per-point constraints

because even though there are many compatible shapes F (I),
the overwhelming majority of shapes are ruled out.

Our main contribution is an algebraic analysis of Lam-

bertian shading that provides the foundation for the point

processor’s internal structure and the format of its output.

Specifically, we prove that the set of compatible local second-

order shapes F (I) are contained in the zero-set of three poly-

nomial equations, i.e., are contained in a two-dimensional

algebraic variety in R
5. We show that special properties of

this variety allow it to be represented in explicit form by a

function from R
2 to R

3, which in turn can be approximated

efficiently by a coupled pair of shallow neural networks.

The most important property of this point processor is that

it is “invariant to illumination” in the sense that the output

shape-set F (I) always includes the veridical local second-

order shape, regardless of how the surface is lit. This means

that while a surface lit from different directions will generally

induce different measurements I at a point, and while these

different image measurements will in turn produce different

shape-sets F (I), all of the predicted shape-sets will include

the true second-order shape at that point.

As examples of how the point processor can be used

for image analysis, we describe two scenarios in which the

intrinsic two-dimensional shape ambiguities F (I) at each

point can be reduced to a discrete four-way choice by ex-

ploiting additional constraints or information. One scenario

is uncalibrated two-shot photometric stereo, where the input

is two images of a surface under two unknown light direc-

tions. The other is quadratic shape from shading, where

the input is a single image of a shape that is quadratic over

an extended region. We demonstrate these using synthetic

images, leaving the development of robust algorithms and

deployment on captured photographs for future work.

Throughout this paper, we assume a frame of reference

such that our measurements are graphs of some polynomial

function. We represent these local surface height and image

values as vectors of their coefficients – applying the Monge-

Taylor map – ignoring dependence of fxx on fx. This is to

say that we are not attempting to solve any partial differential

equations; instead, we are studying algebraic constraints in

a local linear coefficient coordinate space.

2. Background and Related Work

Most approaches to shape from shading rely on a per-

point relationship between scalar intensity I and surface

orientation (fx, fy). If the lighting is from a single direction,

for example, then the set of compatible orientations is a right-

circular cone with axis equal to the light direction and apex

angle proportional to intensity. Similarly, if the lighting is a

positive-valued function on the directional two-sphere then

the set of compatible orientations is well approximated by

a one-dimensional manifold defined by the light function’s

spherical harmonic coefficients up to third degree [15, 2].

Regardless, any such relation between intensity and surface

orientation necessarily requires prior knowledge of, or accu-

rate estimates of, the lighting at every surface point. Despite

substantial recent progress [19, 1, 16, 8], including the abili-

ties to accommodate some amounts of non-uniform lighting

and non-uniform surface material properties, obtaining use-

ful results continues to require extensive help from a human,

who must first label the region that contains a continuous

surface and/or indicate the locations of occluding contours.

In contrast, we follow Kunsberg and Zucker [14] by en-

hancing the per-point analysis to consider not just the inten-

sity and surface orientation at a point, but also higher order

derivatives of intensity and shape. This allows eliminating

the dependence on lighting entirely, and it suggests the possi-

bility of a different approach where perceptual grouping and

shape reconstruction can occur without explicit knowledge

of lighting, and perhaps with lighting being (approximately)

inferred later, as a by-product of shape perception. In this

paper we consider just the first step toward this possibility:

the design of the essential point processor.

We are also motivated by the results of Xiong et al. [17],

who consider a lighting-invariant local area processor in-

stead of a pure point processor, and show that the intensity

values in an extended image patch determine the extended

quadratic shape up to a discrete four-way choice. This four-

way choice leads to the automorphism (i.e. an bijection from

a space to itself) group that we describe in Section 4.

Our work is complementary to recent learning-based ap-

proaches to monocular depth estimation (e.g., [6]) that aim

to exploit diffuse shading and many other bottom-up cues

while also exploiting contextual cues in large image datasets.

Our goal is to explore alternative front-end architectures and

interpretable intermediate representations that can improve

the generality and efficiency of such systems in the future.
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3. Local Shape Sets as Algebraic Varieties

Our illumination-invariant point processor is inspired by

the work of Kunsberg and Zucker [14], who use differential

geometry to derive three lighting-invariant rational equations

that relate the image 2-jet I at a point to the surface height

derivatives at that point. We take an algebraic-geometric

approach instead, which provides an abbreviated derivation

of equivalent equations and also reveals the shape-set to be

contained in an algebraic variety (i.e. in the zero-set of cer-

tain polynomial equations) that, as will be seen in Section 4,

has useful geometric structure.

3.1. Shading and Surface Models

Our analysis applies to any point in a 2D image. We

assign the coordinates (0, 0) to the point of interest and let

I(x, y) denote the intensity in a bounded local neighborhood

U ⊂ R
2 of that point. We refer to U as the receptive field.

In practice it is no larger than is required to robustly com-

pute a discrete approximation to the first and second spatial

derivatives of I(x, y) at the origin.

Within the neighborhood U , we assume that the image is

the orthographic projection of a curved Lambertian surface,

and that the surface can be represented by a height function

f(x, y). The surface albedo ρ ∈ R
+ is assumed to be con-

stant within U . We also assume that the lighting is uniform

and directional within U , so that it can be represented by

L ∈ R
3 with strength ‖L‖ and direction L/‖L‖. Under

these assumptions the intensity is

I(x, y) = ρL ·
N(x, y)

||N(x, y)||
, (x, y) ∈ U, (1)

where N(x, y) := (−(∂f/∂x)(x, y),−(∂f/∂y)(x, y), 1)T

is the normal field. Note that we allow for the projection,

albedo, and lighting to vary outside of neighborhood U .

We assume that the surface f is locally smooth enough

around the point (x, y) that we can ignore any third or higher

order derivatives at that point.

f(x,y)= fxx+fyy+
1

2

(

fxxx
2+2fxyxy+fyyy

2
)

. (2)

We refer to f := (fx, fy, fxx, fxy, fyy) ∈ R
5 as the local

shape at the point (x, y). We assume that all local shapes are

not flat or cylindrical, or more precisely are nondegenerate

in this sense:

Definition 1. A local shape f is nondegenerate if (fxx +
fyy)(fxxfyy − f2xy)(4f

2
xy + (fxx − fyy)

2) 6= 0.

Local shapes can produce many different image intensity

patterns depending on the lighting direction. We call the set

of all possible image 2-jets generated by any combination of

local shape and lighting realizable, and we say that a realiz-

able image 2-jet produced by a particular shape is consistent

with that shape.

Definition 2. The set of realizable measurements I is the

set of vectors v ∈ R
6 for which there exists a light direction

L ∈ R
3 and nondegenerate local shape f such that v = I

when shape model (2) is combined with shading model (1).

Definition 3. If for a pair (I, f) ∈ I × R
5 there exists such

an L, we say that I and f are consistent. This means that

for some light direction, f is a valid explanation of image

measurements I.

3.2. Sets of Local Shapes

Our immediate goal is to characterize the set of shapes

F (I) that are consistent with observation I for any light direc-

tion. This set of admissible shapes turns out to be contained

in the locus of real solutions to three polynomial equations.

An important feature is that the albedo and lighting do not

appear in these equations.

Theorem 1. Assume the shading model of (1) and the sur-
face model of (2), and suppose we are given a measurement
I ∈ I generated by some unknown surface/lighting combi-
nation. Define polynomials

C1(f ;I) :=f4
xIxx+2f3

xfxxIx+f2
xf

2
xyI+2f2

xfxyfyIx+2f2
xf

2
y Ixx

+2f2
xIxx−2fxfxxfxyfyI+2fxfxxf

2
y Ix+2fxfxxIx

+f2
xxf

2
y I+f2

xxI+f2
xyI+2fxyf

3
y Ix+2fxyfyIx

+f4
y Ixx+2f2

y Ixx+Ixx, (3)

C2(f ;I) :=f4
xIyy+2f3

xfxyIy+2f2
xf

2
y Iyy+2f2

xfyfyyIy+f2
xf

2
yyI

+2f2
xIyy+2fxfxyf

2
y Iy−2fxfxyfyfyyI+2fxfxyIy

+f2
xyf

2
y I+f2

xyI+f4
y Iyy+2f3

y fyyIy+2f2
y Iyy

+2fyfyyIy+f2
yyI+Iyy , (4)

C3(f ;I) :=f4
xIxy+f3

xfxxIy+f3
xfxyIx+f2

xfxyfyIy+f2
xfxyfyyI

+2f2
xf

2
y Ixy+f2

xfyfyyIx+2f2
xIxy+fxfxxf

2
y Iy

−fxfxxfyfyyI+fxfxxIy−fxf
2
xyfyI

+fxfxyf
2
y Ix+fxfxyIx+fxxfxyf

2
y I+fxxfxyI

+fxyf
3
y Iy+fxyfyIy+fxyfyyI+f4

y Ixy+f3
y fyyIx

+2f2
y Ixy+fyfyyIx+Ixy . (5)

Then, any nondegenerate local shape f ∈ R
5 that is a valid

explanation of measurements I will satisfy Ci = 0 ∀i. Equiv-

alently, the affine variety F := V(C1, C2, C3) contains the

set of all shapes f consistent with I.

Proof sketch. We provide a sketch of the proof here, with

details in the supplement. Begin with (1), absorbing albedo

ρ into (non-unit length) L. Introduce auxiliary variable w,

which plays the role of 1/||N(x, y)||. Substitution into (1)

yields polynomials g1(x, y, w, f) := I(x, y)− L ·N(x, y)
and g2(x, y, w, f) := w2||N(x, y)||2 − 1. Calculate first

and second spatial derivatives of g1 with respect to x, y,

evaluate all polynomials at (x, y) = (0, 0), and re-arrange to

eliminate variables L and w.
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t = −1.5 t = 0.5 t = 1.5 t = 2.5
Figure 2. Visualizations of the two-dimensional varieties for different measurements of the form I ≈ (1−t, -4.10, -5.87, -12.41,
-13.41, -20.30) + t. Each variety is projected to the same three dimensions as in Figure 1 and is colored by its isomorphic pieces.

Remark 1. The real solutions to these equations are identi-

cal to those of Corollary 4.2 of [14]; we offer our algebraic

derivation as an alternative to the differential-geometric

approach presented in that work.

Theorem 1 states that the set of local shapes that are con-

sistent with a given measurement I must satisfy a set of

three algebraically independent polynomials and thus, by

definition, is contained in a real two-dimensional algebraic

variety embedded in the five-dimensional shape space. (We

use the notation V(·) to denote the variety corresponding to

a set of polynomials. This is essentially their zero locus.)

This variety is analogous to the one-dimensional manifold

of surface orientations in classical shape from shading, and

it provides substantial constraints on local shape, because al-

though there are still infinitely many admissible local shapes,

the vast majority of shapes are disqualified.

The variety for a particular measurement I is visualized

in Figure 1, projected from the five-dimensional shape space

to a three dimensional space that corresponds to the second-

order shape dimensions (fxx, fxy, fyy). Additional exam-

ples are in Figure 2, which shows how the varieties change

for different measurements.

4. Properties of Local Shape Sets

At this stage we have an implicit description of a shape

set F (I) in terms of generating polynomials (3)-(5). For a

useful point processor, we want instead an explicit represen-

tation, as well as an efficient way to calculate (and store) that

explicit representation for any particular image 2-jet I. An

explicit analytic representation remains out of reach1, but

fortunately the varieties exhibit three properties that make

them easy to approximate.

First we show that the variety is equipped with an auto-

morphism group that naturally divides it into four isomorphic

pieces, allowing the entire shape set to be represented by

1When I and fx, fy are fixed, the solutions of (3)-(5) can be interpreted

as the intersection of three quadric hypersurfaces. Algebraic solvers for

finding the intersection of three quadric surfaces have been proposed [5, 13],

but these are computationally intractible for the equations studied here.

any one piece (Section 4.1). We then relate the one piece

to a continuous function φI from R
2 to R

3, which implies

that the point processor is equivalent to a map from vectors

I ⊂ R
6 to continuous functions φI : R

2 7→ R
3 (Section 4.2).

Finally, we show that any consistent pair of measurement

and shape I, f can be simultaneously rotated in the image

plane without affecting consistency, which allows a lossless

compression of the input space I.

As we will see later in Section 5, these three properties

enable an efficient point processor in the form of a neural

network approximation of the mapping from 2-jets I to func-

tions φI (see Figure 3). Examples of how this representation

can be used for shape from shading are described in Sec-

tion 6.

4.1. An automorphism group on F (I)

The first property follows from the fact that each variety

F (I) exhibits two symmetries. These symmetries are useful

because they allow each variety F (I) to be partitioned into

four isomorphic components and therefore represented more

compactly by just a single component. This partition applies

everywhere except on what is generically a single pair of

points of F (I). Thus while we must technically define this

partition over a “punctured" variety (what we will call F0

below), in practice we can typically ignore this distinction,

and may in what follows drop the subscript. The symmetries

follow from those described for extended quadratic patches

in [17] and can be verified by substitution into (3)-(5).

Observation 1. There exists a subset F+(I) ⊆ F (I) whose

orbit under the automorphism group generated by

ρ1 : (fx,fy,fxx,fxy,fyy) 7→−(fx,fy,fxx,fxy,fyy)

ρ2 : (fx,fy,fxx,fxy,fyy) 7→

1
√

4f2xy+(fxx−fyy)2













fxfxx−fxfyy+2fyfxy
2fxfxy+fyfyy−fyfxx
f2xx−fxxfyy+2f2xy
fxxfxy+fxyfyy

f2yy−fxxfyy+2f2xy













(6)
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is precisely F0(I), where

F0(I) := F (I)\V(4f2xy + (fxx − fyy)
2).

Thus for fixed I and fx, fy , there will be zero, two, or four

nonzero real solutions to (3)-(5), each of which corresponds

to a local shape that is some combination of concave/convex

and saddle/spherical. Figure 1 shows an example where the

variety’s four components are clearly visible, and where the

four highlighted surfaces comprise one orbit.

We can choose any of the variety’s components to be

the representative one. The component that corresponds to

shapes with positive curvatures is convenient to characterize,

so we choose that one and call it the positive shape set.

Definition 4. We call the semi-algebraic set

F+ :={f∈F0 : fxx+fyy>0 and fxxfyy−f
2
xy>0} (7)

the positive shape set. This subset F+(I) is the set F0(I)
modulo the group action of 〈ρ1,ρ2〉.

It is easily verified for non-planar images that 0 /∈ F+,

that there exist no real fixed points of ρ2, and that by Defi-

nition 1 4f2xy + (fxx − fyy)
2 6= 0 on F+(I). Therefore the

maps ρ1, ρ2 are well-defined on F+(I).

4.2. F+(I) is a graph

Our aim is to find a parsimonious representation of the

positive shape subsets F+(I) (and thus of the entire shape

set F (I)) as well as an efficient way to compute this repre-

sentation for any particular measurement I. Since F (I) and

its subset F+(I) are determined by I, we may define a map

Φ : I 7→ F+(I).

In order to simplify the map Φ from vectors I to posi-

tive subsets F+(I), we assume that each (two-dimensional)

positive subset can be parametrized by surface orientation

(fx, fy), so that the map Φ(I) = {(fx, fy, fxx, fxy, fyy)}
can be decomposed as

Φ(I) = {(fx, fy, φI(fx, fy))}, (8)

with φI : R
2 7→ R

3 a continuous function.

While we frame it here as an assumption, this decom-

position may in fact be exact. The Implicit Function The-

orem guarantees existence (and uniqueness) of a function

φ(fx, fy) = (fxx, fxy, fyy) in a local neighborhood of ev-

ery f for which the Jacobian of system (C1, C2, C3) is non-

singular. While proving that the Jacobian is always non-

singular—that is, non-singular for any I ∈ I and any real

(fx, fy)—remains an open problem, we conjecture that it is

true. Experimentally we have never witnessed a non-singular

Jacobian, and we can prove non-singularity in simplified

cases like the following.

Example 1. Consider the case in which the measurements

I satisfy Ix = Iy = 0, i.e. in which the image’s normal is

parallel to the viewing direction. In this case the determinant

of the Jacobian of system (C1, C2, C3) is

det J = γ((1 + f2y )fxx − 2fxfyfxy + (1 + f2x)fyy)

where γ = −4(fxxfyy − f2xy)/(1 + f2x + f2y )
5. This has a

real solution only if its discriminant taken with respect to fx,

discrfx det J = γ((1 + f2y )(fxxfyy − f2xy) + (f2xy + f2yy)),

is strictly positive. On F+(I), the term fxxfyy − f2xy > 0,

so discrfx det J < 0 over R. This implies that there are no

points in F+(I) where the implicit function fails.

4.3. Isomorphisms induced by rotations

A third property is a rotational symmetry about the local

viewing direction that allows us to losslessly compress the in-

put space I . Any local relation that exists between an image

I(x, y) and surface f(x, y) must persist for any orthogonal

change of basis of their common two-dimensional domain

(x, y). We are therefore free to define a local coordinate

system that adapts to each measurement I.
One choice is the local coordinate system that aligns with

the image gradient (Ix, Iy), using an orthogonal transform
that maps Iy to zero and Ix to a non-negative real number.
This implies three transformations,

TI :=
1

√

I2x + I2y

[

Ix Iy
−Iy Ix

]

=:

[

G11 G12

G21 G22

]

, (9)

SI :=





G2
11 2G11G21 G2

21

G11G12 G11G22 +G12G21 G21G22

G2
12 2G12G22 G2

22



 , (10)

RI :=





1 0 0

0 TI 0

0 0 S−1

I



 , (11)

for which one can verify that f ∈ F (I) if and only if R̂If ∈
F (RII) , with R̂I the principal submatrix of RI obtained by

removing its first row and column.

By using these transformations to pre-process each of

our point processor’s inputs I, and to correspondingly post-

process each output shape f , we reduce the effective input

space from I ⊂ R
6 to Ĩ ⊂ R

4 × R+. In the supplement, we

show that this transformation always maps Iyy to a nonposi-

tive value, so Ĩ is actually contained in R
3 × R+ × R−. The

size of Ĩ can be reduced further by exploiting the linearity

of (3)-(5) in I, which implies that F+ is invariant under any

positive real scaling of I. This means we can additionally

restrict Ĩ to the unit sphere S4 without loss of generality.

Combined, this reduces the effective input space to

Ĩ ⊂ R
3 × R+ × R− ∩ S4. We reap the benefits of this do-

main simplification when designing and training our neural

network.
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·
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◦RI

TI

S−1
I

Figure 3. The structure of our two-stage network approximator

φ̂I for the map from vectors I to functions φI. The right shows

orientation domain and output samples for the same I as in Figure 1.

5. A Neural Network Approximator

Let us ignore for now the pre- and post-processing trans-

formations related to rotations, and consider the task of

approximating the mapping from vectors I ∈ I to functions

φI. One convenient way to do this is to couple a pair of

neural networks, with the output of one network providing

the weights of the other. That is, we can use

φ̂I(fx, fy) := h (fx, fy; gθ(I)) , (12)

where gθ : R
6 7→ R

M is a (fully-connected, few-layer) neu-

ral network with tunable weights θ ∈ R
N and hψ : R2 7→

R
3 is a (fully-connected, single layer) neural network whose

weights ψ ∈ R
M are provided by the output of g. This

means that under the hood, φ̂I is a function of θ.
This is convenient because it provides a compact repre-

sentation that can be efficiently fit to a large set of training

samples. We can fit the weights θ by synthetically generat-

ing many measurements I and for each one computing many

samples f from the corresponding semi-algebraic set F+(I)
using Theorem 1 and Observation 1. This produces a set of

samples {(I(j), f (i,j))}i,j that we can use to solve

θ=argmin
θ

∑

j

∑

i

∥

∥

∥

(

f (i,j)xx ,f (i,j)xy ,f (i,j)yy

)

−h
(

f (i,j)x ,f (i,j)y ;gθ

(

I
(j)

))∥

∥

∥

2

(13)

via stochastic gradient descent.

Now, with only small modifications, we can incorporate

the rotational transformations of Section 4.3 to make the

approximator more efficient and reduce the training burden.

This simply requires surrounding the neural network with lin-

ear transformation blocks (see Figure 3) that pre-process an

input measurement I, and that correspondingly pre-process

the orientation domain (fx, fy) and post-process the out-

put curvatures (fxx, fxy, fyy) using (9-11). This reduces

the domain of network gθ from R
6 to R

3 × R+ × R− ∩ S4.

For example, if the input to block ·
‖·‖ ◦RI in Figure 3 is

I = (I, Ix, Iy, Ixx, Ixy, Iyy) then its output is

(Ĩ , Ĩx, Ĩxx, Ĩxy, Ĩyy)/‖(Ĩ , Ĩx, Ĩxx, Ĩxy, Ĩyy)‖ (14)

with Ĩ = RII (and dropping the now-redundant Ĩy = 0).

5.1. Training Data and Network Architecture

Training requires samples of 2-jets I
(j) ∈ I as well as

samples of the positive set F+(I
(j)) for each 2-jet. We

generate the former by sampling light source directions L

and quadratic patches f and then applying Eqs. (1) and (2)

(and their spatial derivatives) to render 2-jets I
(j). Specif-

ically, we sample light sources uniformly from the sub-

set of S2 contained in an angular radius of π/4 from the

view direction (0, 0, 1), and we sample surface orienta-

tions fx, fy uniformly from the unit disk B2. By Obser-

vation 1 it is sufficient to sample positive curvatures, so we

sample fxx, fxy, fyy uniformly from a bounded subset of

R
3 ∩ {fxxfyy − (fxy)

2 > 0} ∩ {fxx + fyy > 0}.
To create samples of the positive set F+(I

(j)) for each

2-jet, we first generate a dense set of sample orientations

{(f
(i)
x , f

(i)
y )} from the unit disk to serve as input to net-

work hφ. Then, for each I
(j) and for each f

(i)
x , f

(i)
y the

corresponding “ground truth” second order shape values

(f
(i,j)
xy , f

(i,j)
xy , f

(i,j)
yy ) are computed by applying a numer-

ical root-finder to (3)-(5). The result is a training set

{(I(j), f (i,j))}i,j .
Numerical root finding can be expensive, but the sim-

plification of the domain of gθ (see the previous section)

in our case reduces the computational burden. Rather than

generating enough 2-jets I
(j) to sufficiently sample I, we

need only generate enough for the measurements that are

pre-processed by block ·
‖·‖ ◦RI to sufficiently sample Ĩ.

For network gθ : R
5 7→ R

M we use dg = 1 hidden layer

with wg = 25 ReLU nodes. For network hψ : R2 7→ R
3

we use one hidden layer with wh = 50 ReLU nodes. The

total number of tunable parameters is N = 6wg + (dg −
1)wg(wg + 1) +M(wg + 1) +M , and once the model is

trained, the output description of the shape-set F (I) for

any 2-jet I consists of M = 3(2wh + 1) rational numbers

(the size of vector ψ). The entire shape set at each image

point is therefore summarized by only M = 303 numbers.

Figure 4 visualizes the quality of fit for a representative test

measurement I that was not used during training.

6. Applications

The point processor transforms image values at a single

point I into an intermediate representation of the consistent
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Figure 4. Visualization of the approximator’s interpolation error.

This figure depicts φ̂I for an I that was randomly chosen from

the convex hull of the training data set, but that was not used

as a training sample. The inset shows the four randomly-chosen

solutions for which our approximation performs worst, i.e. those f

that maximize the error ||f − (fx, fy, φ̂I(fx, fy))||
2
2.

local shape-set, in the form of a two-dimensional manifold

parametrized by surface orientation,
(

fx, fy, φ̂I(fx, fy)
)

.

To demonstrate how this continuous representation of per-

point shapes can be used for image analysis, we consider

two simple scenarios. In both cases, the per-point ambiguity

is resolved (up to a discrete four-way choice of shapes) by

exploiting additional information or assumptions.

Our demonstrations use simple images rendered accord-

ing to (1) with 1% additive Gaussian noise and 64-bit quanti-

zation. We estimate spatial image derivatives using Gaussian

derivative filters.

6.1. Uncalibrated two­shot photometric stereo

The per-point ambiguity can be resolved by capturing

additional images of the same surface under distinct light

directions. When the light directions are unknown this is

called uncalibrated photometric stereo [18, 7, 3]. In the

traditional formulation, which is based purely on surface

orientation (fx, fy), it requires at least three images under

three distinct lights [9]. Our point processor based on second-

order shape provides a similar capability with only two input

images instead of three.

Consider two measurements I1, I2 generated at the same

point from two (unknown) light sources L1,L2. A simu-

lated example is depicted in the top of Figure 5. The first

measurement I1 limits the shape to being in the set F+(I1),

but within this set all shapes are equally likely. Since the set

is parametrized by surface orientation
(

fx, fy, φ̂I1(fx, fy)
)

,

we can visualize the (uniform) “likelihood” over some

reasonably-sized disk of the orientation domain (fx, fy).
This is shown in the left of Figure 5, with the magenta dot

indicating the orientation of the latent true shape f∗ that was

used for the simulation.

The second measurement I2 further restricts the shape to

being in the intersection of sets F+(I1) and F+(I2). Thus,

we can improve the “likelihood” based on how close each

shape is to F+(I1) ∩ F+(I2). One way to quantify this is

L(fx, fy) :=
∥

∥

∥φ̂I2(fx, fy)− φ̂I1(fx, fy)
∥

∥

∥

2

(15)

for (fx, fy) in the disk. For our simulation, this updated two-

measurement likelihood is shown on the right in Figure 5,

where it provides a successful identification of the true shape.

Recovering the correct per-point shape (up to the four-

way choice) by this simple strategy relies on the intersection

F+(I1) ∩ F+(I2) being a single point, as seems to be the

case for our simulation, as shown in the bottom of Figure 5.

Our experiments suggest this is typically the case, but ana-

lytically characterizing the conditions for uniqueness may

be a worthwhile direction for future work. Also, resolving

the four-way choice at each point would require making ad-

ditional surface continuity assumptions, analogous to how

“integrability” is used to reduce the inherent global linear

ambiguity in traditional three-shot photometric stereo [18].

6.2. Surface continuity

An alternative way to reduce the per-point ambiguity

is to design a 2D array of point processors that are con-

nected together by enforcing surface continuity across an

extended region of the input image. As a simple example,

we consider the scenario in which the entire surface is an

extended quadratic function, meaning one that satisfies (2)

over the entire image I(x, y) with some “true shape” values

f
∗ = (f∗x , f

∗
y , f

∗
xx, f

∗
xy, f

∗
yy).

When the surface is known to be an extended quadratic,

any single local shape f ∈ F+(I1) at one point, say the

image origin, immediately predicts a corresponding lo-

cal shape f
′ at every other point (x, y) in the image, via

(f ′xx, f
′
xy, f

′
yy) = (fxx, fxy, fyy) and (f ′x, f

′
y) = (fx, fy) +

A(x, y) · (fxx, fxy, fyy) with matrix

A(x, y) =

[

x y 0
0 x y

]

. (16)

As before, we begin with a uniform relative likelihood over

the shape set F+(I1) obtained by a single measurement at the

origin in an input image of an extended quadratic surface (left

of Figure 6). Then given a measurement I2 at one other point

(x2, y2), we use that information to update the likelihood
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fx

fy

fx

fy

0 1
Relative Likelihood

only I1 both I1 and I2

Figure 5. Uncalibrated two-shot photometric stereo. Top row: two

simulated images of a surface under different lights, with measure-

ments I1, I2 at the same pixel location. Center row: “Likelihood”

of different shapes using only one measurement (left) or both mea-

surements (right), visualized over the orientation domain. Magenta

dot indicates true shape used for simulation. Bottom row: Shape

sets F+(I1), F+(I2) and their intersection (open circle).

over the first set using (15), but with the term φ̂I2(fx, fy)

replaced by
(

φ̂I2(fx, fy) +A(x2, y2) · φ̂I1(fx, fy)
)

. The

updated two-measurement likelihood is shown in the second

column of Figure 6.

We continue this process by adding information from ad-

ditional measurements, I3 at (x3, y3) and I4 at (x4, y4), each

time updating the likelihood over the original set L(fx, fy)
by accumulating the intersection errors between F+(Ii) and

F+(I1). The evolution of this likelihood for three and four

points is shown in Figure 6. We see that the composite

likelihood function achieves its global maximum at a shape

f ∈ F+(I) that is very close to f
∗ modulo the irreconcilable

four-way ambiguity. This is consistent with the area-based

analysis of Xiong et al. [17], which proves the uniqueness

of shape reconstruction for extended quadratric patches.

f (x, y)

I1

I2

I3

I4

f1

f2

f3

f4

I(x, y)

fy

fx

0 1

Relative Likelihood

I1 only I1, I2 I1, I2, I3 I1, I2, I3, I4

Figure 6. Combining shape information at multiple points on

an extended quadratic surface. Given one measurement I1, all

quadratic shapes in F+(I1) are equally likely. This is depicted on

the left as a constant relative likelihood over the domain of function

φ̂I. Incorporating measurements Ii at two or more points modifies

the likelihood to have a maximum that is close to the true shape

(magenta dot) modulo ρ1, ρ2.

7. Conclusion

This paper takes preliminary steps toward a deployable

point processor for shading that does not require knowledge

of lighting at a point or rely on accurate estimates of that

lighting. It suggests a new intermediate representation of the

set of consistent second-order shapes at each image point,

in the form of an explicit differentiable, parametrized two-

dimensional manifold. It also provides two simple examples

of how this new intermediate representation can be used for

shape analysis. The distinguishing feature of this approach

is that it has the potential to enable shape processing to

succeed in real-world situations where the lighting varies

across surfaces and is therefore difficult or impossible to

accurately infer.

The contributions of this paper are primarily theoretical,

and turning this research into practice will require substan-

tial progress in several directions. This may include com-

bining multi-scale derivatives, creating spatial regularization

schemes that are suitable for piecewise smooth surfaces, ex-

tending the approach from local second-order shape to local

third-order shape, and exploring the ability of the factored

network architecture to represent more general (e.g. non-

Lambertian) rendering models and to be trained from images

instead of algebraic equations.
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