
Leveraging 2D Data to Learn Textured 3D Mesh Generation

Paul Henderson

IST Austria

paul@pmh47.net

Vagia Tsiminaki

IBM Research Zürich

tsi@zurich.ibm.com

Christoph H. Lampert

IST Austria

chl@ist.ac.at

Abstract

Numerous methods have been proposed for probabilistic

generative modelling of 3D objects. However, none of these

is able to produce textured objects, which renders them of

limited use for practical tasks. In this work, we present the

first generative model of textured 3D meshes. Training such

a model would traditionally require a large dataset of tex-

tured meshes, but unfortunately, existing datasets of meshes

lack detailed textures. We instead propose a new training

methodology that allows learning from collections of 2D

images without any 3D information. To do so, we train our

model to explain a distribution of images by modelling each

image as a 3D foreground object placed in front of a 2D

background. Thus, it learns to generate meshes that when

rendered, produce images similar to those in its training set.

A well-known problem when generating meshes with

deep networks is the emergence of self-intersections, which

are problematic for many use-cases. As a second contribu-

tion we therefore introduce a new generation process for 3D

meshes that guarantees no self-intersections arise, based on

the physical intuition that faces should push one another out

of the way as they move.

We conduct extensive experiments on our approach, re-

porting quantitative and qualitative results on both syn-

thetic data and natural images. These show our method

successfully learns to generate plausible and diverse tex-

tured 3D samples for five challenging object classes.

1. Introduction

Learning the structure of a 3D object class is a funda-

mental task in computer vision. It is typically cast as learn-

ing a probabilistic generative model, from which instances

of the class may be sampled. The last five years have seen

dramatic progress on this task [53, 52, 36, 32, 27, 41, 8,

45, 54, 9, 2, 15, 28], enabled by new, large-scale train-

ing sets [6, 53]. However, existing methods generate only

shapes, without any associated textures to capture the sur-

face appearance. This is a major shortcoming since the sur-

face appearance of an object strongly influences how we

Figure 1. We propose a method to learn a generative model of

textured 3D shapes (right), from collections of images (left)

perceive and interact with it—consider for example the dif-

ference between a red and a green tomato, a police car and a

taxi, a book and a brick, or a zebra and a horse. As such, tex-

tures are vital for many practical uses of generated shapes,

such as visual effects and games.

We hypothesise that the lack of research on methods that

learn to generate textured shapes is in part due to a lack of

textured 3D data for training them. Of the two large-scale

datasets of 3D shapes, ShapeNet [6] lacks detailed textures

for most instances, while ModelNet [53] lacks color infor-

mation entirely.

We propose an alternative paradigm: rather than learn-

ing such a model from 3D data, we learn it from a large

collection of 2D images (Fig. 1). This lets us leverage ex-

isting weakly-annotated image datasets, at the price of solv-

ing a very challenging learning problem. It is challenging

for three reasons: (i) infinitely many 3D shapes may project

to give the same 2D image; (ii) we cannot rely on having

multiple views of each object instance; (iii) objects appear

in front of cluttered backgrounds, and segmentation masks

may not be available. We must therefore learn to isolate

foreground objects from background clutter, at the same

time as learning their space of valid shapes and textures.

Our first contribution is a new generative model over

textured 3D shapes (Sec. 3). Our second and most signifi-

cant contribution is a method to train this model to match

a distribution of images (Sec. 5), overcoming the difficul-

ties mentioned. Specifically, our model learns to recon-

struct its training images in terms of the physical process

by which they were formed. This is achieved by augment-

ing the generative model with an image-formation model—

we place the generated 3D object in front of a camera, and

7498

render it over some background to give an image. An en-

coder network then predicts the latent parameters that give

rise to any given image. Thus, the model must explain the

distribution of training images in terms of a distribution of

3D foreground objects over 2D backgrounds (Fig. 2). By

modelling the variability among object instances using a

limited-capacity latent space, we ensure that our method

generates complete, coherent objects, rather than unrealistic

shapes that could explain each training image in isolation.

Informally, this works because it takes more bits to encode

a distribution over many partial, viewpoint-dependent ob-

ject appearances than over the variability of the true global

appearance model.

We choose meshes as our representation of textured

shapes, similar to some recent works on single-image 3D

reconstruction [22, 30, 24, 49]. Meshes are the dominant

shape representation in computer graphics, and have several

benefits over alternatives such as voxels and point-clouds:

(i) their computational cost scales (at worst) with surface

area not volume; (ii) they can represent arbitrarily-oriented

surfaces; (iii) they can directly represent solid surfaces with

a well-defined normal and interior/exterior.

Training a model to output meshes that correctly re-

construct its training images suffers one potential failure

mode—correct-looking images may be obtained by render-

ing even highly-irregular, self-intersecting meshes, due to

the ambiguity of the projection operation. This is problem-

atic as many downstream use-cases, such as physical simu-

lations, geometry-processing algorithms, and 3D printing,

require meshes that are non-intersecting—that is, no tri-

angular faces intersect with any others. For smooth, reg-

ular object classes such as cars, non-intersection can be en-

couraged by careful regularization of the local surface ge-

ometry [24, 22]. However, for angular, non-convex object

classes with elongated parts, such as chairs and airplanes,

a sufficiently strong regularizer results in overly-smoothed

surfaces lacking in detail.

As a further contribution, we therefore propose a

novel mesh parametrization, that necessarily yields

non-intersecting surfaces even without regularization

(Sec. 4). It nonetheless has great representational flexibil-

ity, and can faithfully capture complex shapes such as chairs

and airplanes. Our parametrization has a simple physical

intuition—as faces move, they push others out of the way

rather than intersecting them; we show how to formalise this

idea and efficiently incorporate it in gradient-based training.

We conduct extensive experiments illustrating the per-

formance of our method (Sec. 6). We first validate its per-

formance on synthetic data from four diverse object classes,

then show that it also performs well on two challenging

classes of natural images. In all cases, we show both quan-

titatively and qualitatively that our method successfully

learns to generate samples that are diverse and realistic,

even when ground-truth segmentation masks are not avail-

able. Moreover, we show that our novel mesh parametriza-

tion eliminates problematic self-intersections, yet allows

representing angular and concave classes such as chairs, air-

planes, and sofas.

2. Related work

The vast majority of methods for automatically gen-

erating 3D shapes are based on variational autoen-

coders (VAEs) [25] or generative adversarial networks

(GANs) [11]. However, almost all such models (e.g.

[53, 54, 45, 59, 3, 9, 2]) must learn from large datasets

of 3D shapes [6, 53]; this stands in contrast to our own,

which instead learns from collections of images. We now

discuss existing works that do learn (untextured) 3D gener-

ative models from 2D datasets, and also methods for single-

image reconstruction that are trained with only 2D data.

Generative 3D models learnt from 2D data. The first

work to learn a generative model of 3D shapes from 2D

data was [8]. The authors train a GAN that produces vox-

els, with a discriminator that ensures these project to sil-

houettes matching a distribution of ground-truth segmen-

tation masks. MP-GAN [28] extends this to use multiple

discriminators, corresponding to different viewpoints, si-

multaneously training a classifier to predict the viewpoint.

Reliance on silhouettes is a severe limitation when ground-

truth masks are not available; our method avoids it by recon-

structing the image pixels themselves. The closest work in

spirit to ours is [15], which learns single-image reconstruc-

tion and mesh generation from untextured renderings under

known lighting. Unlike us, they do not to learn to generate

or reconstruct textures, so their method still cannot work on

natural images. Moreover, their method has no mechanism

to ensure that it produces meshes without self-intersections.

Finally, HoloGAN [33] is a GAN over images, that incor-

porates a 3D latent feature space. This allows manipulation

of 3D pose parameters somewhat-independently of object

identity and background. However, it cannot output an ex-

plicit 3D shape representation such as a voxel grid or mesh.

Single-image reconstruction learnt from silhouettes.

Several recent works learn single-image 3D reconstruction

from 2D silhouettes [36, 56, 51, 47, 24, 46, 22, 19, 57, 14,

15, 30, 23, 16]. These are trained discriminatively to map

images to 3D representations (voxels, meshes, or point-

clouds); they use losses that ensure the reprojected, recon-

structed silhouette matches one or more masks provided as

supervision. Four of these works also consider colors: [30]

has a post-processing stage that predicts the texture for a

reconstructed mesh; [47] shows an example of reconstruct-

ing colored voxels, assuming training with multiple views

per instance; [16] does the same even when only a single

view per instance is available; [22] learns single-image tex-

tured mesh reconstruction, using mask and keypoint anno-

7499

training
image

colored

3D mesh

differentiable

renderer

feature
extractor

background image

generated

image

dec
shape

dec
color

reconstruction loss

group pixels
by face

x

z
bg

θ

z
shape

z
color

vertex
positions

mesh topology
face

colors

pose

Figure 2. We propose a probabilistic generative model of textured 3D meshes (blue; see Sec. 3). We show how to train it using only 2D

data (Sec. 5), by adding additional components (pink) that model the process of forming an image from a 3D foreground mesh rendered

over 2D background clutter. We train the model to maximise the likelihood of a dataset of images, by adding an encoder model (green)

that predicts the posterior distribution on latent variables for a given image. White circles represent random variables; colored boxes are

densely-connected networks; trapezoids are convolutional networks

tations. Unlike ours, none of these methods allow sampling

new meshes a priori—they do not learn an explicit prior.

Texture generation and reconstruction. Other recent

works learn to generate or reconstruct textures given full su-

pervision, which limits them to classes for which extensive

textured 3D data is available. [35] defines textures implic-

itly, as a function of 3D position; they show that this rep-

resentation allows sampling textures given a 3D shape, or

reconstructing texture from a single image and shape. [59]

generates images of textured 3D shapes, by first sampling

textureless shapes and projecting them to a silhouette and

depth-map; the texture is then generated in image space.

[43] performs textured single-image reconstruction, using

colored voxels as the output representation. [29, 38] learn

priors on textures to improve multi-image reconstruction.

Non-intersecting mesh parametrization. One of our con-

tributions is a method to parametrize meshes such that the

resulting surface is highly flexible, yet guaranteed not to in-

tersect itself. Methods for single-image 3D reconstruction

use local smoothness regularizers such as Laplacian regu-

larization [42], TV-L1 regularization [58], and regulariz-

ing the angles between adjacent faces [24, 30]. However,

these only prevent local surface irregularity, and do not pe-

nalise two smooth surfaces passing through each other. The

related problem of detecting, characterising and removing

mesh self-intersections has received some attention in the

graphics literature [55, 5, 20]. Unfortunately, none of these

methods allow us to construct meshes that do not intersect

a priori, which is necessary when we predict their shape

directly from a neural network.

3. Modelling textured meshes

We begin by defining our probabilistic generative model

for textured 3D meshes (Fig. 2, blue background). Each

mesh consists of NV vertices, and NF triangular faces to

which we assign colour values c. We assume fixed topology

for all meshes, i.e. NV , NF , and the mapping between faces

and vertices, do not vary between instances. To generate a

mesh, the model must therefore sample the positions v of

all vertices, and the colors c of all faces.

We draw low-dimensional latent code variables from

standard Gaussian distributions, then pass these through de-

coder networks producing the required attributes:

zshape ∼ Normal(0, 1) (1)

zcolor ∼ Normal(0, 1) (2)

v = decshape (zshape) (3)

c = deccolor (zcolor, zshape) (4)

Here, zshape captures the object’s 3D shape; the shape de-

coder decshape can be as simple as a densely-connected

ELU network with 3NV outputs v, corresponding to the

3D position of each vertex (we discuss a more sophisticated

option later). Similarly, zcolor captures texture; deccolor
is a densely-connected ELU network with 3NF outputs

c, corresponding to the color of each face represented as

red/green/blue values.

Note that separating zshape from zcolor lets us recon-

struct the shape of an instance before its color is known,

which will be important for our training process (Sec. 5).

However, by passing the shape code into deccolor, we still

allow dependencies between color and shape, e.g. to capture

the fact that a bird with the shape of an eagle should never

have the colors of a robin. Detailed network architectures

are given in the supplementary material.

Calculating vertex locations with a neural network typ-

ically results in highly irregular meshes with many self-

intersections (e.g. Fig. 5). This is undesirable for many

use-cases, and in general, difficult to avoid with regulariza-

7500

û

P
û

f
1

d
1

min

d
2

min

d
3

min

d
4

min

Q
1

Q
2

f
2

d
1

d
2

d
3

d
4

q
1

1

q
1

2

q
2

1

q
2

2 ε

solve LP for d

!

Figure 3. A 2D example of pushing faces (left is before pushing,

right is after); û lies in the plane of the page, with Pû perpendic-

ular. Black lines are the initial faces f1, f2; blue lines are after

shifting by d
min (left) and d (right). f1, f2 do not initially inter-

sect, but overlap in Pû; the proposed distances d
min of motion

along û would create an intersection in the orange circle. d
min

is mapped to d such that the intersection is prevented, by solving

an LP; note that dv > dmin

v
for v ∈ {3, 4}, but dv = dmin

v
for

v ∈ {1, 2}.

tion alone. The next section describes a more sophisticated

structure for decshape, that produces vertex locations which

are guaranteed not to create intersecting surfaces.

4. Non-intersecting mesh parametrization

Our goal is a decoder network that produces vertex loca-

tions such that no surface intersections can occur, but highly

concave, angular surfaces (e.g. chairs) can still be repre-

sented.

Physical motivation. When playing with a deflated bal-

loon, we can deform it quite drastically without introduc-

ing any intersections, simply because when attempting to

push one surface through another, the second will instead

be pushed out of the way. It is not computationally feasible

to simulate the physical dynamics of such a system during

training. Nonetheless, we can make use of this insight, by

combining a careful choice of parametrization with a sim-

ple, efficient model of surface collisions.

Parametrization. Instead of producing the final set of ver-

tex positions in a single shot, we perform a sequence of

Ns simpler deformation steps, starting from an initial, non-

learnt mesh with spherical topology (and thus no intersec-

tions). In each step, we will move all vertices in the same

direction û, but by differing (non-negative) distances d. A

densely-connected network outputs û, and lower bounds

dmin on the distances, but these are modified to give d such

that each face pushes others rather than intersecting them.

Pushing faces. We map the initial distances dmin to pushed

ones d that minimise
∑

v dv , where v indexes vertices. This

minimisation is subject to two sets of constraints: (i) dv ≥
dmin
v ∀v, i.e. each vertex moves at least as far as specified by

the decoder network, and (ii) no intersections should arise.

To impose (ii), we first find all pairs of faces that could

intersect, depending on the distances their vertices move.

As all vertices move in the same direction, this problem

can be considered in 2D: we project all vertices and faces

into a plane Pû perpendicular to the direction of motion û,

and find all pairs of faces for which the corresponding trian-

gles in Pû intersect with non-zero area. For each such pair

of faces (f1, f2), their intersection is a polygonal region

of Pû; we can re-project this region back onto each face

in 3D space, giving planar polygons (Q1, Q2) respectively

(Fig. 3).

As there are initially no intersections, we can order Q1

and Q2 according to their projection onto û: if q
j
i is the

position of the jth corner of Qi, then either q
j
1 · û < q

j
2 ·

û ∀j, or q
j
1 · û > q

j
2 · û ∀j. We assume without loss of

generality that the former holds; to avoid intersections, this

must remain true even after moving each vertex by dvû.

Let β
j
i be the barycentric coordinates of q

j
i w.r.t. the tri-

angular face fi in which it lies. The distance by which q
j
i

moves is then given by β
j
i · d |fi , where d |fi contains the

elements of d corresponding to the vertices of face fi. The

constraint that f1 and f2 do not intersect, i.e. that none of

the points q
j
i change ordering, then becomes

q
j
1 · û+ β

j
1 · d |f1 + ε ≤ q

j
2 · û+ β

j
2 · d |f2 ∀j (5)

where ε is a small buffer distance.

All the constraints we have defined are linear in d. Thus,

minimising our objective
∑

v dv under them defines a linear

programming problem (LP), which can be solved efficiently

using the simplex algorithm [34]. In practice, we use the

efficient off-the-shelf solver of [31].

Propagating derivatives. We have now defined d as the so-

lution to an optimisation problem that has dmin and the ver-

tex locations as inputs. In order to incorporate this in our de-

coder network, we need to propagate gradients back through

the optimisation process from d to these inputs. Note that

the solution to an LP always lies at a corner of the polytope

defined by its constraints. At this corner, equality holds for

some subset of active constraints. These constraints define a

system of linear equations, whose solution equals d. Thus,

back-propagating gradients from d is exactly equivalent to

back-propagating them through the process of solving this

linear system, e.g. by Cholesky decomposition, allowing di-

rect implementation in TensorFlow [1].

5. Training from images

Our goal is to train the generative model of Sec. 3 using

only images, without any 3D data We assume access to a

training set of images, each containing exactly one instance

of the target object class, and consider two training settings:

• (MASK) We have access to (i) the approximate camera

calibration; (ii) a segmentation mask for each target ob-

ject instance; and (iii) the background image, i.e. a view

7501

of the same environment but without the foreground ob-

ject present. For our experiments, we estimate these au-

tomatically from weakly-annotated data, e.g. by running

a segmentation algorithm on unannotated data and in-

painting the background, and estimating the camera cal-

ibration from keypoints. We found the model is robust

to even quite large errors in the camera calibration. This

setting is similar to some weakly-supervised methods for

single-image 3D reconstruction [22, 23] and untextured

3D generation [8, 15].

• (NO-MASK) We have only the (approximate) camera

calibration available. This second setting is much more

challenging, and goes beyond all prior works on weakly-

supervised reconstruction and generation.

To allow training in these settings, we augment the gen-

erative model with additional components to model the en-

tire image formation process (Fig. 2, pink background).

Specifically, after sampling the mesh itself, we position it

in 3D space in front of a perspective camera, and render

it over a background image. The final, observed image x

is an isotropic Gaussian random variable with mean equal

to the rendered pixels, and fixed variance. We then intro-

duce an encoder (or inference) network, that predicts the

latent variables corresponding to a given image. This lets

us train our model to match a distribution of images (rather

than meshes), by learning to reconstruct each in terms of a

foreground mesh in front of background clutter. We now

describe each aspect of this training methodology in detail.

Background image. In setting (MASK), the background

is provided as input to the model along with the train-

ing image. In setting (NO-MASK), we explicitly model

the background, i.e. our generative process samples both

the 3D foreground object, and the 2D pixels that are ‘be-

hind’ it. The background is generated by sampling a low-

dimensional latent code vector zbg, and passing it through

a convolutional decoder network. Whereas the decoder in

a VAE or GAN is typically designed to be as powerful as

possible, we need to avoid the background model being too

powerful, and thus able to model the foreground object as

well. We therefore set the dimensionality of zbg to be just

16, use only three transpose-convolutional layers, and up-

sample the resulting image 4× or 6× to the desired resolu-

tion. This ensures the model cannot capture high-frequency

details such as the edge of the foreground object.

Rendering. To render the generated mesh over the back-

ground image, we first place it in 3D space relative to a

camera at the origin, according to a pose θ. This captures

the fact that the object may not be centered nor at known,

constant depth in the original image, and we do not wish the

shape model to have to account for this variability. We then

project and rasterise the mesh, using the publicly-available

differentiable mesh renderer DIRT [13, 15]. We use direct

illumination and Lambertian reflectance [26], and do not at-

tempt to disentangle albedo from shading.

Variational training. Let z denote all the latent variables

(zshape, zcolor, zbg, θ). Our full model defines a joint dis-

tribution P (x, z) = P (z)P (x | z) over these and the re-

sulting image x. We would ideally train it to maximise the

likelihood of a training dataset of images; however, this is

intractable due to the latent variables. We therefore adopt a

variational approach [21], adding an encoder network that

predicts parameters of a variational posterior distribution

Q (z |x). The following is then a lower bound (the ELBO)

on the data log-likelihood [37, 25]:

L = E
Q(z|x)

logP (x|z)−DKL [Q(z|x) ||P (z)] ≤ logP (x).

(6)

In practice, rather than maximising L directly, we make two

modifications. First, following [18], we multiply the KL-

divergence term by a constant factor. Second, we replace

the Gaussian log-likelihood logP (x|z) by the multi-scale

structural similarity (MS-SSIM) metric [50], which (i) al-

lows gradients to propagate across longer distances in the

image, and (ii) tends to preserve fine details better. The

generative model and encoder network are trained jointly to

maximise this objective—thus they learn to reconstruct in-

put images, while ensuring the posterior distribution on the

latents is close to the prior.

Encoder. The encoder network (Fig. 2, green background)

takes an image as input, and predicts the mean and vari-

ance of Gaussian posterior distributions on zshape, zcolor,

zbg, and θ. We use a small CNN (similar to [51, 15]) to ex-

tract features from the image; the mean and log-variance of

zshape, zbg, and θ are then computed by densely-connected

layers. Detailed network architectures are given in the sup-

plementary material.

We experimented with the same approach for zcolor.

However, this gives rise to a challenging learning task: the

network must map an image to the colors of all faces, with-

out explicitly knowing which faces would be visible in the

reconstruction, nor where in the image they project to. We

achieved better results using a novel architecture that ex-

plicitly incorporates this information. We group pixels of

the input image (Fig. 2, ‘group pixels by face’) accord-

ing to which (if any) face of the reconstructed mesh de-

fined by zshape they would lie in (this is possible as the

shape does not depend on zcolor, hence can be reconstructed

first; see Sec. 3). For each group (including one for back-

ground pixels), we calculate the mean RGB values of the

pixels that were assigned to it. This defines a matrix of

size (NF + 1) × 3, which we flatten and encode with a

small densely-connected network. The resulting code then

captures the input pixel colors in a way that accounts for

where they lie with respect to the surface of the recon-

structed mesh. Thus, the encoder network does not have

7502

Figure 4. Textured meshes sampled from our model, trained on renderings from ShapeNet. Each group of five images shows the same

sampled mesh from different viewpoints. Cars and sofas are trained in setting (NO-MASK) with (DENSE) parametrization; chairs and

airplanes are trained in setting (MASK) with (PUSHING) parametrization, and thus are free of self-intersections in spite of the finely detailed

geometry. Note the samples are diverse and realistic, both in terms of the mesh geometry and textures. Best viewed in color with zoom.

to learn this invariance itself from data. Finally, the mean

and variance for zcolor are estimated by another dense layer

taking this code and the image features as input.

Regularization. In setting (MASK), we additionally

maximise the intersection-over-union (IOU) between the

ground-truth mask and the reconstructed silhouette. This

ensures the foreground mesh does not overlap into back-

ground regions of the image. For easier optimisation, we

take the mean of the IOU at multiple scales, using smoothed

and downsampled masks/silhouettes. We also found it use-

ful to add local mesh smoothness regularizers, similar to

[22, 24, 30].

6. Experiments

We conduct experiments on five diverse object classes:

birds, cars, airplanes, chairs, and sofas, which have also

been the focus of related works on weakly-supervised re-

construction and generation [22, 28, 15, 46]. In Sec. 6.1, we

validate our method in a controlled setting on renderings of

ShapeNet meshes [6], analysing its performance under dif-

ferent settings and parametrizations. Then, in Sec. 6.2, we

show that it successfully learns models from two challeng-

ing datasets of natural images.

All hyperparameters (e.g. regularizer strengths and mesh

resolution) were selected manually for perceived quality of

generation; we did not directly optimise them w.r.t. our

quantitative metrics. Our code, hyperparameters and pre-

processed datasets are available at https://github.

com/pmh47/textured-mesh-gen.

Metrics. We are not aware of any existing evaluation

metric for generative models of textured 3D shapes. We

therefore propose a new evaluation protocol using estab-

lished 2D metrics: inception score (IS) [39], Fréchet in-

ception distance (FID) [17] and kernel inception distance

(KID) [4]. All these metrics pass a large set of generated im-

ages through the CNN of [44], recording output logits and

feature activations. IS measures how similar the logits are to

a uniform distribution, in terms of KL divergence (larger is

better). FID and KID pass a test set of ground-truth images

through the same CNN, then measure how similar their fea-

ture activations are to those of the generated images (smaller

is better). To apply these metrics in our setting, we ren-

der 25600 meshes sampled from our model, each over a

ground-truth background, and report the IS/FID/KID values

for these images 1.

6.1. Validation on ShapeNet

For our experiments on synthetic data, we use four

ShapeNet [6] classes: car, chair, airplane, and sofa. These

have very different characteristics—cars have a smooth,

largely-convex shape and areas of high-frequency texture;

chairs and airplanes have much more angular shapes with

multiple elongated parts, but are often of more uniform tex-

ture; sofas are typically concave with large, flat surfaces.

We use 80% of the instances in each class for training, and

20% for evaluation.

Our model is trained using renderings rather than the

meshes themselves. For car and sofa, we use the render-

ings of [7]; for chair and airplane, we obtained better results

using those of [12], which have greater pose diversity. Al-

though these datasets contain several images per mesh, we

shuffle the images randomly, so there is only a very small

chance of the same object appearing twice in one minibatch.

As a form of data augmentation, we alpha-composite the

renderings over random solid color backgrounds.

Generation with and without mask annotations. We train

separate models on each of the four classes, in each of the

two supervision settings (MASK) and (NO-MASK). In Fig. 4,

we see that our method has learnt to generate plausible sam-

ples for all four classes. The samples are reasonably diverse

in terms of both texture and shape—note the different col-

ors of car, different styles of chair, etc. More examples are

shown in the supplementary material. Even in setting (NO-

MASK), the model has learnt to sample meshes that repre-

sent a complete instance of the foreground object, without

including any sections of background—in spite of training

without segmentation annotations. This is particularly im-

pressive for chairs, which have narrow legs that could easily

be ignored. Quantitatively, Tab. 1 shows that (NO-MASK)

does give slightly poorer results than (MASK) in terms of

1use of ground-truth backgrounds avoids confounding the quality of

mesh generation with that of background generation in setting (NO-MASK)

7503

(MASK) (NO-MASK)

IS FID KID IS FID KID

airplane 4.0 73.5 0.063 3.2 56.5 0.044

car 4.1 154.0 0.123 3.5 165.4 0.136

chair 5.8 111.1 0.088 5.2 82.6 0.061

sofa 4.3 58.3 0.037 4.3 63.8 0.041

Table 1. Quantitative measures of generation for four ShapeNet

classes, in settings (MASK) and (NO-MASK) (training with and

without ground-truth masks respectively) For IS, larger is better;

for FID/KID, smaller is better.

IS, which is expected as it is a significantly more challeng-

ing setting. For FID and KID, performance is similar in

the two settings—car and sofa are better with (MASK), and

airplane and chair with (NO-MASK).

Non-intersecting mesh parametrization We now evalu-

ate our non-intersecting mesh parametrization (PUSHING),

comparing it to a simple dense decoder (DENSE) that di-

rectly outputs vertex locations. Qualitative examples with

(PUSHING) are given in Fig. 4 for classes chair and air-

plane; we see that this parametrization is powerful enough

to produce realistic shapes, in spite of it having consid-

erably fewer degrees of freedom than (DENSE). Fig. 5

shows details of two chairs for illustration, one sampled

with (DENSE) and the other with (PUSHING). While both

render to give reasonable images, the sample with (DENSE)

has numerous intersecting faces visible, while that with

(PUSHING) does not.

For quantitative comparison, we use the classes chair,

airplane, and sofa, for which local surface regularizers

struggle to prevent self-intersections. As well as the three

generation metrics, we also measure the mean fraction of

faces that intersect another face. We see (Tab. 2) that

(DENSE) typically produces shapes with substantial num-

bers of self-intersections, while (PUSHING) avoids these.

Thus, meshes from (PUSHING) may be used in downstream

tasks which require a non-intersecting surface, in contrast to

those from (DENSE). Conversely, all three generation met-

rics indicate slightly worse performance with (PUSHING).

We believe this is because although (PUSHING) is highly ex-

pressive, the decoder network is less free to make arbitrary

movements to individual vertices in response to gradients,

as vertices are tied together through the shared directions û.

The space of shapes is therefore more difficult to traverse by

gradient descent. Thus, there is a trade-off to be made de-

pending on the desired application—when non-intersection

is important, (PUSHING) should be used, but when it is not

a requirement, (DENSE) may be more appropriate.

6.2. Results on natural images

For our experiments on natural images, we use two

classes: bird and car. The images of birds are taken from

the CUB-200-2011 dataset [48]; we use the preprocessed

(DENSE) (PUSHING)

int. faces int. faces IS FID KID

airplane 56.1 % 0 % 3.7 76.3 0.067

chair 58.8 % 0 % 5.4 145.8 0.127

sofa 77.0 % 0 % 4.0 82.6 0.058

Table 2. Mean fraction of intersecting faces per generated mesh

(int. faces) in setting (MASK) using (DENSE) and (PUSHING)

parametrizations. We also give the generation metrics for

(PUSHING); see Tab. 1 for the same using (DENSE).

Figure 5. Examples of chair mesh structure and renderings using

densely-connected (DENSE) (left) and non-intersecting (PUSHING)

(right) mesh parametrizations. Faces that intersect others are high-

lighted in red. Note that the right-hand mesh is free of intersecting

faces, in contrast to the left. Consistency of the renderings with an

input image is not sufficient to enforce this, as both renders appear

reasonable. In both cases, we used the same strengths for the local

smoothness regularizers, so these do not influence the result.

version from [22], including their approximate camera cal-

ibrations, and discard the class labels. Each image contains

one bird, which we crop out using the provided segmen-

tation masks, applying a random offset for data augmenta-

tion. For setting (MASK), we synthesise a background by

inpainting the region corresponding to the bird, replacing

each pixel inside the mask with the nearest non-foreground

pixel. The images of cars are taken from the BrnoComp-

Speed dataset [40], and we use their approximate camera

calibration. We segment and crop out individual cars us-

ing [10], and use the median frame as the background. Al-

though the original data is video, we sample frames sparsely

and shuffle them, treating them as independent images.

We see (Fig. 6) that our approach yields realistic 3D

meshes for both classes (more samples are shown in the sup-

plementary material). In setting (MASK), the sampled cars

have diverse shapes and colors; in the more challenging set-

ting (NO-MASK), the shapes are a little less diverse, and the

colours a little more blurry, but all samples are still clearly

identifiable as cars. For birds, the results are even stronger;

there is no perceptible decrease in performance when we

do not have mask annotations. This is perhaps because the

highly varied backgrounds of the bird images are difficult

for the foreground model to (incorrectly) incorporate.

A similar pattern is apparent in the quantitative results

(Tab. 3), where we see that (NO-MASK) birds in fact per-

form significantly better than any other combination. Mean-

while, for car, we see that (NO-MASK) performs slightly

worse than (MASK), in accordance with the qualitative re-

sults. We also give results for a conventional (2D) deep

7504

Figure 6. Cars and birds generated by our model. Each group of 11 images shows different views of one textured 3D mesh sampled from

our model. The left-hand image has a background and pose drawn randomly from the test dataset. The lower five images in each group are

normal maps, which reveal the 3D structure more clearly. Samples in the the top half use (MASK): those in the bottom half use (NO-MASK).

(MASK) (NO-MASK)

IS FID KID IS FID KID

Our model

car 2.8 191.4 0.211 3.0 182.1 0.197

bird 4.5 104.3 0.090 3.8 75.4 0.060

2D VAE

car - - - 3.0 157.4 15.4

bird - - - 3.3 213.8 21.0

Table 3. Quantitative measures of generation, training on natural

images of cars and birds, in settings (MASK) and (NO-MASK). For

IS, larger is better; for FID/KID, smaller is better. For reference,

we also include results from a 2D deep convolutional VAE.

convolutional VAE, with similar latent capacity, encoder ar-

chitecture, and training time as our models, to give a refer-

ence for the ranges of the different metrics. Our 3D models

give significantly better results than this baseline for birds,

and somewhat worse for cars; this possibly reflects the high

degree of background complexity in CUB.

Single-image 3D reconstruction. While trained for gen-

eration, our model learns single-image 3D reconstruction

‘for free’—we can obtain a textured mesh reconstruction by

running the encoder and decoder networks (green and blue

parts of Fig. 2) on an image. In the supplementary mate-

rial, we show examples of such reconstructions, on held-out

validation images from the car and bird datasets. Notably,

occluded regions are reconstructed plausibly, even though

they do not influence the photometric reconstruction loss.

This is because the model must learn to produce textured

shapes that reproject well for all training images, while rep-

resenting their variability in a low-dimensional latent space.

Moreover, it must do so subject to the KL term in the loss

(6) that explicitly limits the latent capacity. This discour-

ages solutions where the predicted shapes explain each im-

age in isolation, but occluded parts have appearances lying

outside the space of variability that is observed in images

where that part is visible. Note that for the bird images, our

easier setting (MASK) matches that of [22], allowing quali-

tative comparison with their approach.

7. Conclusion

We have presented a new generative model of textured

3D meshes, and shown how to train this from images alone,

by augmenting it to capture the entire image formation pro-

cess. We train the model to explain its training images, by

reconstructing each in terms of a foreground mesh rendered

over a background. We have shown that this approach al-

lows us to generate diverse and realistic textured meshes of

five object classes. Importantly, our method can use natural

images, not just renderings, as training data. Moreover, it

does not rely on multiple views of the same instance, nor on

ground-truth segmentation masks. The resulting meshes are

textured, and so may be used immediately in downstream

applications such as visual effects and games.

We have also presented a new mesh parametrization, that

avoids intersections a priori. This is useful whenever we

need to generate a mesh from a neural decoder with the

guarantee that it does not contain any self-intersections,

necessary for example if it is to be used for physical sim-

ulation or 3D printing. However, this comes at the expense

of producing samples that score slightly lower than a naı̈ve

parametrization in terms of IS/FID/KID metrics.

7505

References

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian

Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath

Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,

Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-

war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-

nanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-

berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-

Flow: Large-scale machine learning on heterogeneous sys-

tems, 2015. 4

[2] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and generative

models for 3D point clouds. In ICML, 2018. 1, 2

[3] Elena Balashova, Vivek Singh, Jiangping Wang, Brian Teix-

eira, Terrence Chen, and Thomas Funkhouser. Structure-

aware shape synthesis. In 3DV, 2018. 2

[4] Mikolaj Bińkowski, Dougal J. Sutherland, Michael N. Arbel,

and Arthur Gretton. Demystifying MMD GANs. In ICLR,

2018. 6

[5] Marcel Campen and Leif Kobbelt. Exact and robust (self-

)intersections for polygonal meshes. In Eurographics, 2010.

3

[6] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat

Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-

lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,

and Fisher Yu. ShapeNet: An Information-Rich 3D Model

Repository. arXiv preprint, arXiv:1512:03012, 2015. 1, 2, 6

[7] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin

Chen, and Silvio Savarese. 3D-R2N2: A unified approach

for single and multi-view 3D object reconstruction. In

ECCV, 2016. 6

[8] Matheus Gadelha, Subhransu Maji, and Rui Wang. 3D shape

induction from 2D views of multiple objects. In 3DV, 2017.

1, 2, 5

[9] Matheus Gadelha, Rui Wang, and Subhransu Maji. Mul-

tiresolution tree networks for 3D point cloud processing. In

ECCV, 2018. 1, 2

[10] Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr

Dollár, and Kaiming He. Detectron. https://github.

com/facebookresearch/detectron, 2018. 7

[11] I. Goodfellow, J. Pouget-Abadle, M. Mirza, B. Xu, D.

Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gener-

ative adversarial nets. In NIPS, 2014. 2

[12] Christian Häne, Shubham Tulsiani, and Jitendra Malik. Hi-

erarchical surface prediction for 3D object reconstruction. In

3DV, 2017. 6

[13] Paul Henderson. DIRT: a fast differentiable renderer for Ten-

sorFlow. https://github.com/pmh47/dirt, 2018.

5

[14] Paul Henderson and Vittorio Ferrari. Learning to generate

and reconstruct 3D meshes with only 2D supervision. In

BMVC, 2018. 2

[15] Paul Henderson and Vittorio Ferrari. Learning single-image

3D reconstruction by generative modelling of shape, pose

and shading. IJCV, 2019. 1, 2, 5, 6

[16] Philipp Henzler, Niloy J. Mitra, and Tobias Ritschel. Es-

caping platos cave: 3D shape from adversarial rendering. In

ICCV, 2019. 2

[17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter. GANs trained by

a two time-scale update rule converge to a local nash equi-

librium. In NIPS, 2017. 6

[18] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess,

Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and

Alexander Lerchner. β-VAE: Learning basic visual concepts

with a constrained variational framework. In ICLR, 2017. 5

[19] Eldar Insafutdinov and Alexey Dosovitskiy. Unsupervised

learning of shape and pose with differentiable point clouds.

In NIPS, 2018. 2

[20] Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung.

Robust inside-outside segmentation using generalized wind-

ing numbers. Trans. on Graphics, 32(4):33:1–33:12, 2013.

3

[21] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An in-

troduction to variational methods for graphical models. Ma-

chine Learning, 37:183–233, 1999. 5

[22] Angjoo Kanazawa, Shubham Tulsiani, Alexei A. Efros, and

Jitendra Malik. Learning category-specific mesh reconstruc-

tion from image collections. In ECCV, 2018. 2, 5, 6, 7, 8

[23] Hiroharu Kato and Tatsuya Harada. Learning view priors for

single-view 3D reconstruction. In CVPR, 2019. 2, 5

[24] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-

ral 3D mesh renderer. In CVPR, 2018. 2, 3, 6

[25] Diederik P. Kingma and Max Welling. Auto-Encoding Vari-

ational Bayes. In ICLR, 2014. 2, 5

[26] Johann Heinrich Lambert. Photometria. Eberhard Klett Ver-

lag, 1760. 5

[27] Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao

Zhang, and Leonidas Guibas. GRASS: Generative recursive

autoencoders for shape structures. Trans. on Graphics, 36(4),

2017. 1

[28] Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. Synthesiz-

ing 3D shapes from silhouette image collections using multi-

projection generative adversarial networks. In CVPR, 2019.

1, 2, 6

[29] Yawei Li, Vagia Tsiminaki, Radu Timofte, Marc Pollefeys,

and Luc van Gool. 3D appearance super-resolution with deep

learning. In CVPR, 2019. 3

[30] Shichen Liu, Weikai Chen, Tianye Li, and Hao Li. Soft

rasterizer: Differentiable rendering for unsupervised single-

view mesh reconstruction. In ICCV, 2019. 2, 3, 6

[31] Gurobi Optimization LLC. Gurobi optimizer reference man-

ual, 2019. 4

[32] Charlie Nash and Christopher K. I. Williams. The shape

variational autoencoder: A deep generative model of part-

segmented 3D objects. Computer Graphics Forum, 36(5):1–

12, 2017. 1

[33] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian

Richardt, and Yong-Liang Yang. HoloGAN: Unsupervised

7506

learning of 3D representations from natural images. In ICCV,

2019. 2

[34] J. Nocedal and S.J. Wright. Numerical Optimization.

Springer-Verlag, 2006. 4

[35] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo

Strauss, and Andreas Geiger. Texture fields: Learning tex-

ture representations in function space. In ICCV, 2019. 3

[36] Danilo J. Rezende, S. M. Ali Eslami, Shakir Mohamed, Peter

Battaglia, Max Jaderberg, and Nicolas Heess. Unsupervised

learning of 3D structure from images. In NIPS, 2016. 1, 2

[37] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wier-

stra. Stochastic backpropagation and approximate inference

in deep generative models. In ICML, 2014. 5

[38] Audrey Richard, Ian Cherabier, Martin R. Oswald, Vagia

Tsiminaki, Marc Pollefeys, and Konrad Schindler. Learned

multi-view texture super-resolution. In 3DV, 2019. 3

[39] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki

Cheung, Alec Radford, Xi Chen, and Xi Chen. Improved

techniques for training GANs. In NIPS, 2016. 6

[40] Jakub Sochor, Roman Juránek, Jakub Špaňhel, Lukas

Maršı́k, Adam Široký, Adam Herout, and Pavel Zemčı́k.

Comprehensive data set for automatic single camera visual

speed measurement. IEEE Transactions on Intelligent Trans-

portation Systems, pages 1–11, 2018. 7

[41] Amir A. Soltani, Haibin Huang, Jiajun Wu, Tejas D. Kulka-

rni, and Joshua B. Tenenbaum. Synthesizing 3d shapes via

modeling multi-view depth maps and silhouettes with deep

generative networks. In CVPR, 2017. 1

[42] Olga Sorkine. Laplacian mesh processing. In Eurographics,

2005. 3

[43] Yongbin Sun, Ziwei Liu, Yue Wang, and Sanjay E. Sarma.

Im2Avatar: Colorful 3D reconstruction from a single image.

arXiv preprint, arXiv:1804.06375, 2018. 3

[44] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, and Jon

Shlens. Rethinking the inception architecture for computer

vision. In CVPR, 2016. 6

[45] Qingyang Tan, Lin Gao, and Shihong Xia Yu-Kun Lai. Vari-

ational autoencoders for deforming 3d mesh models. In

CVPR, 2018. 1, 2

[46] Shubham Tulsiani, Alexei A. Efros, and Jitendra Malik.

Multi-view consistency as supervisory signal for learning

shape and pose prediction. In CVPR, 2018. 2, 6

[47] Shubham Tulsiani, Tinghui Zhou, Alexei A. Efros, and Ji-

tendra Malik. Multi-view supervision for single-view recon-

struction via differentiable ray consistency. In CVPR, 2017.

2

[48] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.

The Caltech-UCSD Birds-200-2011 Dataset. Technical Re-

port CNS-TR-2011-001, California Institute of Technology,

2011. 7

[49] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei

Liu, and Yu-Gang Jiang. Pixel2Mesh: Generating 3D mesh

models from single RGB images. In ECCV, 2018. 2

[50] Zhou Wang, Eero P. Simoncelli, and Alan C. Bovik. Mul-

tiscale structural similarity for image quality assessment. In

The Thrity-Seventh Asilomar Conference on Signals, Systems

Computers, volume 2, pages 1398–1402, 2003. 5

[51] Olivia Wiles and Andrew Zisserman. SilNet: Single- and

multi-view reconstruction by learning from silhouettes. In

BMVC, 2017. 2, 5

[52] Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T Free-

man, and Joshua B Tenenbaum. Learning a probabilistic

latent space of object shapes via 3D generative-adversarial

modeling. In NIPS, 2016. 1

[53] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D

ShapeNets: A deep representation for volumetric shape mod-

eling. In CVPR, 2015. 1, 2

[54] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang,

Song-Chun Zhu, and Ying Nian Wu. Learning descriptor

networks for 3d shape synthesis and analysis. In CVPR,

2018. 1, 2

[55] Soji Yamakawa and Kenji Shimada. Removing self intersec-

tions of a triangular mesh by edge swapping, edge hammer-

ing, and face lifting. In Brett W. Clark, editor, Proc. 18th

Intl Meshing Roundtable, pages 13–29, Berlin, Heidelberg,

2009. Springer Berlin Heidelberg. 3

[56] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and

Honglak Lee. Perspective transformer nets: Learning single-

view 3D object reconstruction without 3D supervision. In

NIPS, 2016. 2

[57] Guandao Yang, Yin Cui, Serge Belongie, and Bharath Hari-

haran. Learning single-view 3D reconstruction with limited

pose supervision. In ECCV, 2018. 2

[58] H. Zhang, C. Wu, J. Zhang, and J. Deng. Variational mesh

denoising using total variation and piecewise constant func-

tion space. 21(7):873–886, 2015. 3

[59] Jun-Yan Zhu, Zhoutong Zhang, Chengkai Zhang, Jiajun Wu,

Antonio Torralba, Josh Tenenbaum, and Bill Freeman. Vi-

sual object networks: Image generation with disentangled

3D representations. In NIPS, 2018. 2, 3

7507

