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Figure 1: RevealNet takes an RGB-D scan as input and learns to “see behind objects”: from the scan’s color images and

geometry (encoded as a TSDF), objects in the observed scene are detected (as 3D bounding boxes and class labels) and for

each object, the complete geometry of that object is predicted as per-instance masks (in both seen and unseen regions).

Abstract

During 3D reconstruction, it is often the case that people

cannot scan each individual object from all views, result-

ing in missing geometry in the captured scan. This missing

geometry can be fundamentally limiting for many applica-

tions, e.g., a robot needs to know the unseen geometry to

perform a precise grasp on an object. Thus, we introduce

the task of semantic instance completion: from an incom-

plete RGB-D scan of a scene, we aim to detect the individ-

ual object instances and infer their complete object geome-

try. This will open up new possibilities for interactions with

objects in a scene, for instance for virtual or robotic agents.

We tackle this problem by introducing RevealNet, a new

data-driven approach that jointly detects object instances

and predicts their complete geometry. This enables a se-

mantically meaningful decomposition of a scanned scene

into individual, complete 3D objects, including hidden and

unobserved object parts. RevealNet is an end-to-end 3D

neural network architecture that leverages joint color and

geometry feature learning. The fully-convolutional nature

of our 3D network enables efficient inference of semantic

instance completion for 3D scans at scale of large indoor

environments in a single forward pass. We show that pre-

dicting complete object geometry improves both 3D detec-

tion and instance segmentation performance. We evaluate

on both real and synthetic scan benchmark data for the new

task, where we outperform state-of-the-art approaches by

over 15 in mAP@0.5 on ScanNet, and over 18 in mAP@0.5

on SUNCG.

1. Introduction

Understanding 3D environments is fundamental to many

tasks spanning computer vision, graphics, and robotics. In

particular, in order to effectively navigate, and moreover

interact with an environment, an understanding of the ge-

ometry of a scene and the objects it comprises of is essen-

tial. This is in contrast to the partial nature of reconstructed

RGB-D scans; e.g., due to sensor occlusions. For instance,

for a robot exploring an environment, it needs to infer where

objects are as well as what lies behind the objects it sees in

order to efficiently navigate or perform tasks like grasping.

That is, it needs not only instance-level knowledge of ob-

jects in the scene, but to also estimate the missing geometry

of these objects. Additionally, for content creation or mixed

reality applications, captured scenes must be decomposable
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into their complete object components, in order to enable

applications such as scene editing or virtual-real object in-

teractions; i.e., it is often insufficient to segment object in-

stances only for observed regions.

Thus, we aim to address this task of “seeing behind ob-

jects,” which we refer to as semantic instance completion:

predicting object detection as well as instance-level com-

pletion for an input partial 3D scan of a scene. Previous ap-

proaches have addressed these tasks independently: 3D in-

stance segmentation segments object instances from the vis-

ible surface of a partial scan [43, 14, 46, 45, 18, 26, 23, 8],

and 3D scan completion approaches predict the full scene

geometry [39, 7], but lack the notion of individual objects.

In contrast, our approach focuses on the instance level, as

knowledge of instances is essential towards enabling inter-

action with the objects in an environment.

In addition, the task of semantic instance completion

is not only important towards enabling object-level under-

standing and interaction with 3D environments, but we also

show that the prediction of complete object geometry in-

forms the task of semantic instance segmentation. Thus, in

order to address the task of semantic instance completion,

we propose to consider instance detection and object com-

pletion in an end-to-end, fully differentiable fashion.

From an input RGB-D scan of a scene, our RevealNet

model sees behind objects to predict each object’s complete

geometry. First, object bounding boxes are detected and re-

gressed, followed by object classification and then a predic-

tion of complete object geometry. Our approach leverages

a unified backbone from which instance detection and ob-

ject completion are predicted, enabling information to flow

from completion to detection. We incorporate features from

both color image and 3D geometry of a scanned scene, as

well as a fully-convolutional design in order to effectively

predict the complete object decomposition of varying-sized

scenes. To address the task of semantic instance completion

for real-world scans, where ground truth complete geometry

is not readily available, we further introduce a new seman-

tic instance completion benchmark for ScanNet [4], lever-

aging the Scan2CAD [1] annotations to evaluate semantic

instance completion (and semantic instance segmentation).

In summary, we present a fully-convolutional, end-to-

end 3D CNN formulation to predict 3D instance completion

that outperforms state-of-the-art, decoupled approaches to

semantic instance completion by 15.8 in mAP@0.5 on real-

world scan data, and 18.5 in mAP@0.5 on synthetic data:

• We introduce the task of semantic instance completion

for 3D scans;

• we propose a novel, end-to-end 3D convolutional net-

work which predicts 3D semantic instance completion

as object bounding boxes, class labels, and complete

object geometry,

• and we show that semantic instance completion task

can benefit semantic instance segmentation and detec-

tion performance.

2. Related Work

Object Detection and Instance Segmentation Recent

advances in convolutional neural networks have now begun

to drive impressive progress in object detection and instance

segmentation for 2D images [9, 33, 23, 32, 20, 13, 21].

Combined with the increasing availability of synthetic and

real-world 3D data [4, 39, 2], we are now seeing more ad-

vances in object detection [37, 38, 31, 30] for 3D. Sliding

Shapes [37] predicted 3D object bounding boxes from a

depth image, designing handcrafted features to detect ob-

jects in a sliding window fashion. Deep Sliding Shapes [38]

then extended this approach to leverage learned features

for object detection in a single RGB-D frame. Frustum

PointNet [31] tackles the problem of object detection for

an RGB-D frame by first detecting object in the 2D image

before projecting the detected boxes into 3D to produce fi-

nal refined box predictions. VoteNet [30] propose a refor-

mulation of Hough voting in the context of deep learning

through an end-to-end differentiable architecture for 3D de-

tection purpose.

Recently, several approaches have been introduced to

perform 3D instance segmentation, applicable to single or

multi-frame RGB-D input. Wang et al. [43] introduced

SGPN to operate on point clouds by clustering semantic

segmentation predictions. Li et al. [46] leverages an object

proposal-based approach to predict instance segmentation

for a point cloud. Simultaneously, Hou et al. [14] presented

an approach leveraging joint color-geometry feature learn-

ing for detection and instance segmentation on volumetric

data. Lahoud et al. [18] proposes to use multi-task losses

to predict instance segmentation. Yang et al. [45] and Liu

et al. [22] both use bottom-up methods to predict instance

segmentation for a point cloud. Our approach also lever-

ages an anchor-based object proposal mechanism for detec-

tion, but we leverage object completion to predict instance

completion, as well as show that completing object-level

geometry can improve detection and instance segmentation

performance on volumetric data.

3D Scan Completion Scan completion of 3D shapes has

been a long-studied problem in geometry processing, partic-

ularly for cleaning up broken mesh models. In this context,

traditional methods have largely focused on filling small

holes by locally fitting geometric primitives, or through

continuous energy minimization [40, 27, 47]. Surface re-

construction approaches on point cloud inputs [15, 16] can

also be applied in this fashion to locally optimize for miss-

ing surfaces. Other shape completion approaches leverage

priors such as symmetry and structural priors [42, 24, 29,
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36, 41], or CAD model retrieval [25, 34, 17, 19, 35] to pre-

dict the scan completion.

Recently, methods leveraging generative deep learning

have been developed to predict the complete geometry of

3D shapes [44, 6, 11, 12]. Song et al. [39] extended be-

yond shapes to predicting the voxel occupancy for a sin-

gle depth frame leveraging the geometric occupancy predic-

tion to achieve improved 3D semantic segmentation. Re-

cently, Dai et al. [7] presented a first approach for data-

driven scan completion of full 3D scenes, leveraging a fully-

convolutional, autoregressive approach to predict complete

geometry along with 3D semantic segmentation. Both Song

et al. [39] and Dai et al. [7] show that inferring the com-

plete scan geometry can improve 3D semantic segmenta-

tion. With our approach for 3D semantic instance com-

pletion, this task not only enables new applications requir-

ing instance-based knowledge of a scene (e.g., virtual or

robotic interactions with objects in a scene), but we also

show that instance segmentation can benefit from instance

completion.

3. Method Overview

Our network takes as input an RGB-D scan, and learns

to join together features from both the color images as well

as the 3D geometry to inform the semantic instance com-

pletion. The architecture is shown in Fig. 2.

The input 3D scan is encoded as a truncated signed dis-

tance field (TSDF) in a volumetric grid. To combine this

with color information from the RGB images, we first ex-

tract 2D features using 2D convolutional layers on the RGB

images, which are then back-projected into a 3D volumet-

ric grid, and subsequently merged with geometric features

extracted from the geometry. The joint features are then

fed into an encoder-decoder backbone, which leverages a

series of 3D residual blocks to learn the representation for

the task of semantic instance completion. Objects are de-

tected through anchor proposal and bounding box regres-

sion; these predicted object boxes are then used to crop and

extract features from the backbone encoder to predict the

object class label as well as the complete object geometry

for each detected object as per-voxel occupancies.

We adopt in total five losses to supervise the learning

process illustrated in Fig. 2. Detection contains three losses:

(1) objectness using binary cross entropy to indicate that

there is an object, (2) box location using a Huber loss to

regress the 3D bounding box locations, and (3) classifica-

tion of the class label loss using cross entropy. Following

detection, the completion head contains two losses: per-

instance completion loss using binary cross entropy to pre-

dict per-voxel occupancies, and a proxy completion loss us-

ing binary cross entropy to classify the surface voxels be-

longing to all objects in the scene.

Our method operates on a unified backbone for detection

followed by instance completion, enabling object comple-

tion to inform the object detection process; this results in

effective 3D detection as well as instance completion. Its

fully-convolutional nature enables us to train on cropped

chunks of 3D scans but test on a whole scene in a single

forward pass, resulting in an efficient decomposition of a

scan into a set of complete objects.

4. Network Architecture

From an RGB-D scan input, our network operates on

the scan’s reconstructed geometry, encoded as a TSDF in

a volumetric grid, as well as the color images. To jointly

learn from both color and geometry, color features are

first extracted in 2D with a 2D semantic segmentation net-

work [28], and then back-projected into 3D to be combined

with the TSDF features, similar to [5, 14]. This enables

complementary semantic features to be learned from both

data modalities. These features are then input to the back-

bone of our network, which is structured in an encoder-

decoder style.

The encoder-decoder backbone is composed of a series

of five 3D residual blocks, which generates five volumetric

feature maps F = {fi|i = 1 . . . 5}. The encoder results in a

reduction of spatial dimension by a factor of 4, and symmet-

ric decoder results in an expansion of spatial dimension by

a factor of 4. Skip connections link spatially-corresponding

encoder and decoder features. For a more detailed descrip-

tion of the network architecture, we refer to the appendix.

4.1. Color Back­Projection

As raw color data is often of much higher resolution

than 3D geometry, to effectively learn from both color

and geometry features, we leverage color information by

back-projecting 2D CNN features learned from RGB im-

ages to 3D, similar to [5, 14]. For each voxel location

vi = (x, y, z) in the 3D volumetric grid, we find its pixel

location pi = (x, y) in 2D views by camera intrinsic and

extrinsic matrices. We assign the voxel feature at location

vi with the learned 2D CNN feature vector at pi. To handle

multiple image observations of the same voxel vi, we apply

element-wise view pooling; this also allows our approach

to handle a varying number of input images. Note that this

back-projection is differentiable, allowing our model to be

trained end-to-end and benefit from both RGB and geomet-

ric signal.

4.2. Object Detection

For object detection, we predict the bounding box of

each detected object as well as the class label. To inform the

detection, features are extracted from feature maps F2 and

F3 of the backbone encoder. We define two set of anchors

on these two features maps, As = {ai|i = 1 . . . Ns} and
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Figure 2: Our RevealNet network architecture takes an RGB-D scan as input. Color images are processed with 2D convolu-

tions to spatially compress the information before back-projecting into 3D, to be merged with the 3D geometry features of the

scan (following [5, 14]). These joint features are used for object detection (as 3D bounding boxes and class labels) followed

by per-instance geometric completion, for the task of semantic instance completion. In contrast to [14], which leverages

separate backbones for detection and instance segmentation, our network maintains one unified backbone for both detection

and completion head, allowing the completion task to directly inform the detection parameters.

Ab = {ai|i = 1 . . . Nb} representing ‘small’ and ‘large’

anchors for the earlier F2 and later F3, respectively, so that

the larger anchors are associated with the feature map of

larger receptive field. These anchors As ∪ Ab are selected

through a k-means clustering of the ground truth 3D bound-

ing boxes. For our experiments, we use Ns + Nb = 9.

From these Ns + Nb clusters, Ab are those with any axis

> 1.125m, and the rest are in As.

The two features maps F2 and F3 are then processed

by a 3D region proposal to regress the 3D object bound-

ing boxes. The 3D region proposal first employs a 1×1×1
convolution layer to output objectness scores for each po-

tential anchor, producing an objectness feature map with

2(Ns + Nb) channels for the positive and negative object-

ness probabilities. Another 1 × 1 × 1 convolution layer

is used to predict the 3D bounding box locations as 6-

dimensional offsets from the anchors; we then apply a non-

maximum suppression based on the objectness scores. We

use a Huber loss on the log ratios of the offsets to the anchor

sizes to regress the final bounding box predictions:

∆x =
µ− µanchor

φanchor

∆w = ln(
φ

φanchor

)

where µ is the box center point and φ is the box width. The

final bounding box loss is then:

L∆ =

{

1
2∆

2, if |∆| ≤ 2

|∆|, otherwise.

Using these predicted object bounding boxes, we then

predict the object class labels using features cropped from

the bounding box locations from F2 and F3. We use a 3D

region of interest pooling layer to unify the sizes of the

cropped feature maps to a spatial dimension of 4 × 4 × 4
to be input to an object classification MLP.

4.3. Instance Completion

For each object, we infer its complete geometry by pre-

dicting per-voxel occupancies. Here, we crop features from

feature map F5 of the backbone, which has a feature map

resolution matching the input spatial resolution, using the

predicted object bounding box. These features are pro-

cessed through a series of five 3D convolutions which main-

tain the spatial resolution of their input. The complete ge-

ometry is then predicted as voxel occupancy using a binary

cross entropy loss.

We predict Nclasses potential object completions for each

class category, and select the final prediction based on the

predicted object class. We define ground truth bounding

boxes bi and masks mi as γ = {(bi,mi)|i = 1 . . . Nb}.

Further, we define predicted bounding boxes b̂i along with

predicted masks m̂i as γ̂ = {(b̂i, m̂i)|i = 1 . . . N̂b}. Dur-

ing training, we only train on predicted bounding boxes that

overlap with the ground truth bounding boxes:

Ω = {(b̂i, m̂i, bi,mi) | IoU(b̂i, bi) ≥ 0.5,

∀(b̂i, m̂i) ∈ γ̂, ∀(bi,mi) ∈ γ}

We can then define the instance completion loss for each
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display table bathtub trashbin sofa chair cabinet bookshelf avg

Scene Completion + Instance Segmentation 1.65 0.64 4.55 11.25 9.09 9.09 0.18 5.45 5.24

Instance Segmentation + Shape Completion 2.27 3.90 1.14 1.68 14.86 9.93 7.11 3.03 5.49

Ours – RevealNet (no color) 13.16 11.28 13.64 18.19 24.79 15.87 8.60 10.60 14.52

Ours – RevealNet (no proxy) 21.94 7.63 12.55 28.24 20.38 22.58 13.42 9.51 17.03

Ours – RevealNet 26.86 13.21 22.31 28.93 29.41 23.64 15.35 14.48 21.77

Table 1: 3D Semantic Instance Completion on ScanNet [4] scans with Scan2CAD [1] targets at mAP@0.5. Our end-to-

end formulation achieves significantly better performance than alternative, decoupled approaches that first use state-of-the-

art scan completion [7] and then instance segmentation [14] method or first instance segmentation [14] and then shape

completion [6].

associated pair in Ω:

Lcompl =
1

|Ω|

∑

Ω

BCE(sigmoid(m̂i),m
′

i),

m′

i(v) =

{

mi(v) if v ∈ b̂i ∩ bi

0 otherwise.

We further introduce a global geometric completion loss

on entire scene level that serves as an intermediate proxy. To

this end, we use feature map F5 as input to a binary cross

entropy loss whose target is the composition of all complete

object instances of the scene:

Lgeometry = BCE(sigmoid(F5),∪(bi,mi)∈γ).

Our intuition is to obtain a strong gradient during train-

ing by adding this additional constraint to each voxel in the

last feature map F5. We find that this global geometric com-

pletion loss further helps the final instance completion per-

formance; see Sec 6.

5. Network Training

5.1. Data

The input 3D scans are represented as truncated signed

distance fields (TSDFs) encoded in volumetric grids. The

TSDFs are generated through volumetric fusion [3] during

the 3D reconstruction process. For all our experiments, we

used a voxel size of ≈ 4.7cm and truncation of 3 voxels.

We also input the color images of the RGB-D scan, which

we project to the 3D grid using their camera poses. We

train our model on both synthetic and real scans, comput-

ing 9 anchors through k-means clustering; for real-world

ScanNet [4] data, this results in 4 small anchors and 5 large

anchors, and for synthetic SUNCG [39] data, this results in

3 small anchors and 6 large anchors.

At test time, we leverage the fully-convolutional design

to input the full scan of a scene along with its color im-

ages. During training, we use random 96 × 48 × 96 crops

(4.5× 2.25× 4.5 meters) of the scanned scenes, along with

a greedy selection of ≤ 5 images covering the most object

geometry in the crop. Only objects with 50% of their com-

plete geometry inside the crop are considered.

5.2. Optimization

We train our model jointly, end-to-end from scratch. We

use an SGD optimizer with batch size 64 for object propos-

als and 16 for object classification, and all positive bound-

ing box predictions (> 0.5 IoU with ground truth box) for

object completion. We use a learning rate of 0.005, which

is decayed by a factor of 0.1 every 100k steps. We train

our model for 200k steps (≈ 60 hours) to convergence, on

a single Nvidia GTX 1080Ti. Additionally, we augment the

data for training the object completion using ground truth

bounding boxes and classification in addition to predicted

object detection.

6. Results

We evaluate our approach on semantic instance comple-

tion performance on synthetic scans of SUNCG [39] scenes

as well as on real-world ScanNet [4] scans, where we ob-

tain ground truth object locations and geometry from CAD

models aligned to ScanNet provided by Scan2CAD [1]. To

evaluate semantic instance completion, we use a mean av-

erage precision metric on the complete masks (at IoU 0.5).

Qualitative results are shown in Figs. 3 and 4.

Comparison to state-of-the-art approaches for seman-

tic instance completion. Tables 1 and 2 evaluate our

method against state of the art for the task of semantic in-

stance completion on our real and synthetic scans, respec-

tively. Qualitative comparisons on ScanNet scans [4] with

Scan2CAD [1] targets (which provide ground truth for com-

plete object geometry) are shown in Fig. 3. We compare

to state-of-the-art 3D instance segmentation and scan com-

pletion approaches used sequentially; that is, first applying

a 3D instance segmentation approach followed by a shape

completion method on the predicted instance segmentation,

as well as first applying a scene completion approach to

the input partial scan, followed by a 3D instance segmen-

tation method. For 3D instance segmentation, we evaluate

3D-SIS [14], which achieves state-of-the-art performance

on a dense volumetric grid representation (the representa-

tion we use), and for scan completion we evaluate the 3D-
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Figure 3: Qualitative results on real-world ScanNet [4] scenes with Scan2CAD [1] targets. Close-ups are shown on the right.

Note that different colors denote distinct object instances in the visualization. Our approach effectively predicts complete

individual object geometry, including missing structural components (e.g., missing chair legs), across varying degrees of

partialness in input scan observations.

EPN [6] shape completion approach and ScanComplete [7]

scene completion approach. Our end-to-end approach for

semantic instance completion results in significantly im-

proved performance due to information flow from instance

completion to object detection. For instance, this allows

our instance completion to more easily adapt to some inac-

curacies in detection, which strongly hinders a decoupled

approach. Note that the ScanComplete model applied on

ScanNet data is trained on synthetic data, due to the lack

of complete ground truth scene data (Scan2CAD provides

only object ground truth) for real-world scans.

Does instance completion help instance detection and

segmentation? We can also evaluate our semantic in-

stance completion predictions on the task of semantic in-

stance segmentation by taking the intersection between the

predicted complete mask and the input partial scan geom-
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cab bed chair sofa tabl door wind bkshf cntr desk shlf curt drsr mirr tv nigh toil sink lamp bath ostr ofurn oprop avg

SC + IS 3.0 0.6 19.5 0.8 18.1 15.9 0.00 0.0 1.0 2.3 3.0 0.0 0.5 0.0 9.2 10.4 23.9 3.4 9.1 0.0 0.0 0.0 9.1 5.5

IS + SC 0.3 0.0 7.4 0.4 3.0 9.1 0.0 0.0 0.2 0.0 0.0 0.0 2.3 0.0 3.0 0.0 2.6 0.0 1.8 0.0 0.0 0.0 4.6 1.5

no color 19.05 41.8 38.2 11.9 23.9 9.1 0.0 0.0 2.5 21.6 9.1 0.0 12.6 4.6 49.4 33.8 63.4 36.9 38.8 14.7 15.9 0.0 23.8 20.5

no proxy 12.9 46.1 39.4 26.8 30.3 1.0 15.9 0.0 9.1 18.2 3.4 0.0 1.1 0.0 43.6 34.0 69.1 32.4 29.6 31.1 14.6 0.0 23.3 20.9

Ours 14.7 58.3 38.2 28.8 29.5 0.0 15.9 54.6 9.1 12.1 9.1 0.0 6.2 0.0 49.4 33.5 61.2 34.5 29.5 27.1 16.4 0.0 23.5 24.0

Table 2: 3D Semantic Instance Completion on synthetic SUNCG [39] scans at mAP@0.5. Our semantic instance completion

approach achieves significantly better performance than alternative approaches with decoupled state-of-the-art scan comple-

tion (SC) [7] followed by instance segmentation (IS) [14], as well as instance segmentation followed by shape completion [6].

We additionally evaluate our approach without color input (no color) and without a completion proxy loss on the network

backbone (no proxy).

Figure 4: Qualitative results on SUNCG dataset [39] (left: full scans, right: close-ups). We sample RGB-D images to

reconstruct incomplete 3D scans from random camera trajectories inside SUNCG scenes. Note that different colors denote

distinct object instances in the visualization.

etry to be the predicted instance segmentation mask. We

show that predicting instance completion helps instance

segmentation, evaluating our method on 3D semantic in-

stance segmentation with and without completion, on Scan-

Net [4] and SUNCG [39] scans in Tables 3 and 4, as well as

3D-SIS [14], an approach jointly predicts 3D detection and

instance segmentation, which also operates on dense volu-

metric data, achieving state-of-the-art performance on this
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3D Detection Instance Segmentation

3D-SIS [14] 25.70 20.78

Ours (no compl) 31.93 24.49

Ours (no color) 29.29 23.55

Ours (no proxy) 31.52 25.92

Ours 36.39 30.52

Table 3: 3D Detection and Instance Segmentation on Scan-

Net [4] scans with Scan2CAD [1] annotations at mAP@0.5.

We evaluate our instance completion approach on the task

of instance segmentation and detection to justify our con-

tribution that instance completion task helps instance seg-

mentation and detection. We evaluate our approach with-

out completion (no compl), without color input (no color),

and without a completion proxy loss on the network back-

bone (no proxy). Predicting instance completion notably

increases performance of predicting both instance segmen-

tation and detection (Ours vs. no compl). We additionally

compare against 3D-SIS [14], a state-of-the-art approach

for both 3D detection and instance segmentation on 3D

dense volumetric data (the representation we use).

3D Detection Instance Segmentation

3D-SIS [14] 24.70 20.61

Ours (no compl) 29.80 23.86

Ours (no color) 31.75 31.59

Ours (no proxy) 34.05 32.59

Ours 37.81 36.28

Table 4: 3D Detection and Instance Segmentation on syn-

thetic SUNCG [39] scans at mAP@0.5. To demonstrate the

benefits of instance completion task for instance segmen-

tation and 3D detection, we evaluate our semantic instance

completion approach on the task of instance segmentation

and 3D detection. Predicting instance completion notably

benefits 3D detection and instance segmentation (Ours vs.

no compl).

representation. We find that predicting instance completion

significantly benefits instance segmentation, due to a more

unified understanding of object geometric structures.

Additionally, we evaluate the effect on 3D detection in

Tables 3 and 4; predicting instance completion also signif-

icantly improves 3D detection performance. Note that in

contrast to 3D-SIS [14] which uses separate backbones for

detection and instance segmentation, our unified backbone

helps 3D mask information (complete or non-complete)

propagate through detection parameters to improve 3D de-

tection performance.

What is the effect of a global completion proxy? In Ta-

bles 1 and 2, we demonstrate the impact of the geometric

completion proxy loss; here, we see that this loss improves

the semantic instance completion performance on both real

and synthetic data. In Tables 3 and 4, we can see that it also

improves 3D detection and semantic instance segmentation

performance.

Can color input help? Our approach takes as input the

3D scan geometry as a TSDF as well as the corresponding

color images. We evaluate our approach with and without

the color input stream; on both real and synthetic scans, the

color input notably improves semantic instance completion

performance, as shown in Tables 1 and 2.

7. Limitations

Our approach shows significant potential in the task of

semantic instance completion, but several important lim-

itations still remain. First, we output a binary mask for

the complete object geometry, which can limit the amount

of detail represented by the completion; other 3D repre-

sentations such as distance fields or sparse 3D representa-

tions [10] could potentially resolve greater geometric detail.

Our approach also uses axis-aligned bounding boxes for ob-

ject detection; it would be helpful to additionally predict the

object orientation. We also do not consider object move-

ment over time, which contains significant opportunities for

semantic instance completion in the context of dynamic en-

vironments.

8. Conclusion

In this paper, we tackle the problem of “seeing behind

objects” by predicting the missing geometry of individual

objects in RGB-D scans. This opens up many possibilities

for complex interactions with objects in 3D, for instance

for efficient navigation or robotic grasping. To this end, we

introduced the new task of semantic instance completion

along with RevealNet, a new 3D CNN-based approach to

jointly detect objects and predict their complete geometry.

Our proposed 3D CNN learns from both color and geome-

try features to detect and classify objects, then predicts the

voxel occupancy for the complete geometry of the object in

an end-to-end fashion, which can be run on a full 3D scan in

a single forward pass. On both real and synthetic scan data,

we significantly outperform state-of-the-art approaches for

semantic instance completion. We believe that our approach

makes an important step towards higher-level scene under-

standing and helps to enable object-based interactions and

understanding of scenes, which we hope will open up new

research avenues.
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