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Abstract

We propose a generative model of 2D and 3D natural

textures with diversity, visual fidelity and at high computa-

tional efficiency. This is enabled by a family of methods that

extend ideas from classic stochastic procedural texturing

(Perlin noise) to learned, deep, non-linearities. The key idea

is a hard-coded, tunable and differentiable step that feeds

multiple transformed random 2D or 3D fields into an MLP

that can be sampled over infinite domains. Our model en-

codes all exemplars from a diverse set of textures without

a need to be re-trained for each exemplar. Applications in-

clude texture interpolation, and learning 3D textures from 2D

exemplars. Project website: https://geometry.cs.

ucl.ac.uk/projects/2020/neuraltexture.

1. Introduction

Textures are stochastic variations of attributes over 2D

or 3D space with applications in both image understanding

and synthesis. This paper suggests a generative model of

natural textures. Previous texture models either capture a

single exemplar (e. g., wood) alone or address non-stochastic

(stationary) variation of appearance across space: Which

location on a chair should have a wood color? Which should

be cloth? Which metal? Our work combines these two

complementary views.

Requirements We design the family of methods with sev-

eral requirements in mind: completeness, generativeness,

compactness, interpolation, infinite domains, diversity, infi-

nite zoom, and high speed.

A space of textures is complete, if every natural texture

has a compact code z in that embedding. To be generative,

every texture code should map to a useful texture. This

is important for intuitive design where a user manipulates

the texture code and expects the outcome to be a texture.

Compactness is achieved if codes are low-dimensional. We

also demand the method to provide interpolation: texture

Figure 1. Our approach allows casually-captured 2D textures (blue)

to be mapped to latent texture codes and support interpolation

(blue-to-red), projection, or synthesis of volumetric textures.

generated at coordinates between z1 and z2 should also be

valid. This is important for design or when storing texture

codes into a (low-resolution) 2D image, 3D volume or at

mesh vertices with the desire to interpolate. The first four

points are typical for generative modelling; achieving them

jointly while meeting more texture-specific requirements

(stochasticity, efficiency) is our key contribution.

First, we want to support infinite domains: Holding the

texture code e fixed, we want to be able to query this texture

so that a patch around any position x has the statistics of

the exemplar. This is important for querying textures in

graphics applications for extended virtual worlds, i. e., grass

on a football field where it extends the size of the texture.

Second, for visual fidelity, the statistics under which tex-

tures are similar to the exemplar. The Gram matrix of VGG

activations is one established metric for this similarity [5].

Third, infinite zoom means each texture should have vari-

ations on a wide range of scales and not be limited to any

fixed resolution that can be held in memory. This is required

to zoom into details of geometry and appreciate the fine vari-

ation such as wood grains, etc. In practice, we are limited by
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the frequency content of the exemplars we train on, but the

method should not impose any limitations across scales.

Fourth and finally, our aim is computational efficiency:

the texture needs to be queryable without requiring pro-

hibitive amounts of memory or time, in any dimension. Ide-

ally, it would be constant in both and parallel. This rules

out simple convolutional neural networks, that do not scale

favorable in memory consumption to 3D.

2. Previous Work

Capturing the variations of nature using stochastic on

many scales has a long history [14]. Making noise useful

for graphics and vision is due to Perlin’s 1995 work [17].

Here, textures are generated by computing noise at different

frequencies and mixing it with linear weights. A key benefit

is that this noise can be evaluated in 2D as well as in 3D

making it popular for many graphics applications.

Computer vision typically had looked into generating tex-

tures from exemplars, such as by non-parametric sampling

[4], vector quantization [25], optimization [12] or nearest-

neighbor field synthesis (PatchMatch [2]) with applications

in in-painting and also (3D) graphics. Typically, achieving

spatial and temporal coherence as well as scalability to fine

spatial details remains a challenge. Such classic methods

cater to the requirements of human texture perception as

stated by Julesz [9]: a texture is an image full of features

that in some representation have the same statistics.

The next level of quality was achieved when representa-

tions became learned, such as the internal activations of the

VGG network [22]. Neural style transfer [5] looked into the

statistics of those features, in particular, their Gram matrices.

By optimizing over pixel values, these approaches could

produce images with the desired texture properties. If these

properties are conditioned on existing image structures, the

process is referred to as style transfer. VGG was also used for

optimization-based multi-scale texture synthesis [20]. Such

methods require optimizations for each individual exemplar.

Ulyanov et al. [23] and Johnson et al. [8] have proposed

networks that directly produce the texture without optimiza-

tion. While now a network generated the texture, it was still

limited to one exemplar, and no diversity was demonstrated.

However, noise at different resolutions [17] is input to these

methods, also an inspiration to our work. Follow up work

[24] has addressed exactly this difficulty by introducing an

explicit diversity term i. e., asking all results in a batch to

be different. Unfortunately, this frequently introduces mid-

frequency oscillations of brightness that appear admissible

to VGG instead of producing true diversity. In our work,

we achieve diversity, by restricting the networks input to

stochastic values only, i. e., diversity-by-construction

A certain confusion can be noted around the term “tex-

ture”. In the human vision [9] and computer vision litera-

ture [4, 6], it exclusively refers to stochastic variation. In

computer graphics, e. g., OpenGL, “texture” can model both

stochastic and non-stochastic variation of color. For example,

Visual Object Networks [29] generate a voxel representation

of shape and diffuse albedo and refer to the localized color

appearance, e. g., wheels of a car are dark, the rim are silver,

etc., as “texture”. Similar, Oechsle et al. [16] and Saito et al.

[19] use an implicit function to model this variation of ap-

pearance in details beyond voxel resolution. Our comparison

will show, how methods tackling space of non-stochastic

texture variation [16, 29], unfortunately are not suitable to

model stochastic appearance. Our work is progress towards

learning spaces of stochastic and non-stochastic textures.

Some work has used adversarial training to capture the

essence of textures [21, 3], including the non-stationary case

[28] or even inside a single image [21]. In particular Style-

GAN [10] generates images with details by transforming

noise in adversarial training. We avoid the challenges of

adversarial training but train a NN to match VGG statistics.

Aittala et al. [1] have extended Gatsy et al.’s 2015 [5]

approach to not only generate color, but also ensembles of

2D BRDF model parameter maps from single 2D exemplars.

Our approach is compatible with this approach, for example

to generate 3D bump, specular, etc. maps, but from 2D input.

At any rate, none of the texture works in graphics or

vision [17, 5, 23, 4, 2, 26, 27] generate a space of textures,

such as we suggest here, but all work on a single texture

while the ones that work on a space of exemplars [29, 16]

do not create stochastic textures. Our work closes this gap,

by creating a space of stochastic textures.

The graphics community, however, has looked into gener-

ating spaces of textures [15], which we here revisit from a

deep learning perspective. Their method deforms all pairs of

exemplars to each other and constructs a graph with edges

that are valid for interpolation when there is evidence that

the warping succeeded. To blend between them, histogram

adjustments are made. Consequently, interpolation between

exemplars is not a straight path from one another, but a traver-

sal along valid observations. Similarly, our method could

also construct valid paths in the latent space interpolation.

Finally, all these methods require to learn the texture

in the same space it will be used, while our approach can

operate in any dimension and across dimensions, including

the important case of generating procedural 3D solid textures

from 2D observations [11] or slices [18] only.

Summary The state of the art is depicted in Tbl. 1. Rows

list different methods while columns address different as-

pects of each method. A method is “Diverse” if more than a

single exemplar can be produced. MLP [16] is not diverse as

the absolute position allows overfitting. We denote a method

to have “Detail” if it can produce features on all scales. CNN

does not have details, as, in particular in 3D, it needs to repre-

sent the entire domain in memory, while MLPs and ours are
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Table 1. Comparison of texture synthesis methods. Please see text

for refined definition of the rows and columns.
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• Perlin perlin X X X X ✕ ✕ ✕

• Perlin + transform perlinT X X X X ✕ ✕ ✕

• CNN cnn ✕ ✕ ✕ ✕ X ✕ ✕

• CNN + diversity cnnD X ✕ ✕ ✕ ✕ ✕ ✕

• MLP mlp ✕ ✕ X X ✕ ✕ X

• Ours + position oursP ✕ X X X ✕ X X

• Ours - transform oursNoT ✕ ✕ X X X X X

• Ours ours X X X X X X X

point operations. “Speed” refers to computational efficiency.

Due to high bandwidth and lacking data parallelism, a CNN,

in particular in 3D, is less efficient than ours. This prevents

application to “3D”. “Quality” refers to visual fidelity, a sub-

jective property. CNN, MLP and ours achieve this, but Perlin

is too simple a model. CNN with diversity [24] have decent

quality, but a step back from [23]. Our approach creates a

“Space” of a class of textures, while all others only work with

single exemplars. Finally, our approach allows to learn from

a single 2D observation i. e., 2D-to-3D. MLP [16] also learn

from 2D images, but have multiple images of one exemplar,

and pixels are labeled with depth.

3. Overview

Our approach has two steps. The first embeds the ex-

emplar into a latent space using an encoder. The second

provides sampling at any position by reading noise fields at

that position and combining them using a learned mapping

to match the exemplar statistics. We now detail both steps.
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Figure 2. Overview of our approach as explained in Sec. 3.

Encoder The encoder g maps a 2D texture exemplar image

y to a latent texture code z = g(y). We use a convolutional

neural network to encode the high number of exemplar pixels

into a compact latent texture code z.

Sampler Sampling s(x|z) of a texture with code z at indi-

vidual 2D or 3D positions x has two steps: a translator and

a decoder, which are both described next.

Decoder Our key idea is to prevent the decoder f(n|e)
to access the position x and to use a vector of noise val-

ues n instead. Each ni = noise(Ti2
i−1

x|ξi) is read at

different linear transformations Ti2
i−1

x of that position x

from random fields with different seeds ξi. The random field

noise(x|ξi) is implemented as an infinite, single-channel

2D or 3D function that has the same random value for all

continuous coordinates x in each integer lattice cell for one

seed ξi. The factors of 2i−1 initialize the decoder to behave

similar to Perlins’s octaves for identity Ti. Applying Ti2
i−1

to x is similar to Spatial Transformer Networks [7]. (Fig. 3).
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noise(Tix, ξi)
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noise(Ti+1x, ξi+1)

Ti+1*

Figure 3. Noise field for different octaves and transformations T.

These noise values are combined with the extended tex-

ture code e in a learned way. It is the task of the translator,

explained next, to control, given the exemplar, how noise is

transformed and to generate an extended texture code.
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Figure 4. Translator.

Translator The trans-

lator h(z) = {e,T}
maps the texture code z

to a tuple of parameters

required by the decoder:

the vector of transfor-

mation matrices T and

an extended texture code

vector e. The matrices

T are used to transform

the coordinates before reading the noise as explained be-

fore. The extended texture parameter code e is less compact

than the texture code z, but allows the sampler to execute

more effectively, i. e., do not repeat computations required

for different x as they are redundant for the same z.

See Fig. 4 where for example two 2× 2 transformation

matrices with 8 DOF are parameterized by three parameters.

Training For training, the encoder is fed with a random

128 × 128 patch Pe of a random exemplar y, followed by

the sampler evaluating a regular grid of 128 × 128 points

x in random 2D slices of the target domain to produce a

“slice” image Ps (Fig. 5). The seed ξ is held constant per

train step, as one lattice cell will map to multiple pixels,

and the decoder f relies on these being consistent. During
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inference changing the seed ξ and keeping the texture code

e will yield diverse textures.

=

=

=

a) b) c)

2D exemplar3D result 3D result slices

x

y

z

Figure 5. Sliced loss for learning 3D procedural textures from

2D exemplars: Our method, as it is non-convolutional, can sample

the 3D texture (a) at arbitrary 3D positions. This enables to also

sample arbitrary 2D slices (b). For learning, this allows to simply

slice 3D space along the three major axes (red, yellow, blue) and

ask each slice to have the same VGG statistics as the exemplar (c).

The loss is the L2 distance of Gram matrix of VGG fea-

ture activations [5, 8, 24, 23, 1] of the patches Pe and Ps.

If the source and target domain are the same (synthesizing

2D textures from 2D exemplars) the slicing operation is the

identity. However, it also allows for the important condition

in which the target domain has more dimensions than the

source domain, such as learning 3D from 2D exemplars.

Spaces-of Our method can be used to either fit a single

exemplar or an entire space of textures. In the single mode,

we directly optimize for the trainable parameters θ = {θd}
of the decoder. When learning the entire space of textures,

the full cascade of encoder g, translator h and sampler s

parameters are trained, i. e., θ = {θg, θh, θd} jointly.

4. Learning stochastic space coloring

Here we will introduce different implementations of sam-

plers s : Rn → R
3 which “color” 2D or 3D space at position

x. We discuss pros and cons with respect to the requirements

from the introduction, ultimately leading to our approach.

Perlin noise is a simple and effective method to generate

natural textures in 2D or 3D [17], defined as

s(x|z) =

m∑

i=1

noise(2i−1
x, ξi)⊗ wi, (1)

where h(z) = {w1, w2, . . .} are the RGB weights for m

different noise functions noisei which return bilinearly-

sampled RGB values from an integer grid. ⊗ is channel-wise

multiplication. Here, e is a list of all linear per-layer RGB

weights e. g., an 8×3 vector for the m = 8 octaves we use.

This is a simple latent code, but we will see increasingly

complex ones later. Also our encoder g is designed such that

it can cater to all decoders, even Perlin noise i. e., we can

also create a space of textures with a Perlin noise back-end.

Coordinates x are multiplied by factors of two (octaves),

so with increasing i, increasingly smooth noises are com-

bined. This is motivated well in the spectra of natural signals

[14, 17], but also limiting. Perlin’s linear scaling allows the

noise to have different colors, yet no linear operation can

reshape a distribution to match a target. Our work seeks to

overcome these two limitations, but tries to retain the desir-

able properties of Perlin noise: simplicity and computational

efficiency as well as generalization to 3D.

Transformed Perlin relaxes the scaling by powers of two

s(x|z) =

m∑

i=1

noise(Ti2
i−1

x, ξi)⊗ wi (2)

by allowing each noise i to be independently scaled

by its own transformation matrix Ti since h(z) =
{w1,T1, w2,T2, . . .}. Please note, that the choice of noise

frequency is now achieved by scaling the coordinates read-

ing the noise. This allows to make use of anisotropic scaling

for elongated structures, different orientations or multiple

random inputs at the same scale.

CNN utilizes the same encoder g as our approach to gen-

erate a texture code that is fed in combination with noise to

a convolutional decoder similar to [24].

s(x|z) = cnn(x|e, noise(ξ)) (3)

The CNN is conditioned on e without additional translation.

Their visual quality is stunning, CNNs are powerful and

the loss is able to capture perceptually important texture

features, hence CNNs are a target to chase for us in 2D in

terms of quality. However, there are two main limitations of

this approach we seek to lift: efficiency and diversity.

CNNs do not scale well to 3D in high resolutions. To

compute intermediate features at x, they need to have access

to neighbors. While this is effective and output-sensitive in

2D, it is not in 3D: we need results for 2D surfaces embedded

in 3D, and do so in spatial high resolution (say 1024×1024),

but this requires CNNs to compute a full 3D volume with

the same order of pixels. While in 2D partial outputs can be

achieved with sliding windows, it is less clear how to slide a

window in 3D, such that it covers all points required to cover

all 3D points that are part of the visible surface.

The second issue is diversity: CNNs are great for produc-

ing a re-synthesis of the input exemplar, but it has not been

demonstrated that changing the seed ξ will lead to variation

in the output in most classic works [23, 8] and in classic style

transfer [5] diversity is eventually introduced due to the ran-

domness in SGD. Recent work by Ulyanov and colleagues

[24] explicitly incentivizes diversity in the loss. The main

idea is to increase the pixel variance inside all exemplars
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produced in one batch. Regrettably, this often is achieved by

merely shifting the same one exemplar slightly spatially or

introducing random brightness fluctuations.

MLP maps a 3D coordinate to appearance:

s(x|z) = mlp(x|e) (4)

where h(z) = e. Texture-fields [16] have used this approach

to produce what they call “texture”, detailed and high-quality

appearance decoration of 3D surfaces, but what was prob-

ably not intended is to produce diversity or any stochastic

results. At least, there is no parameter that introduces any

randomness, so all results are identical. We took inspiration

in their work, as it makes use of 3D point operations, that

do not require accessing any neighbors and no intermedi-

ate storage for features in any dimensions, including 3D. It

hence reduces bandwidth compared to CNN, is perfectly

data-parallel and scalable. The only aspect missing to make

it our colorization operator, required to create a space and

evolve from 2D exemplars to 3D textures, is stochasticity.

Ours combines the noise from transformed Perlin for

stochasticity, the losses used in style and texture synthe-

sis CNNs for quality as well as the point operations in MLPs

for efficiency as follows:

s(x|z) = f(noise(T1 20 x, ξ1 ), . . . ,

noise(Tm2m−1
x, ξm)|e) (5)

Different from MLPs that take the coordinate x as input,

position itself is hidden. Instead of position, we take mul-

tiple copies of spatially smooth noise noise(x) as input,

with explicit control of how the noise is aligned in space ex-

pressed by the transformations T. Hence, the MLP requires

to map the entire distribution of noise values such that it

suits the loss, resulting in build-in diversity. We chose num-

ber of octaves m to be 8, i. e., the transformation matrices

T1, . . . ,Tm require 8 × 4 = 32 values in 2D. The texture

code size e is 64 and the compact code z is 8. The decoder

f consists of four stacked linear layers, with 128 units each

followed by ReLUs. The last layer is 3-valued RGB.

Non-stochastic ablation seeks to investigate what hap-

pens if we do not limit our approach to random variables,

but also provide access to deterministic information x:

s(x|z) = f(x,noise(20 x, ξ1 ), . . . ,

noise(2m−1
x, ξm)|e) (6)

is the same as MLP, but with access to noise. We will see

that this effectively removes diversity.

Non-transformed ablation evaluates, if our method were

to read only from multi-scale noise without control over how

it is transformed. Its definition

s(x|z) = f(noise(20 x, ξ1 ), . . . ,

noise(2m−1
x, ξm)|e) (7)

5. Evaluation

Our evaluation covers qualitative (Sec. 5.2) and quantita-

tive (Sec. 5.3) aspects as well as a user study (Sec. 5.4).

5.1. Protocol

We suggest a data set that for which we explore the rela-

tion of different methods, according to different metrics to

quantify texture similarity and diversity.

Data set Our data set contains four classes (WOOD, MAR-

BLE, GRASS and RUST) of 2D textures, acquired from inter-

net image sources. Each class contains 100 images.

Methods We compare eight different methods that are

competitors, ablations and ours.

As five competitors we study variants of Perlin noise,

CNNs and MLPs. perlin implements Perlin noise (Eq. 1,

[17]) and perlinT our variant extending it by a linear

transformation (Eq. 2). Next, cnn is a classic TextureNet

[23] and cnnD the extension to incentivise diversity ([24],

Eq. 3). mlp uses an MLP following Eq. 4.

We study three ablations. First, we compare to oursP

that is our method, but with the absolute position as input

and no transform. Second, oursNoT omits the absolute

position as input and transformation but still uses Perlin’s

octaves (Eq. 7). The final method is ours method (Eq. 5).

Metrics We evaluate methods in respect to three metrics:

similarity and diversity and a joint measure, success.

Similarity is high, if the result produced has the same

statistics as the exemplar in terms of L2 differences of VGG

Gram matrices. This is identical to the loss used. Similarity

is measured on a single exemplar.

Diversity is not part of the loss, but can be measured

on a set of exemplars produced by a method. We measure

diversity by looking at the VGG differences between all

pairs of results in a set produced for a different random

seed. Note, that this does not utilize any reference. Diversity

is maximized by generating random VGG responses, yet

without similarity.

Success of the entire method is measured as the product of

diversity and the maximum style error minus the style error.

We apply this metric, as it combines similarity and diversity

that are conflicting goals we jointly want to maximize.
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Figure 6. Quantitative evaluation. Each plot shows the histogram of a quantity (from top to bottom: success, style error and diversity) for

different data sets (from left to right: all space together, WOOD, MARBLE, GRASS). For a discussion, see the last paragraph in Sec. 5.2.

Memory and speed are measured at a resolution of 128

pixels/voxels on an Nvidia Titan Xp.

5.2. Quantitative results

Table 2. Efficiency in terms of compute time and memory usage in

2D and 3D (columns) for different methods (rows).

Method
Time Memory

2D 3D 2D 3D

perlin • 0.18 ms 0.18 ms 65 k 16 M

perlinT • 0.25 ms 0.25 ms 65 k 16 M

cnn • 1.45 ms 551.59 ms 8,000 k 646 M

cnnD • 1.45 ms 551.59 ms 8,000 k 646 M

mlp • 1.43 ms 1.43 ms 65 k 16 M

oursP • 1.44 ms 1.44 ms 65 k 16 M

oursNoT • 1.24 ms 1.24 ms 65 k 16 M

ours • 1.55 ms 1.50 ms 65 k 16 M

Time 3D [ms]Time 2D [ms] Memory 2D [log KB] Memory 3D [log KB] 
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1000
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Efficiency We first look at computational efficiency in

Tbl. 2. We see that our method shares the speed and memory

efficiency with Perlin noise and MLPs / Texture Fields [16].

Using a CNN [23, 24] to generate 3D textures as volumes

is not practical in terms of memory, even at a modest reso-

lution. Ours scales linear with pixel resolution as an MLP

is a point-estimate in any dimension that does not require

any memory other than its output. A CNN has to store the

internal activations of all layers in memory for information

exchange between neighbors.

Table 3. Similarity and diversity for methods on different textures.

Method
ALL WOOD GRASS MARBLE

Sim Div Suc Sim Div Suc Sim Div Suc Sim Div Suc

perlin • 20.6 48.0 7.0 23.8 37.9 4.9 24.6 72.8 18.1 13.3 31.8 7.84

perlinT • 19.6 48.2 7.2 18.4 39.6 5.02 25.9 65.6 13.8 14.2 38.4 8.03

cnn • 5.4 0.5 7.5 13.4 0.5 0.07 1.9 0.5 0.14 1.1 0.3 0.08

cnnD • 3.9 48.2 7.75 3.9 35.2 5.19 4.8 59.2 20.9 3.6 48.8 8.5

mlp • 14.1 0.0 7.98 15.7 0.0 0.0 16.7 0.0 0.0 9.6 0.0 0.0

oursP • 5.4 93.4 8.23 9.7 67.4 5.33 4.8 126 21.5 1.8 84.5 9.0

oursNoT • 8.4 94.5 8.54 18.3 74.7 5.40 5.1 120 21.7 1.9 87.0 9.3

ours • 12.1 99.7 8.82 13.3 72.5 5.48 13.6 127 22.1 9.4 98.2 9.6

S
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25
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130
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All
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S
u
cc
e
ss

Fidelity Fig. 6 and Tbl. 3 summarize similarity, diversity

and success of all methods in numbers. oursmethod (black)

comes best in diversity and success on average across all

sets (first column in Tbl. 3 and top first plot in Fig. 6). cnn

(yellow) and cnnd (green) have better similarity than any of

our methods. However, no other method combines similarity

with diversity as well as ours. This is visible from the overall

leading performance in the final measure, success. This is

a substantial achievement, as maximizing for only one goal

is trivial: an identity method has zero similarity error

while a random method has infinite diversity.

When looking at the similarity, we see that both a cnn

and its diverse variant cnnD can perform similar. Perlin
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Figure 7. Different methods and the exemplar (columns), as defined in Sec. 5.2, applied to different exemplars (rows). Each row shows,

arranged vertically, two re-synthesises with different seeds. Please see the text for discussion.

noise produces the largest error. In particular, perlinT has

a large error, indicating it is not sufficient to merely add a

transform. Similar, mlp alone cannot solve the task, as it has

no access to noise and need to fit exactly, which is doable

for single exemplars, but impossible for a space. oursNoT

has error similar to ours, but less diversity.

When looking at diversity, it is clear that both cnn and

mlp have no diversity as they either do not have the right

loss to incentivize it or have no input to generate it. perlin

and perlinT both create some level of diversity, which

is not surprising as they are simple remappings of random

numbers. However, they do not manage to span the full VGG

space, which only ours and its ablations can do.

Generating 3D textures from the exemplar in Fig. 7, we

find that our diversity and similarity are 44.5 and 1.48, which

compares favorable to Perlin 3D Noise at 14.9 and 7.11.

5.3. Qualitative results

Visual examples from the quantitative evaluation on a

single exemplar for different methods can be seen in Fig. 7.

We see that some methods have diversity when the seed is

changed (rows one vs. two and three vs. four) and some do

not. Diversity is clear for Perlin and its variant, CNNs with

a diversity term and our approach. No diversity is found for

MLPs and CNNs. We also note, that CNNs with diversity

produce typically shifted copies of the same exemplar, so

their diversity is over-estimated by the metric.

A meaningful latent texture code space should also allow

for interpolation as seen in Fig. 8, where we took pairs of

texture codes (left and right-most exemplar) and interpolated

rows in-between. We see, that different paths produce plau-
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L
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e
a
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Figure 8. Interpolation of one exemplar (left) into another one

(right) in latent space (first three rows) and linear (last row).

sible blends, with details appearing and disappearing, which

is not the case for a linear blend (last row).

Figure 9. Zoom.

Our method does not work on an ex-

plicit pixel grid, which allows to zoom

into arbitrary fine details as show in

Fig. 9, comparing favorable to cubic

upsampling. This is particularly useful

in 3D, where storing a complete volume

to span multiple levels of detail requires

prohibitive amounts of memory while

ours is output-sensitive.

Fig. 10 shows a stripe re-synthesized

from a single exemplar. We note that

the pattern captures the statistics, but does not repeat.

Fig. 12 documents the ability to reproduce the entire

space. We mapped exemplars unobserved at training time to

texture codes, from which we reconstruct them, in 2D. We
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Figure 10. Stripes of re-synthesized textures from exemplars on the left. See the supplemental for more examples.

Figure 11. 3D texturing of different 3D shapes. Insets (right) compare ours to 2D texturing. See supplemental for 3D spin.
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Figure 12. Our reconstruction of WOOD, GRASS, RUST, and

MARBLE. The first row shows different input exemplars. The

second and third row show our reconstruction with different seeds.

find that our approach reproduces the exemplars faithfully,

albeit totally different on the pixel level.

Our system can construct textures and spaces of textures

in 3D from 2D exemplars alone. This is shown in Fig. 11.

We first notice, that the textures have been transferred to 3D

faithfully, inheriting all the benefits of procedural textures

in image synthesis. We can now take any shape, without

a texture parametrization and by simply running the NN at

each pixel’s 3D coordinate produce a color. We compare to a

2D approach by loading the objects in Blender and applying

its state-of-the-art UV mapping approach [13]. Inevitably,

a sphere will have discontinuities and poles that can not be

resolved in 2D, that are no issue to our 3D approach while

both take the same 2D as input.

5.4. User study

Presenting M = 144 pairs of images produced by either

perlinT, cnnD, mlp, oursP, oursNoT and ours for

one exemplar texture to N = 28 subjects and asking which

result “they prefer” in a two-alternative forced choice, we

find that 16.7% prefer the ground truth, 4.9% perlin, 7.7%

perlinT, 14.3% cnn, 8.8% cnnD, 9.4% mlp, 10.8%

oursNoT, 12.9% oursP and 14.5% ours (statistical sig-

nificance; p < .1, binomial test). Given ground truth and

cnn are not diverse, out of all methods that synthesize infi-

nite textures our results are preferred over all other.

6. Conclusion

We have proposed a generative model of natural 3D tex-

tures. It is trained on 2D exemplars only, and provides

interpolation, synthesis and reconstruction in 3D. The key

inspiration is Perlin Noise – now more than 30 years old –

revisited with NNs to match complex color relations in 3D

according to the statistics of VGG activations in 2D. The

approach has the best combination of similarity and diversity

compared to a range of published alternatives, that are less

computationally efficient.

Reshaping noise to match VGG activations using MLPs

can be a scalable solution to other problems in even higher

dimensions, such as time, that are difficult for CNNs.
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