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Abstract

Multiview recognition has been well studied in the lit-

erature and achieves decent performance in object recog-

nition and retrieval task. However, most previous works

rely on supervised learning and some impractical under-

lying assumptions, such as the availability of all views in

training and inference time. In this work, the problem

of multiview self-supervised learning (MV-SSL) is inves-

tigated, where only image to object association is given.

Given this setup, a novel surrogate task for self-supervised

learning is proposed by pursuing “object invariant” repre-

sentation. This is solved by randomly selecting an image

feature of an object as object prototype, accompanied with

multiview consistency regularization, which results in view

invariant stochastic prototype embedding (VISPE). Experi-

ments shows that the categorization and retrieval results us-

ing VISPE outperform that of other self-supervised learning

methods on seen and unseen data. VISPE can also be ap-

plied to semi-supervised scenario and demonstrates robust

performance with limited data available. Code is available

at https://github.com/chihhuiho/VISPE

1. Introduction

3D recognition has received increasing attention in com-

puter vision in recent years. A popular approach, which we

pursue in this work, is to rely on the multiview object rep-

resentation. Several multiview recognition approaches have

been proposed in the literature, including the use of recur-

rent neural networks [9, 19, 39], feature aggregation from

different views [14, 15, 58], graph modeling [13] and inte-

gration with other modalities [22,45,50,68]. While achiev-

ing good recognition performance, two strong assumptions

are made. The first is that a dense set of views, covering

the entire range of view angles, is available per object [58].

While some methods support missing views during infer-

ence [14, 23, 30], a complete view set is always assumed

for training. The second is that all these images are la-
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Figure 1: Lightweight unsupervised multiview object

recognition. A household robot collects multiple object

views by moving around, aggregating a multiview object

database without view labels. A self-supervised learning

algorithm is applied to this database to create an embedding

that maps images from same object into an object invariant.

At inference time, this embedding generalizes to new views,

objects, and object classes.

beled, for both object classes and view angle. The two

assumptions make multiview techniques difficult to imple-

ment and limit their generalization. For example, while pre-

vious works [14, 30, 58] show strong performance on train-

ing classes, recognition on classes unseen during training is

usually not considered.

These limitations prevent many applications of interest.

Consider, for example, the setting of Fig. 1, where a house-

hold robot of limited memory is tasked with picking scat-

tered objects and returning them to their locations. In this

setting, it is impractical to pre-train the robot with a dense

set of labelled views for each object class in the world. In-

stead, the robot must be able to efficiently learn objects from

unseen classes after deployment. This is similar to problems

like image retrieval [10, 29] or face verification [52, 60],
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which are usually solved by metric learning. An embed-

ding is learned from a large dataset of annotated objects,

unseen object classes are modelled by projecting example

images onto the embedding, and classification is performed

with a nearest neighbor classifier. However, a multi-view

embedding is challenging to learn in this manner, due to the

need for complete and labeled sets of views. In the setting

of Fig. 1 this means that, after the home robot is deployed,

view angle labels must be collected by manually controlling

the pose of the training objects, which is impractical.

This problem can be avoided by the introduction of mul-

tiview self-supervised learning (MV-SSL) methods. SSL is

now well established for problems where annotation is diffi-

cult [27,28]. The idea is to use “free labels,” i.e. annotations

that can be obtained without effort, to define a surrogate

learning task. However, the many surrogate tasks proposed

in the literature [2, 34, 36, 49, 67, 69] are poorly suited for

multiview recognition. This is because multiview embed-

dings must enforce an invariance constraint, namely that

all views of an object map into (or cluster around) a single

point in the embedding, which is denoted the object invari-

ant. For embeddings with this property, views of objects un-

seen during training will naturally cluster around object in-

variants, without requiring view labels, consistency of view

angles across objects, or even the same number of views per

object. In this case, it suffices for the home robot to collect

a set of views per object, e.g. by moving around it, as illus-

trated in Fig. 1. To emphasize the low-complexity of object

acquisition under this set-up, we refer to it as lightweight

unsupervised multiview object recognition (LWUMOR).

In this work, we seek embeddings with good LWUMOR

performance. We consider proxy embeddings [43], which

have been shown to perform well for multiview recogni-

tion when dense views and class labels are available [23].

To derive an SSL extension, we propose a new surrogate

task, where object instances are used as training “classes,”

i.e. object identities serve as free labels for learning. We

hypothesize, however, that due to the concentration of su-

pervision on class prototypes, these embeddings only cap-

ture the metric structure of images in the neighborhood of

these prototypes, thus overfitting to the training classes. We

address this problem with a randomizing procedure, where

the parameters of the softmax layer are sampled stochasti-

cally from the embeddings of different object views, dur-

ing training. This has two interesting consequences. First,

it forces the learning algorithm to produce an embedding

that supports many classifiers, spreading class supervision

throughout a much larger region of feature space, and en-

hancing generalization beyond the training classes. Second,

because this supervision is derived from randomized object

views, it encourages a stable multiview representation, even

when only different view subsets are available per object.

To further enhance multiview recognition performance,

this randomization is complemented by an explicit invari-

ance constraint, which encourages the classifier parame-

ters to remain stable under changes of view-point. We de-

note the resulting MV-SSL embeddings as view invariant

stochastic prototype embeddings (VISPE). Experimental re-

sults on popular 3D recognition datasets show that self-

supervised VISPE embeddings combine 1) better perfor-

mance outside the training set than standard classification

embeddings, and 2) faster convergence than metric learn-

ing embeddings. Furthermore, for multiview recognition,

VISPE embeddings outperform previous SSL methods.

Overall, this work makes three main contributions. The

first is the LWUMOR formulation of MV-SSL. This enables

multiview recognition without object class or pose labels,

and generalizes well to objects unseen at training time. The

second is a new surrogate task that relies on randomization

of object views to encourage stable multiview embeddings,

and outperforms previous SSL surrogates for multitview

recognition. The third is the combination of randomiza-

tion and invariance constraints implemented by VISPE to

learn embeddings of good LWUMOR performance. Exten-

sive experiments validate the ability of these embeddings to

learn good invariants for multiview recognition.

2. Related work

This work is related to multiview recognition, SSL, and

regularization by network randomization.

2.1. Multiview recognition

Multiview recognition is a 2D image-based approach to

3D object recognition. One of the earliest methods is the

multiview CNN (MVCNN) [58], which takes multiple im-

ages of an object as input and performs view aggregation

in the feature space to obtain a shape embedding. Repre-

senting 3D objects by 2D images has been shown effec-

tive for classification [14, 30] and retrieval [21, 38]. Sub-

sequent research extended the idea by performing hierar-

chical view aggregation [14, 15]. However, because view

aggregation disregards the available supervision for neigh-

boring relationships between views [19], recurrent neural

networks [9, 19, 39] and graph convolutional neural net-

works [13] have been proposed to model multiview se-

quences. Aside from multiview modeling, [30] treats view-

point as a latent variable during optimization and achieves

better classification accuracy and pose estimation. In the re-

trieval setting, [21, 38] combine the center loss [64] with a

triplet loss [52] to form compact clusters for features from

the same object class.

All these methods share several assumptions that make

them impractical for LWUMOR. The MVCNN [58] as-

sumes that all object views are presented at both training

and inference. Methods that model view sequences [9, 19]

require even more detailed viewpoint supervision. Previ-
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ous works [14, 23, 30] found that these methods experience

a significant performance drop when only partial views are

available for inference. [30] minimized this drop by treating

viewpoint as an intermediate variable, while [23] proposed

to overcome it with hierarchical multiview embeddings. All

these methods assume a full set of training views.

In this work, we relax this constraint, investigating the

LWUMOR setting, where only partial object views are

available for both training and inference, and no view or

image class labels are given. This forces the use of SSL

techniques to learn the “implicit” shape information present

in a set of object views, and encourages embeddings that

generalize better to unseen classes.

2.2. Self-supervised Learning

SSL leverages free labels for a surrogate task to train a

deep network. Many surrogate tasks have been proposed

in the literature. While we provide a brief review of many

of these in what follows, most do not seek object invariants

and are unsuitable for MV-SSL.

Context based approaches [12, 44, 49] seek to reconstruct

images. Autoencoders [17] map images to a low dimen-

sional latent space, from which they can be reconstructed.

Similarly, a context encoder [49] reconstructs missing

patches from an image conditioned on their surroundings.

[12] further leverages spatial image context by predicting

the relative positions of randomly cropped patches. Image

coloring techniques, which recover the colors of grey scale

images [69] or predict pixelwise hue and chromatic distri-

butions [34, 35] leverage color as a form of image context.

Motion based approaches [2, 26, 48, 63] exploit the spa-

tiotemporal coherence of images captured by a moving

agent, in terms of relative position [2], optical flow [48] or

temporal video structure [25, 63]. The surrogate task be-

comes to predict camera transformations [2] or segmenting

objects [48].

Sequence sorting is another popular task, where sequences

can consist of randomly cropped image patches [46] and

video clips [3, 42]. Similarly, there have been proposals

to remove some color channels from image patchs [31] or

adding various types of jitter to video clips [36, 61, 62].

Data augmentation type of tasks transform images, lever-

aging the difference after transformation to define surrogate

tasks. [16] predicts the rotation angle of the transformed im-

age, while [67] learns a transformation invariant feature.

View based tasks have been proposed for multiple appli-

cations, such as object recognition [24], hand [59] and hu-

man [32] pose estimation. Our work is similar to [24] as

both consider object recognition. However, [24] requires

image sequences while our approach has no such constraint

and tackles the problem in an entirely different manner .

Cluster based methods group data with visual similarities

into clusters and discriminate different clusters. While [5,6]

group multiple images into the same cluster, [1, 65] treat

each image as a cluster. Our work shares the high level idea

of the latter, by treating each object as a cluster, but dif-

fers in terms of memory usage and efficiency. While [1] is

known to be computational demanding, [65] is both mem-

ory expensive and inefficient, by requiring storage of fea-

tures from all dataset instances. Furthermore, each feature

is updated only once per epoch, which leads to noisy op-

timization. Our method leverages multiple object views to

avoid these problems and is more suitable for the LWU-

MOR setting.

2.3. Network randomization

Randomization has been shown to improve network per-

formance [57] and robustness [66]. It can be explained as

a form or model ensembling [33,37], by combining models

trained under different conditions. One of the simplest yet

most practical randomization procedures is dropout [4, 57],

which removes units in the network during training. Drop-

max [37] proposed to instead remove classes, training a

stochastic variant of the softmax for better classification.

The proposed method explores an orthogonal randomiza-

tion direction, where feature vectors from different object

views are chosen as object prototypes during training.

3. Multiview Self Supervised Learning

In this section, we discuss the proposed MV-SSL ap-

proach.

3.1. Light Weight Unsupervised Multiview Object
Recognition

We start by defining the LWUMOR problem and intro-

ducing a surrogate task for its solution. Consider a set of ob-

jects O = {oi}
N
i=1, where oi ∈ O is the ith object instance.

This consists of a set oi = {xj
i}

Vi

j=1 of variable Vi image

views, captured from unspecified viewpoints. xj
i ∈ X de-

notes the jth view of object oi. The goal of LWUMOR

is to learn an embedding that supports recognition of new

views, objects, and object classes from O. In this work, this

is addressed with SSL, defining the surrogate task as ob-

ject instance classification. Each object instance is treated

as a different class, establishing a labelled image dataset

D = {(xj
i , y

j
i ) | y

j
i = i, ∀j ∈ Vi}. The surrogate task is

solved by a classifier based on an embedding fθ : X → R
k

of parameters θ, which maps image x into k-dimensional

feature vector fθ(x). This is implemented by a convolu-

tional neural network (CNN). It should be emphasized that

this surrogate task requires no view alignment or labels.

This is unlike previous multiview SSL approaches, which

require either view [24] or camera transformation labels [2].
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Figure 2: Regularization of a self-supervised embedding by prototype randomization. In all figures, each color represents

a single object and views of the same object are marked with same color. (a) softmax embedding, unnormalized features.

Solid arrows represent the weight vectors wi learned per instance i. (b) Normalized embedding. (c-e) randomization: 3

different sets of prototypes are used for training. Dashed lines show how view embeddings are encouraged to move towards

the corresponding object prototype. Bar plots illustrate how the posterior class probabilities of a given image change when

the prototyopes are switched. The proposed multiview consistency regularization seeks to further improve the generalization

power of the embedding by minimizing these variations.

3.2. Modeling

As is common for CNNs, a classifier can be implemented

with a softmax layer

PY |X(i|x) =
exp(wi

T fθ(x))
∑N

k=1 exp(wk
T fθ(x))

, (1)

where wi is the parameter vector of instance i. This is re-

ferred as the “instance classifier” in what follows and is

trained by cross-entropy minimization, using the free in-

stance labels for supervision. The optimal embedding and

classifier parameters are learned by minimizing the risk

R =
∑

i,j

− logPY |X(i|xj
i ) (2)

over the image dataset D.

Even though it is a strong baseline, the softmax classifier

is most successful for closed-set classification, where train

and test object classes are the same. In general, the learned

embedding fθ does not have a good metric structure be-

yond these classes. For this reason, alternative approaches

have been more successful for open set problems, such as

image retrieval [10], face identification [52, 60], or person

re-identification [70]. These are usually based on metric

learning embeddings, such as pairwise [18] or triplet em-

beddings [52]. However, these techniques have problems

of their own. Because there are many more example pairs

or triplets than single examples in D, they require sampling

techniques that are not always easy to implement and lead

to slow convergence.

3.3. Randomization

In this work, we explore an alternative approach to

learn embeddings that generalize beyond the set of training

classes, based on the softmax classifier of (1). This consists

of randomizing the surrogate task and is inspired by pre-

vious work in low-shot learning [54], where meta-learning

techniques re-sample the classes for which the embedding

is trained. The intuition is that, when the task is changed,

the metric structure of the embedding changes as well. This

forces the embedding to have a good metric structure over

larger regions of the feature space, therefore generalizing

better to unseen classes. In this work, we consider random-

ization strategies that leverage the view richness of mul-

tiview datasets to achieve better generalization to unseen

classes during training. This is critical in the LWUMOR

setting, where the goal is to enable the learning of multi-

view embeddings without dense view datasets or even view

labels. We propose to randomize the embedding by using

random feature vectors as classifier parameters wi in (1).

The idea is summarized in Fig. 2 for a problem where

N = 3. Fig. 2 (a) shows the vectors wi (solid arrows)

learned in feature space with the combination of (1) and

(2). Since cross-entropy minimization only aims to separate

the seen instances, this embedding leads to feature distribu-

tions such as shown in Fig. 2 (a). Embeddings of images

of the same object are not tightly clustered and can be close

to those from other objects. A common procedure to en-

courage better metric structure (in this case Euclidean) is to

normalize the embedding to unit norm [43, 51, 52, 60], i.e.
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Algorithm 1 Randomization schedule

1: Input Threshold t
2: Use the view samplers νi, ∀i to select a set of random

prototypes W = {fθ(x
ν1

1 ), . . . , fθ(x
νN

N )} to use in (3).

3: while Not convergence do

4: Minimize the risk of (2)

5: for all i ∈ N do

6: u ∼ Unif(0, 1)
7: if u < t then

8: Use νi to resample a new prototype fθ(x
νi

i )
9: wi ← fθ(x

νi

i )
10: end if

11: end for

12: end while

add a normalization layer at the output of fθ(x) such that

||fθ(x)||2 = 1. As shown in Fig. 2 (b), this maps all fea-

ture vectors to the unit norm ball. For simplicity, fθ(x) is

assumed to be normalized in all that follows.

In this work, we propose to replace the classifier weight

wi by the embedding of a randomly chosen view of object

instance oi. This is implemented by defining a view sam-

pler νi ∈ {1, . . . , Vi} per object instance i, which outputs a

number between 1 and Vi. This sampler is then used to draw

a feature vector fθ(x
νi

i ) that serves as the parameter vector

wi of (1). The sampled feature vectors are called “proto-

types” for oi, as shown in Fig. 2 (c). A softmax tempera-

ture parameter τ is also introduced to control the sharpness

of the posterior distribution. Larger temperatures originate

sharper distributions, smaller temperatures originate more

uniform ones. All these transform the softmax layer into

P s
Y |X(i|x) =

exp(fθ(x
νi

i )T fθ(x)/τ)
∑N

k=1 exp(fθ(x
νi

i )T fθ(x)/τ)
, (3)

where s = {fνi

i }Ni=1 denotes the set of prototypes used to

compute the probability.

3.4. Multiview embeddings

The prototype classifier has the ability to learn a more

stable multiview representation than the instance classifier.

This, however, depends on the sampling of the prototypes

fνi

i of (3). To study the impact of prototype sampling, we

consider different randomization schedules, where the view

sampler ν is called more or less frequently during learning,

using Algorithm 1. In this algorithm, the threshold t ∈ [0, 1]
controls the frequency with which prototypes are changed.

If t = 0, prototypes are fixed, and the embedding is denoted

a prototype embedding (PE). If t = 1, the prototypes can

change at every iteration. Fig.2 (c-e) illustrates the idea.

Starting from an initial prototype set (Fig.2 (c)), prototypes

are randomized by choosing embeddings of different views

of each instance to play the role of prototypes (Fig.2 (d-e))

as training progresses.

Mathematically, prototypes belong to the set S =
∏N

i=1{f
j
i }

Vi

j=1 of all possible combinations of view embed-

dings across the N object instances. This set has cardinality

|S| =
∏N

i=1 Vi. The randomization of Algorithm 1 can thus

be seen as replacing (1) by an ensemble of |S| classifiers,

during training. This is similar to the dropout [57], but ap-

plied to prototypes only. However, unlike dropout, the ran-

domization is structured in the sense that all the prototypes

used to replace wi are embeddings fθ(x
ν
i ) of views from the

same object oi. This ensembling over views makes fθ(x) a

more stable multiview representation. For this reason, the

learned embedding is referred to as a multiview stochastic

prototype embedding (MVSPE).

3.5. Multiview consistency regularization

The regularization above can be further strengthened

by considering the posterior probability distributions of (1).

During training, the feature embedding is guided to move

toward the prototypes used at each iteration, as illustrated by

the dashed arrows of Fig. 2 (c-e). This causes the variations

in the distributions also shown in the figure. The magnitude

of these variations is a measure of the view sensitivity of the

embedding. For effective LWUMOR, the feature distribu-

tions should not vary significantly with the prototype. This

would imply that the different views of the instance were

effectively mapped into a view invariant representation. It

follows that it should be possible to strengthen the invari-

ance of the embeddings by minimizing these variations, i.e.

encouraging the distributions PY |X(i|x) to remain stable as

the set of prototype is varied. This regularization can be

enforced by minimizing the average Kullback-Leibler di-

vergence [8]

LKL = K
∑

sp,sq∈S,p �=q

N
∑

k=1

P sp(k|x) log

(

P sp(k|x)

P sq (k|x)

)

,

(4)

where K = 2
|S|(|S|−1) , between all pairs of distributions

P
sp
Y |X(i|x) and P

sq
Y |X(i|x) of prototype sets sp and sq ,

where p �= q. When this regularization is used, the resulting

embedding is denoted as view invariant stochastic prototype

embedding (VISPE).

3.6. Scalable Implementation

In practice, the number of instances in the unlabeled

dataset D can be as large as 30,000. Given the memory

capacity of current GPUs, it is impractical to load all ob-

ject prototypes in memory at each each training iteration.

One of the benefits of randomization as a regularization

strategy is that it is fully compatible with the sampling of

a small subset of object prototypes. In our implementa-

tion we use m = 32 object instances per minibatch. A
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set I = {ξ1, . . . , ξm} of distinct instance indexes is ran-

domly sampled, defining a subset of view embedding com-

binations S
′ =

∏m

i=1{f
j
ξi
}
Vξi

j=1 from which prototypes are

drawn. Prototype sets are then defined as s′ = {f
νξi

ξi
}mi=1

and the posterior probabilities with

P s′

Y |X(ξi|x) =
exp(fθ(x

νξi

ξi
)T fθ(x)/τ)

∑m

k=1 exp(fθ(x
νξi

ξi
)T fθ(x)/τ)

, (5)

where i ∈ {1, . . . ,m}. At each iteration, a pair of pro-

totypes s′1 and s′2 is sampled from the subset of prototype

combinations S′, the risk of classifying a training view xj
ξi

of object instance label ξi, using prototype set s′p, is com-

puted with

Ls′p
(i, j) = − log

(

P
s′p
Y |X(ξi|x

j
ξi
)
)

(6)

for p ∈ {1, 2}, and the KL divergence with

LKL′ =

m
∑

k=1

P s′
1(k|xj

ξi
) log

(

P s′
1(k|xj

ξi
)

P s′
2(k|xj

ξi
)

)

. (7)

Finally, the stochastic gradient descent (SGD) loss for train-

ing example (xj
ξi
, ξi), i ∈ {1, . . . ,m}, j ∈ {1, . . . , Vξi} is

L = Ls′
1
+ Ls′

2
+ αLKL′ . (8)

In all experiments, we use a temperature τ = 0.05 and

α = 5. The implementation is based on Pytorch [47], using

the VGG16 [53] model as feature extractor and the output

of the last layer as feature vector. A standard SGD was used

with learning rate 0.001 to train the network for 300 epochs

using batch size of 32.

4. Experiments

In this section, we evaluate the different self-supervised

learning algorithms on three multiview datasets.

4.1. Dataset

Three datasets, Modelnet40 [71], Shapenet [7] and

ModelNet-S, were used in all experiments. Instead of the

rendering process of [24]1, we adopted the rendering ap-

proach and dataset2 widely used in the multiview litera-

ture [14, 21, 23, 30, 38, 58]. Given a synthetic CAD model,

12 views are rendered around it at every 30 degrees. The

virtual camera elevates 30 degrees and points to the center

of the model. Please see [58] for more details.

Modelnet [71] is a synthetic dataset of 3,183 CAD models

from 40 object classes. We follow the seen/unseen class

split of [24], where unseen classes are those of Modelnet10,

1We do not have access to the rendered images.
2https://github.com/suhangpro/mvcnn

a subset of Modelnet40. The standard training and testing

partitions [14, 23, 30, 58] are adopted.

ShapeNet [7] is a synthetic dataset of 55 categories follow-

ing the Wordnet [41] hierarchy. We use the rendered images

from [58], which contains 35,764 training objects and 5,159

test objects. The seen/unseen class split procedure is iden-

tical to [24], using the 30 largest categories as seen and the

remaining 25 as unseen classes.

Modelnet-S is sampled by ourselves to resemble a dataset

with missing views. This is a subset of Modelnet and shares

its train/test setup as well as seen/unseen classes.

4.2. Baselines

We consider SSL baselines that solve different surrogate

tasks, ranging from context, to motion, view, data augmen-

tation and sequence based, as discussed in Section 2. All

baselines except Jigsaw puzzle [46] use the same backbone

(VGG16 [53]) and features are extracted from the last net-

work layer. All methods are trained from scratch. For [46],

we refer to the original paper for architecture details and

the use of pool5 feature. The implementation of these base-

lines is discussed below and more details can be found in

the supplementary materials.

Pretrained [53] is a VGG16 model pre-trained on Ima-

geNet [11] using class supervision.

Autoencoder [17] is trained to reconstruct the input image,

using an L2 loss to measure the difference between input

and reconstruction.

Egomotion [2] predicts the camera motion between 2 im-

ages. Given a pair of images, features are extracted, con-

catenated and fed into stacked fully connected layers to pre-

dict the relative view point difference. Assuming only V
viewpoints exist in the dataset, the model will output V − 1
probabilities, corresponding to the V − 1 viewpoints differ-

ences. For architecture details see supplementary material.

Jigsaw puzzle [46] crops 9 patches from the 255×255 input

images and shuffles them. The surrogate task is to solve the

puzzle. Based on the public source code3.

UEL [67] treats each image as a class and learns a data aug-

mentation invariant feature. Based on the author’s code4.

ShapeCode [24] reconstructs the subsequent views given

an object view. We use the loss function proposed in the

original paper to train the network. To accommodate the

different rendering conditions, the network inputs and gen-

erates 224× 224 images instead of 32× 32.

MVCNN [58] inputs all views of an object and averages

their feature vectors, feeding the result to a fully connected

classifier that predicts the object identity.

Triplet [52] is a metric learning approach that learns from

triplets of examples: an anchor (input) image, a positive

3https://github.com/bbrattoli/JigsawPuzzlePytorch
4https://github.com/mangye16/Unsupervised_Embedding_

Learning
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Table 1: KNN classification results for various baselines, solving different

surrogate tasks. RSPE outperforms all self-supervised learning methods,

VGG16 pretrained model and instance classifiers.

Datasets Surrogate ModelNet ShapeNet ModelNet-S

Methods / Classes Task seen unseen seen unseen seen unseen

Chance N/A 3.3 10.0 3.3 4.0 3.3 10.0

Pretrained [53] N/A 62.7 52.7 63.9 58.1 58.2 55.2

Autoencoder [17] Context 31.8 37.2 29.8 26.3 34.7 38.8

Egomotion [2] Motion 32.4 34.7 72.6 47.1 33.0 35.2

Puzzle [46] Sequence 34.4 41.5 67.8 48.6 34.8 42.4

UEL [67] Data Aug. 47.9 46.5 68.7 53.4 46.4 48.2

ShapeCode [24] View 39.4 46.5 67.1 42.3 38.8 47.2

MVCNN [58] N/A 39.6 48.1 30.3 32.4 36.7 44.8

Triplet [52] N/A 70.1 62.4 81.2 61.2 64.7 62.1

Instance classifier N/A 57.7 58.9 69.3 60.4 52.3 54.6

PE Object 69.7 61.7 81.6 63.8 62.1 60.4

MVSPE Object 70.3 63.2 82.4 64.6 64.6 62.1

VISPE Object 71.2 64.4 82.9 65.5 66.2 64.3

Pretrained ShapeCode

Egomotion Puzzle

Triplet VISPE

Figure 3: TSNE visualization of unseen class

embeddings. Each color represents a class.

RSPE produces more structured embedding.

image (from the same object as the anchor) and a negative

image (from a different object). Margin 1 performed best in

this setting.

Instance classifier treats each object as a class and trains a

VGG16 classifier to minimize (2).

4.3. Classification

All baselines are tested on the 3 datasets, using no la-

bels for training. Inference is based on k nearest neighbor

classification, where k is the number of images of the class

with fewest objects in the dataset. This is 960, 468 and

500 for ModelNet, Shapenet and ModelNet-S, respectively.

Each experiment is repeated for seen and unseen classes per

dataset.

Table 1 shows that all previous surrogate tasks perform

poorly for MV-SSL. All proposed methods outperform all

baselines, regardless of surrogate task. The only competi-

tive baselines are methods that distinguish objects: instance

classifier and triplet embedding. The triplet loss has re-

sults comparable to MVSPE but, as discussed in Sec. 3.2

and shown in Fig. 4 (a), much slower training convergence.

While all proposed methods converge in around 80 training

epochs for ModelNet, it requires more than 200. Overall,

VISPE has the best performance in all datasets, for both

seen and unseen classes. This shows that the surrogate task

of learning object invariants leads to more robust SSL for

multiview data. Fig. 4 (b) shows the effect of the random-

ization threshold of Algorithm 1, presenting the average ac-

curacy on unseen classes over ten experiments per thresh-

old. Despite the variance of these results, it is clear that

randomization during training strengthens model general-

ization to unseen classes.

4.4. Retrieval and Clustering

Ideally, the learned embedding should map images from

the same class close together and images from different

classes apart, even for unseen classes. To test this, Kmeans

[20] is used to cluster the image embeddings of unseen

classes. Two metrics are used to evaluate clustering quality:

recall @ K and normalized mutual information (NMI) [40].

NMI is defined as
2I(A,C)

H(A),H(C) , where I denotes mutual in-

formation, H entropy, A = {a1, . . . , an} where ai is the set

of images assigned to class i, and C = {c1, . . . , cn}, where

cj is the set of images of ground truth class j. Both metrics

are popular in the metric learning literature [43, 55, 56].

Table 2 shows results for Modelnet. Again, triplet is the

only baseline competitive with the proposed embeddings,

although weaker, and VISPE clearly achieves the best per-

formance. Its effectiveness is highlighted by the large NMI

gains. The tightness of its clusters can also be verified in

Fig. 3, which presents a TSNE visualization of the fea-

ture embeddings. Note how VISPE clustering better sepa-

rates the different colors, which identify the different object

classes.

4.5. Few-shot object recognition

The generalization strength of the different embeddings

is further tested by experiments with few shot classification.

Table 2 shows classification accuracy of unseen classes

when k images are labeled per object class. A linear SVM

is trained on the labelled feature vectors of Modelnet [71]

unseen classes, and used to classify its test set. Similarly

to the previous experiments, only the triplet embedding is

competitive with MVSPE and VISPE, and VISPE achieves

the best performance.
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Table 2: Left: Recall @ k and NMI on Modelnet unseen

classes. Right: low shot accuracy for k labeled images.

Retrieval and Clustering Low shot

Recall k Images

Methods @1 @2 @4 @8 NMI 1 3 5

Pretrained [53] 94.5 96.6 98.2 99.3 46.7 34.3 46.8 51.2

Autoencoder [17] 81.7 86.8 92.3 95.2 25.4 25.0 30.0 28.0

Egomotion [2] 73.4 80.7 88.0 92.9 7.5 15.1 18.1 19.9

Puzzle [46] 77.8 84.1 89.8 94.0 21.9 21.1 26.8 29.3

UEL [67] 77.8 85.4 91.6 95.7 24.6 23.8 30.9 34.2

ShapeCode [24] 83.4 88.5 93.4 96.2 27.4 28.8 36.1 39.5

MVCNN [58] 80.3 86.7 91.7 95.0 19.3 21.6 27.0 29.5

Triplet [52] 90.8 94.7 97.4 98.8 48.2 41.4 50.3 54.5

Instance classifier 89.1 92.5 95.6 97.4 37.1 28.3 42.2 48.4

PE 91.2 95.0 97.2 98.5 48.2 40.2 49.7 52.9

MVSPE 92.4 95.4 97.7 98.9 48.4 41.5 50.8 54.2

VISPE 95.5 97.7 98.6 99.2 51.1 43.1 52.5 55.9

4.6. Dependence on number of objects and views

We next consider how many views and objects are

needed to learn an embedding that generalizes to unseen

classes. To study this, we sample a subset of ModelNet ob-

jects and a subset of views per object. The VISPE embed-

ding is then trained on the sampled data and tested on the

unseen classes. Fig. 5 (a) shows that classification accuracy

saturates around 40 objects per class and 8 views per object.

Interestingly, when the number of objects is small, captur-

ing more views per object compensates for the lack of ob-

ject diversity. This is of importance for applications, since it

suggests that the embedding could be quickly retrained on

a relatively small set of objects, e.g. when a robot has to be

deployed on a totally new environment.

4.7. Trade-off of training with labels

Even though supervised learning requires more labeling

effort, it performs better on predefined classes. For ex-

ample, training VGG16 [53] with labels on seen classes

of ModelNet and ShapeNet yields 84.1% and 87.5% on

its test set. However, the performance of KNN on unseen

classes drops significantly to 20.9% and 35.1%, which is

much worse than most SSL results in Table 1. This begs

the question of when SSL should be used. As shown in Fig.

5 (b), when few objects per class are available for Model-

Net, VISPE is a better choice than supervised learning, be-

cause it generalizes much better (> 30%) on unseen classes

and maintains comparable performance (< 10%) on seen

classes.

5. Conclusion

In this work, we made several contributions to MV-SSL.

We started by discussing the current impractical assump-

tion of fully supervised multiview recognition, which re-

(a) (b)

Figure 4: (a) Convergence rate of proposed methods and

triplet loss. (b) Effect of different randomization threshold

on unseen class accuracy.

(a) (b)

Figure 5: (a) Accuracy (represented by color) of VISPE on

unseen classes, as a function of views per object and objects

per class in training set. (b) Trade-off of training with labels

as a function of object per class.

quires intensive labeling. We then relaxed this assumption

by investigating MV-SSL methods, where only “free labels”

(image to object association) are required. Embeddings that

generalize to both seen and unseen data were then learned

with variants of this MV-SSL surrogate task. These variants

differ in the regularization used to encourage object invari-

ant representations. We started by leveraging view informa-

tion by choosing the embedding of a random object view as

the object prototype. A randomization schedule was then

proposed to sample prototypes stochastically. This can be

seen as an ensembling over views, to encourage stable mul-

tiview embeddings. To strengthen the learning of object in-

variants, we finally proposed a multiview consistency con-

straint. The combination of all these contributions produced

a new class of view invariant stochastic prototype embed-

dings (VISPE). These embeddings were shown to outper-

form other SSL methods on seen and unseen data for both

multiview classification and retrieval. While we have not

studied the semi-supervised setting, where few labels are

provided, in great detail, this setting is also supported by

VISPE. We believe that these are important contributions

for the much needed extension of multiview recognition to

the LWUMOR setting of Figure 1, which is of interest for

many real world applications.
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