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Abstract

Deep neural networks have attained remarkable perfor-

mance when applied to data that comes from the same dis-

tribution as that of the training set, but can significantly

degrade otherwise. Therefore, detecting whether an exam-

ple is out-of-distribution (OoD) is crucial to enable a sys-

tem that can reject such samples or alert users. Recent

works have made significant progress on OoD benchmarks

consisting of small image datasets. However, many recent

methods based on neural networks rely on training or tun-

ing with both in-distribution and out-of-distribution data.

The latter is generally hard to define a-priori, and its selec-

tion can easily bias the learning. We base our work on a

popular method ODIN1 [21], proposing two strategies for

freeing it from the needs of tuning with OoD data, while

improving its OoD detection performance. We specifically

propose to decompose confidence scoring as well as a mod-

ified input pre-processing method. We show that both of

these significantly help in detection performance. Our fur-

ther analysis on a larger scale image dataset shows that the

two types of distribution shifts, specifically semantic shift

and non-semantic shift, present a significant difference in

the difficulty of the problem, providing an analysis of when

ODIN-like strategies do or do not work.

1. Introduction

State-of-the-art machine learning models, specifically

deep neural networks, are generally designed for a static and

closed world. The models are trained under the assumption

that the input distribution at test time will be the same as

the training distribution. In the real world, however, data

distributions shift over time in a complex, dynamic manner.

Even worse, new concepts (e.g. new categories of objects)

can be presented to the model at any time. Such within-

class distribution shift and unseen concepts both may lead to

catastrophic failures since the model still attempts to make

predictions based on its closed-world assumption. These

1ODIN: Out-of-DIstribution detector for Neural networks [21]

failures are therefore often silent in that they do not result

in explicit errors in the model.

The above issue had been formulated as a problem of

detecting whether an input data is from in-distribution (i.e.

the training distribution) or out-of-distribution (i.e. a distri-

bution different from the training distribution) [13]. This

problem has been studied for many years [12] and has been

discussed in several views such as rejection [8, 5], anomaly

detection [1], open set recognition [2], and uncertainty es-

timation [22, 23, 24]. In recent years, a popular neural

network-based baseline is to use the max value of class pos-

terior probabilities output from a softmax classifier, which

can in some cases be a good indicator for distinguishing in-

distribution and out-of-distribution inputs [13].

ODIN [21], based on a trained neural network classifier,

provides two strategies, temperature scaling and input pre-

processing, to make the max class probability a more effec-

tive score for detecting OoD data. Its performance has been

further confirmed by [34], where 15 OoD detection methods

are compared with a less biased evaluation protocol. ODIN

out-performs popular strategies such as MC-Dropout [7],

DeepEnsemble [18], PixelCNN++ [33], and OpenMax [3].

Despite its effectiveness, ODIN has a requirement that it

needs OoD data to tune hyperparameters for both its strate-

gies, leading to a concern that hyperparameters tuned with

one out-of-distribution dataset might not generalize to oth-

ers, discussed in [34]. In fact, other neural network-based

methods [20, 38], which follow the same problem setting,

have a similar requirement. [6, 14] push the idea of utilizing

OoD data further by using a carefully chosen OoD dataset to

regularize the learning of class posteriors so that OoD data

have much lower confidence than in-distribution. Lastly,

[19] uses a generative model to generate out-of-distribution

data around the boundary of the in-distribution for learning.

Although the above works show that learning with OoD

data is effective, the space of OoD data (ex: image pixel

space) is usually too large to be covered, potentially causing

a selection bias for the learning. Some previous works have

done a similar attempt to learn without OoD data, such as

[35], which uses word embeddings for extra supervision,

and [25] which applies metric learning criteria. However,
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Figure 1: The concept of detecting out-of-distribution im-

ages by encouraging neural networks to output scores, h(x)
and g(x), to behave like the decomposed factors in the con-

ditional probability when the close-world assumption din is

explicitly considered. Its elucidation is in Section 3.1. A

small overlap between the green and red histograms means

the x-axis a good scoring function for distinguishing OoD

data from in-distribution. The extent of overlap is usually

measured by AUROC, elaborated in Section 4.1.

both works report performance similar to ODIN, showing

that learning without OoD data is a challenging setting.

In this work, we closely follow the setting of ODIN,

proposing two corresponding strategies for the problem of

learning without OoD data. First, we provide a new prob-

abilistic perspective for decomposing confidence of pre-

dicted class probabilities. We specifically add a variable for

explicitly adopting the closed world assumption, represent-

ing whether the data is in-distribution or not, and discuss its

role in a decomposed conditional probability. Inspired by

the probabilistic view, we use a dividend/divisor structure

for a classifier, which encourages neural networks to behave

similarly to the decomposed confidence effect. The concept

is illustrated in Figure 1, and we note the dividend/divisor

structure is closely related to temperature scaling except

that the scale depends on the input instead of a tuned hy-

perparameter. Second, we build on the input preprocessing

method from ODIN [21] and develop an effective strategy

to tune its perturbation magnitude (which is a hyperparam-

eter of the preprocessing method) with only in-distribution

data.

We then perform extensive evaluations on benchmark

image datasets such as CIFAR10/100, TinyImageNet,

LSUN, SVHN, as well as a larger scale dataset DomainNet,

for investigating the conditions under which the proposed

strategies do or do not work. The results show that the two

strategies can significantly improve upon ODIN, achieving

a performance close to, and in some cases surpassing, state-

of-the-art methods [20] which use out-of-distribution data

for tuning. Lastly, our systematical evaluation with Do-

mainNet reveals the relative difficulties between two types

of distribution shift: semantic shift and non-semantic shift,

which are defined by whether a shift is related to the inclu-
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Figure 2: An example scheme of semantic shift and non-

semantic shift. It is illustrated with DomainNet [31] images.

The setting with two splits (A and B) will be used in our

experiments, where only real-A is the in-distribution data.

sion of new semantic categories.

In summary, the contribution of this paper is three-fold:

• A new perspective of decomposed confidence for mo-

tivating a set of classifier designs that consider the

closed-world assumption.

• A modified input preprocessing method without tuning

on OoD data.

• Comprehensive analysis with experiments under the

setting of learning without OoD data.

2. Background

This work considers the OoD detection setting in clas-

sification problems. We begin with a dataset Din =
{(xi, yi)}

N
i=1

, denoting in-distribution data xi ∈ R
k and

categorical label yi ∈ {y} = {1..C} for C classes. Din

is generated by sampling from a distribution pin(x, y). We

then have a discriminative model fθ(x) with parameters θ
learned with the in-domain dataset Din, predicting the class

posterior probability p(y|x).
When the learned classifier fθ is deployed in the open

world, it may encounter data drawn from a different distri-

bution pout such that pout 6= pin. Sampling from all pos-

sible distributions pout that might be encountered is gener-

ally intractable especially when the dimension k is large,

such as in the cases of image data. Note also that we can

conceptually categorize the type of differences into non-

semantic shift and semantic shift. Data with non-semantic

shift is drawn from the distribution pout(x, y). Examples

with this shift come from the same object class but are pre-

sented in different forms, such as cartoon or sketch images.

Such shift is also a scenario be widely discussed in the prob-

lem of domain adaptation [30, 31]. In the case of semantic

shift, the data is drawn from a distribution pout(x, ȳ) with

{ȳ} ∩ {y} = ∅. In other words, the data is from a class not

seen in the training set Din. Figure 2 has an illustration.
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The above separation leads to two natural questions that

must be answered for a model to work in an open world:

How can the model avoid making a prediction when en-

countering an input x ∼ pout(x, ȳ), or reject a low con-

fidence prediction when x ∼ pout(x, y)? In this work,

we propose to introduce an explicit binary domain variable

d ∈ {din, dout} in order to represent this decision, with

din meaning that the input is x ∼ pin while dout meaning

x ≁ pin (or equivalently x ∼ pout). Note that while gener-

ally the model cannot distinguish between the two cases we

defined, we can still show that both of the questions above

can be answered by estimating this single variable d.

The ultimate goal, then, is to find a scoring function

S(x) which correlates to the domain posterior probability

p(d|x), in that a higher score s from S(x) indicates a higher

probability of p(din|x). The binary decision now can be

made by applying a threshold on s. Selecting such a thresh-

old is subject to the application requirement or the perfor-

mance metric calculation protocol. With the above nota-

tion, we can view the baseline method [13] as a special case

with a specific scoring function SBase(x) = maxy p(y|x),
where p(y|x) is obtained from a standard neural network

classifier fθ trained with cross-entropy loss. However, S(x)
can become a learnable parameterized function, and differ-

ent OoD methods can then be categorized by specific pa-

rameterizations and learning procedures. A key differentia-

tor between methods is whether the parameters are learned

with or without OoD data.

2.1. Related Methods

This section describes the two methods that are the most

related to our work: ODIN [21] and Mahalanobis [20].

These two methods will serve as strong baselines in our

evaluation, especially since Mahalanobis has further been

shown to have significant advantages over ODIN. Note that

both ODIN and Mahalanobis start from a vanilla classifier

fθ trained on Din, then have a scoring function S(x; fθ)
which has extra parameters to be tuned. In their original

work, those parameters are specifically tuned for each OoD

dataset. Here we will describe methods to use them without

tuning on OoD data.

ODIN comprises two strategies: temperature scaling and

input preprocessing. The temperature scaling is applied to

its scoring function, which has fi(x) for the logit of i class:

SODIN (x) = max
i

exp (fi(x)/T )∑C

j=1
exp (fj(x)/T )

(1)

Although ODIN originally involved tuning the hyperpa-

rameter T with out-of-distribution data, it was also shown

that a large T value can generally be preferred, suggesting

that the gain is saturated after 1000 [21]. We follow this

guidance and fix T = 1000 in our experiments.

Mahalanobis comprises two parts as well: Mahalanobis

distance calculation and input preprocessing. The score is

calculated with Mahalanobis distance as follows:

Sℓ
Maha(x) = max

i
−(f ℓ(x)− µℓ

i)
TΣ−1

ℓ (f ℓ(x)− µℓ
i),(2)

SMaha(x) =
∑

ℓ

αℓS
ℓ
Maha(x) (3)

The f ℓ(x) represents the output features at the ℓth-layer

of neural networks, while µi and Σ are the class mean

representation and the covariance matrix, correspondingly.

The hyperparameter is αℓ. In the original method, αℓ is

regressed with a small validation set containing both in-

distribution and out-of-distribution data. Therefore they

have a set of αℓ tuned for each OoD dataset. As a result,

for the baseline that does not tune on OoD data we use uni-

form weighting SMaha(x) =
∑

ℓ S
ℓ
Maha(x).

Note that both methods use the input preprocessing strat-

egy, which has a hyperparameter to be tuned. In their

original works, this hyperparameter is tuned for each OoD

dataset as well. Therefore we develop a version that does

not require tuning with out-of-distribution data.

3. Approach

3.1. The Decomposed Confidence

[36, 29, 13] observed that the softmax classifier tends to

output a highly confident prediction, reporting that ”random

Gaussian noise fed into an MNIST image classifier gives

a predicted class probability of 91%”. They attribute this

to the use of the softmax function which is a smooth ap-

proximation of an indicator function, hence tending to give

a spiky distribution instead of a uniform distribution over

classes [13]. We acknowledge this view and further con-

sider it as a limitation in the design of the softmax classifier.

To address this limitation, our inspiration starts from recon-

sidering its outputs, the class posterior probability p(y|x),
which does not consider the domain d at all. In other words,

current methods condition on domain d = din based on the

implicit closed world assumption. Thus, we use our explicit

variable din in the classifier, rewriting it as the quotient of

the joint class-domain probability and the domain probabil-

ity using the rule of conditional probability:

p(y|din,x) =
p(y, din|x)

p(din|x)
(4)

Equation 4 provides a probabilistic view of why clas-

sifiers tend to be overconfident. Consider an example

x ∼ pout: It is natural to expect that the joint probabil-

ity P (y, din|x) is low (e.g. 0.09) for its maximum value

among C classes. One would also expect its domain prob-

ability p(din|x) is low (e.g. 0.1). Therefore, calculating

p(y|din,x) with Equation 4 gives a high probability (0.9),
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demonstrating how overconfidence can result. Based on the

form of Equation 4, we call p(y, din|x) and p(din|x) the

decomposed confidence scores.

One straightforward solution for the above issue is to

learn a classifier to predict the joint probability p(y, din|x)
by having both supervision on class y and domain d. Learn-

ing to predict p(y, din|x) is preferred over p(din|x) be-

cause it can serve both purposes for predicting a class by

argmaxyin
p(y, din|x) and rejecting a prediction by thresh-

olding. This idea relates to the work of [14], which adds

an extra loss term to penalize a predicted non-uniform

class probability when an out-of-distribution data is given

to the classifier. However, this strategy requires out-of-

distribution data for regularizing the training.

Without having supervision on domain d (i.e. without

out-of-distribution data), there is no principled way to learn

p(y, din|x) and p(din|x). This situation is similar to unsu-

pervised learning (or self-supervised learning) in that we

need to insert assumptions or prior knowledge about the

task for learning. In our case, we use the dividend/divisor

structure in Equation 4 as the prior knowledge to design the

structure of classifiers, providing classifiers a capacity to

decompose the confidence of class probability.

In the dividend/divisor structure for classifiers, we define

the logit fi(x) for class i, which is the division between two

functions hi(x) and g(x):

fi(x) =
hi(x)

g(x)
, (5)

The quotient fi(x) is then normalized by the exponential

function (i.e. softmax) for outputting a class probability

p(y = i|din,x), which is subject to cross-entropy loss.

With the exponential normalization effect of softmax,

the cross-entropy loss can be minimized in two ways: in-

creasing hi(x) or decreasing g(x). In other words, when

the data is not in the high-density region of in-distribution,

hi(x) may tend towards smaller values. In such case, the

g(x) is encouraged to be small so that the resulting log-

its fi(x) can further minimize the cross-entropy loss. In

the other case when the data is in the high density region,

hi(x) generally can reach a higher value relatively easier,

thus its corresponding g(x) value is less encouraged to go

small. The discussed interaction between hi(x) and g(x)
is the primary driving force to encourage hi(x) to behave

similarly to p(y = i, din|x) and g(x) to behave similarly to

p(din|x), in a way that the distributional overlap between

the scores of OoD and in-distribution data is small, which is

an intrinsic property of p(y, din|x) and p(din|x), illustrated

in Figure 1.

3.1.1 Design Choices

Although the dividend/divisor structure provides a ten-

dency, it does not necessarily guarantee the decomposed

confidence effect to happen. The characteristic of hi(x)
and g(x) can largely affect how likely the decomposition

could happen. Therefore we discuss a set of simple design

choices to investigate whether such decomposition is gen-

erally obtainable.

Specifically we have g(x) = σ(BN(wgf
p(x) + bg)),

which uses features fp(x) from the penultimate layer of

neural networks sequentially through another linear layer,

batch normalization (BN , optional for a faster conver-

gence), and a sigmoid function σ. The w and b represent

the learnable weights. For hi(x), we investigate three sim-

ilarity measures, including inner-product (I), negative Eu-

clidean distance (E), and cosine similarity (C) for hI
i (x),

hE
i (x), and hC

i (x), correspondingly:

hI
i (x) = w

T
i f

p(x) + bi; (6)

hE
i (x) = −‖fp(x)−wi‖

2; (7)

hC
i (x) =

w
T
i f

p(x)

‖wi‖‖fp(x)‖
(8)

The overall neural network model fθ therefore has two

branches (hi and g) after its penultimate layer (See Fig-

ure 1). At training time, the model calculates the logit

fi followed by the softmax function with cross-entropy

loss on top of it. At testing time, the class predic-

tion can be made by either calculating argmaxi fi(x) or

argmaxi hi(x) (both will give the same predictions). For

out-of-distribution detection, we use the scoring function

SDeConf (x) = maxi hi(x) or g(x).
Note that when hi(x) = hI

i (x) and g(x) = 1, this

method reduces to the baseline [13]. We call the three vari-

ants of our method DeConf-I, DeConf-E, and DeConf-C.

For simplicity, the above names represent using hi(x) for

the scores. The use of g(x) will be indicated specifically.

3.1.2 Temperature Scaling

The g(x) in Equation 5 can be immediately viewed as a

learned temperature scaling function discussed in [28] and

a concurrent report [37]. However, our experiment results

strongly suggest that g(x) is more than a scale. The g(x)
achieves an OoD detection performance significantly better

than baselines in many experiments, indicating its poten-

tial in estimating the p(din|x). More importantly, the tem-

perature scaling is generally used as a numerical trick for

learning a better embedding [40], softening the prediction

[15], or calibrating the confidence [9]. Our work provides

a probabilistic view for its effect, indicating such tempera-

ture might relate to how strong a classifier assumes a closed

world as a prior.

3.2. A Modified Input Preprocessing Strategy

This section describes a modified version of the input

preprocessing method proposed in ODIN [21]. The primary
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purpose of the modification is making the search of the per-

turbation magnitude ǫ to not rely on out-of-distribution data.

The perturbation of input is given by:

x̂ = x− ǫsign(−∇xS(x)) (9)

In the original method [21] the best value of ǫ is searched

with a half-half mixed validation dataset of Dval
in ∼ pin and

Dval
out ∼ pout over a list of 21 values. The perturbed images

x̂ are fed into the classification model fθ for calculating the

score S(x). The performance of each magnitude is evalu-

ated with the benchmark metric (TNR@TPR95, described

later) and the best one is selected. This process repeats for

each out-of-distribution dataset, and therefore the original

method results in a number of ǫ values equal to the number

of out-of-distribution datasets in the benchmark.

In our method, we search for the ǫ∗ which maximizes the

score S(x) with only the in-distribution validation dataset

Dval
in :

ǫ∗ = argmax
ǫ

∑

x∈Dval

in

S(x̂) (10)

Our searching criteria is still based on the same observa-

tion made by [21]. They observe that the in-distribution

images tend to have their score s increased more than

the out-of-distribution images when the input perturba-

tion is applied. We therefore use Eq. 10 since we ar-

gue that an ǫ which makes a large score increase for in-

distribution data should be sufficient to create a distinc-

tion in score. Our method also does not even require

class labels although it is available in Dval
in . More im-

portantly, our method selects only one ǫ based on Dval
in

without access to the benchmark performance metric (e.g.

TNR@TPR95), greatly avoiding the hyperparameter from

fitting to a specific benchmark score. Lastly, we perform the

search of ǫ on a much coarser grid, which has only 6 val-

ues: [0.0025, 0.005, 0.01, 0.02, 0.04, 0.08]. Therefore, our

search is much faster. Although overshooting is possible

(e.g. the maximum value is at the middle of two scales in

the grid) due to the coarser grid, it can be mitigated by re-

ducing the found magnitude by one scale (i.e. divide it by

two). This simple strategy consistently gains or maintains

the performance on varied scoring functions, such as SBase,

SDeConf , SODIN , and SMaha.

The method in this section is orthogonal to all the meth-

ods evaluated in this work. For convenience, we will add a

* after the name of other methods to indicate a combination,

for example, Baseline* and DeConf-C*.

4. Experiments

4.1. Experimental Settings

Overall procedure: In all experiments, we first train a

classifier fθ on an in-distribution training set, then tune the

hyperparameters (e.g. the perturbation magnitude ǫ) on an

in-distribution validation set without using its class labels.

At testing time, the OoD detection scoring function S(x)
calculates the scores s from the outputs of fθ. The scores s
is calculated for both in-distribution validation set Dval

in and

out-of-distribution dataset Dout ∼ pout. The scores s are

then sent to a performance metric calculation function. The

above procedure is the same as related works in this line

of research [21, 20, 14, 34, 38, 19], except that we do not

use OoD data for tuning the hyperparameters in the scoring

function S(x).

In-distribution Datasets: We use SVHN [27] and

CIFAR-10/100 images with size 32x32 [17] for the clas-

sification task. Detecting OoD with CIFAR-100 classifier is

generally harder than CIFAR-10 and SVHN, since a larger

amount of classes usually involves a wider range of vari-

ance, and thus it has a higher tendency to treat random data

(e.g. Gaussian noise) as in-distribution. For that reason, we

use CIFAR-100 in our ablation and robustness study.

Out-of-distribution Datasets: We include all the OoD

datasets used in ODIN [21], which are TinyImageNet(crop),

TinyImageNet(resize), LSUN(crop), LSUN(resize), iSUN,

Uniform random images, and Gaussian random images. We

further add SVHN, a colored street numbers image dataset,

to serve as a difficult OoD dataset. The selection is inspired

by the finding in the line of works that uses a generative

model for OoD detection [32, 26, 4]. Those works report

that a generative model of CIFAR-10 assigns higher like-

lihood to SVHN images, indicating a hard case for OoD

detection.

Networks and Training Details: We use DenseNet

[16], ResNet [11], and WideResNet [39] for the classifier

backbone. DenseNet has 100 layers with a growth rate of

12. It is trained with batch size 64 for 300 epochs with

weight decay 0.0001. The ResNet and WideResNet-28-10

are trained with batch size 128 for 200 epochs with weight

decay 0.0005. In both training, the optimizer is SGD with

momentum 0.9, and the learning rate starts with 0.1 and de-

creases by factor 0.1 at 50% and 75% of the training epochs.

Note that we do not apply weight decay for the weights in

the hi(x) function of DeConf classifier since they work as

the centroids for classes, and those weights are initialized

with He-initialization [10]. In the robustness analysis, the

model may be indicated to have an extra regularization. In

such case, we additional apply a dropout rate of 0.7 at the

inputs for the dividend/divisor structure.

Evaluation Metrics: We use the two most widely

adopted metrics in the OoD detection literature. The first

one is the area under the receiver operating characteristic

curve (AUROC), which plots the true positive rate (TPR) of

in-distribution data against the false positive rate (FPR) of

OoD data by varying a threshold. Thus it can be regarded

as an averaged score. The second one is true negative rate
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Table 1: Performance of four OoD detection methods. All

methods in the table have no access to OoD data during

training and validation. ODIN* and Mahalanobis* are mod-

ified versions that do not need any OoD data for tuning

(see Section 2.1). The base network used in the table is

DenseNet trained with CIFAR-10/100 (in-distribution data,

or ID). All values are percentages averaged over three runs,

and the best results are indicated in bold. Note that we only

show the most common settings used in literature. The

DeConf-C is selected since it shows the best robustness

in our analysis, but it is not necessary to perform the best

among all DeConf variants. Please see Figure 3 and Figure

4 for the summary. A more comprehensive version of the

table is available in Supplementary.

ID OoD AUROC TNR@TPR95

Baseline / ODIN* / Mahalanobis* / DeConf-C*

C
IF

A
R

-1
0
0

Imagenet(c) 79.0 / 90.5 / 92.4 / 97.6 25.3 / 56.0 / 63.5 / 87.8

Imagenet(r) 76.4 / 91.1 / 96.4 / 98.6 22.3 / 59.4 / 82.0 / 93.3

LSUN(c) 78.6 / 89.9 / 81.2 / 95.3 23.0 / 53.0 / 31.6 / 75.0

LSUN(r) 78.2 / 93.0 / 96.6 / 98.7 23.7 / 64.0 / 82.6 / 93.8

iSUN 76.8 / 91.6 / 96.5 / 98.4 21.5 / 58.4 / 81.2 / 92.5

SVHN 78.1 / 85.6 / 89.9 / 95.9 18.9 / 35.3 / 43.3 / 77.0

Uniform 65.0 / 91.4 / 100. / 99.9 2.95 / 66.1 / 100. / 100.

Gaussian 48.0 / 62.0 / 100. / 99.9 0.06 / 33.3 / 100. / 100.

C
IF

A
R

-1
0

Imagenet(c) 92.1 / 88.2 / 96.3 / 98.7 50.0 / 47.8 / 81.2 / 93.4

Imagenet(r) 91.5 / 90.1 / 98.2 / 99.1 47.4 / 51.9 / 90.9 / 95.8

LSUN(c) 93.0 / 91.3 / 92.2 / 98.3 51.8 / 63.5 / 64.2 / 91.5

LSUN(r) 93.9 / 92.9 / 98.2 / 99.4 56.3 / 59.2 / 91.7 / 97.6

iSUN 93.0 / 92.2 / 98.2 / 99.4 52.3 / 57.2 / 90.6 / 97.5

SVHN 88.1 / 89.6 / 98.0 / 98.8 40.5 / 48.7 / 90.6 / 94.0

Uniform 95.4 / 98.9 / 99.9 / 99.9 59.9 / 98.1 / 100. / 100.

Gaussian 94.0 / 98.6 / 100. / 99.9 48.8 / 92.1 / 100. / 100.

at 95% true positive rate (TNR@TPR95), which simulates

an application requirement that the recall of in-distribution

data should be 95%. Having a high TNR under a high

TPR is much more challenging than having a high AU-

ROC score; thus TNR@TPR95 can discern between high-

performing OoD detectors better.

4.2. Results and Discussion

OoD benchmark performance: We show an overall

comparison for methods that train without OoD data in Ta-

ble 1 with 8 OoD benchmark datasets. The ODIN* and Ma-

halanobis* are significantly better than the baseline, while

DeConf-C* still outperforms them with a significant mar-

gin. These results clearly show that learning OoD detection

without OoD data is feasible, and the two methods we pro-

posed in Sections 3.1 and 3.2 combined are very effective

for this purpose.

In Table 2 we further compare our results with the orig-

inal ODIN [21] and Mahalanobis [20] methods which are

tuned on each OoD dataset. We refer to the results of

both original methods reported by [20] since it uses the

Table 2: OoD detection with OoD data versus without OoD

data with CIFAR-10/100 for the in-distribution (ID) data.

The values of ODINorig and Mahaorig (abbreviation of

Mahalanobis) are copied from the Mahalanobis paper [20]

which are tuned with OoD data. The values of ODIN*,

Maha*, and DeConf-C* are copied from Table 1 of our pa-

per which do not have any access to OoD data. All methods

in this table use the same DenseNet for the backbone. Note

that the performance with different network backbone may

have a mild difference. For example, Mahaorig performs

slightly better than DeConf-C* with ResNet-34.

ID OoD AUROC TNR@TPR95

ODINorig / Mahaorig/ ODIN* / Maha* / DeConf-C*

C
-1

0
0 Imagenet(r) 85.2 / 97.4 / 91.1 / 96.4 / 98.6 42.6 / 86.6 / 59.4 / 82.0 / 93.3

LSUN(r) 85.5 / 98.0 / 93.0 / 96.6 / 98.7 41.2 / 91.4 / 64.0 / 82.6 / 93.8

SVHN 93.8 / 97.2 / 85.6 / 89.9 / 95.9 70.6 / 82.5 / 35.3 / 43.3 / 77.0

C
-1

0

Imagenet(r) 98.5 / 98.8 / 90.1 / 98.2 / 99.1 92.4 / 95.0 / 51.9 / 90.9 / 95.8

LSUN(r) 99.2 / 99.3 / 92.9 / 98.2 / 99.4 96.2 / 97.2 / 59.2 / 91.7 / 97.6

SVHN 95.5 / 98.1 / 89.6 / 98.0 / 98.8 86.2 / 90.8 / 48.7 / 90.6 / 94.0

same backbone network, OoD datasets, and metrics to eval-

uate OoD detection performance. In the comparison, we

find our ODIN* and Mahalanobis* perform worse than the

ODINorig and Mahalanobisorig in a major fraction of the

cases. The result is not surprising because the original

methods gain advantage from using OoD data. However,

our DeConf-C* still outperforms the two original methods

in many of the cases. The cross-setting comparison further

supports the effectiveness of the proposed strategies.

Ablation Study: We study the effect of applying De-

Conf and our modified input preprocessing (IPP) strategy

separately. In Figure 3, it shows that both hi(x) and g(x)
from all three variants (I, E, C) of the DeConf strategy help

OoD detection performance with CIFAR-10 and SVHN

classifiers, showing that the concept of DeConf is generally

effective. However, the failure of DeConf-I and g(x) with

the CIFAR-100 classifier in Figure 4a may indicate these

functions have different robustness and scalability, which

we will investigate in the next section. One downside of us-

ing the DeConf strategy is that the accuracy of the classifier

may slightly reduce in the case of CIFAR-100 (See Table

3). This could be a natural consequence of having an alter-

native term, i.e. g(x), in the model to fit the loss function.

This may cause the lack of a high score for hi(x), instead

of assigning a lower score for the data away from the high-

density region of in-distribution data. We see this effect is

reduced and has only a 1% accuracy drop when the extra

regularization (dropout rate 0.7) is applied.

In Figure 5, the results show that tuning the perturba-

tion magnitude with only in-distribution data is an effective

strategy, allowing us to reduce the required supervision for

learning. The supervision here means the binary label for

in/out-of-distribution.
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61.8

(a) CIFAR-10 classifier75.4

61.8

(b) SVHN classifier

Figure 3: An ablation study with three variants in our De-

Conf method (Section 3.1). Plain means g(x) = 1 so that

the dividend/divisor structure is turned off. Each bar in

the figure is averaged with 24 experiments (8 OoD datasets

listed in Table 1 with 3 repeats. Note that we use CIFAR-10

as OoD to replace the SVHN in the case of SVHN classi-

fier). The backbone network is Resnet-34. The plain setting

with inner-product is equivalent to a vanilla Resnet for clas-

sification. Overall, both scores from h(x) and g(x) are sig-

nificant higher than random (AUROC=0.5) and correspond-

ing plain baselines. Supplementary has breakdown results.

(a) CIFAR-100 classifier

(b) CIFAR-100 classifier with extra regularization (dropout 0.7)

Figure 4: An ablation study similar to Figure 3. This fig-

ure shows the performance of DeConf-I and all g(x) are

improved by adding extra regularization.

Robustness Study: This study investigates when the

OoD detection method will or will not work. In Figure 6,

it shows that the number of in-distribution training data can

largely affect the performance of the OoD detector. Ma-

halanobis has the lowest data requirement, but the DeConf

methods generally reach a higher performance in the high

data regime. In Figure 6, we also examine scalability by

varying the number of classes in the in-distribution data. In

this test, DeConf-E* and DeConf-C* show the best scala-

bility. Overall, DeConf-C* is more robust than the other

Figure 5: The OoD detection performance of our input

preprocessing (IPP) strategy, which selects the perturba-

tion magnitude with only in-distribution data. The setting

plain means the IPP is turned off. The in-distribution data

is CIFAR-100. The backbone network is Resnet-34. Each

value is averaged with the results on 8 OoD datasets listed

in Table 1. Each method has its own scoring function S(x)
(See Section 2.1 and 3), causing IPP to perform at varied

levels of performance gain.

two DeConf variants. Lastly, Figure 7 shows that high per-

forming methods such as DeConf-E*, DeConf-C*, and Ma-

halanobis* are not sensitive to the type and depth of neural

networks. Therefore, the number of in-distribution samples

and classes are the main factors that affect OoD detection

performance.

Enhancing the Robustness: The overfitting issue may

be the cause of low OoD detection performance for some of

the DeConf variants and g(x). In Figure 4b, the OoD detec-

tion performance is significantly increased with DeConf-I

and all g(x) when extra regularization (dropout rate 0.7)

is applied. Figure 8 provides further analysis for DeConf-I

and its g(x) by varying the number of samples and classes in

the training data. The performance with extra regularization

is significantly better than the cases without it. Besides, the

performance is also very similar between regularized hi(x)
and g(x), indicating that overfitting is an important issue.

Lastly, we note that the DeConf-E and DeConf-C have a

reduced performance with extra regularization in Figure 4b.

This outcome might be because the dropout generally harms

the distance calculation between centroids and data since

part of the feature is masked. The results indicate that the

design of (I, E, C) might not be optimal for the problem,

leaving room for future work to find a robust pair of hi(x)
and g(x) for the OoD detection problem.

4.3. Semantic Shift versus Nonsemantic Shift

One interesting aspect of out-of-distribution data that

has not been explored is the separation of semantic and

non-semantic shift. We therefore use a larger scale im-

age dataset, DomainNet [31], to repeat an evaluation sim-

ilar to Table 1. DomainNet has high-resolution (180x180

to 640x880) images in 345 classes from six different do-

mains. There are four domains in the dataset with class la-

bels available when the experiments were conducted. They
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(K)

Figure 6: Robustness analysis of 6 OoD detection meth-

ods. The left figure has classifiers trained on a varied num-

ber of samples in CIFAR-10. The right figure has classi-

fiers trained on a varied number of classes in CIFAR-100.

Each point in the line is an average of the results on 8 OoD

datasets. The backbone network is Resnet-34. Please see

Section 4.2 for a detailed discussion.

Figure 7: Robustness analysis using different neural net-

work backbones. The in-distribution data is CIFAR-100.

Each bar is averaged with the results on 8 OoD datasets.

(K)

Figure 8: Robustness analysis for h(x) and g(x) from

DeConf-I. The + sign represents the model trained with ex-

tra regularization (dropout rate 0.7).

are real, sketch, infograph, and quickdraw, resulting in dif-

ferent types of distribution shifts.

To create subsets with semantic shift, we separate the

classes into two splits. Split A has class indices from 0 to

172, while split B has 173 to 344. Our experiment uses real-

A for in-distribution and has the other subsets for out-of-

distribution. With the definition given in Section 2, real-B

has a semantic shift from real-A, while sketch-A has a non-

semantic shift. Sketch-B therefore has both types of distri-

bution shift. Figure 2 illustrates the setup. The classifier

learned on real-A uses a Resnet-34 backbone. Its training

setting is described in Section 4.1 except that the networks

are trained for 100 epochs with initial learning rate of 0.01,

and the images are center-cropped and resized to 224x224

in this experiment.

The results in Table 4 reveal two interesting trends. The

first one is that the OoD datasets with both types of distri-

bution shifts are easier to detect, followed by non-semantic

Table 3: The in-domain classification accuracy. The ”+”

means that the classifier is trained with extra regularization

(dropout rate 0.7). The expanded version of this table is

available in Supplementary.

Classifier Model Baseline DeConf-I DeConf-E DeConf-C

CIFAR-10 DenseNet 95.2±0.1 94.9±0.1 95.0±0.1 95.0±0.1

CIFAR-100 DenseNet 77.0±0.2 75.8±0.4 76.4±0.1 75.9±0.1

SVHN ResNet34 96.9±0.1 96.8±0.1 96.5±0.1 96.7±0.1

CIFAR-10 ResNet34 95.2±0.1 95.0±0.1 94.9±0.1 95.1±0.1

CIFAR-100 ResNet34 78.5±0.2 76.0±0.1 76.2±0.1 75.8±0.2

CIFAR-100+ ResNet34 78.2±0.1 77.4±0.3 77.2±0.3 77.2±0.1

DomainNet

(Real-A)
ResNet34 73.6±0.1 73.0±0.1 73.4±1.5 72.2±0.5

Table 4: Performance of four OoD detection methods us-

ing DomainNet. The in-distribution is the real-A subset.

Each value is averaged over three runs. The type of distribu-

tion shift presents a trend of difficulty to the OoD detection

problem: Semantic shift (S) > Non-semantic shift (NS) >
Semantic + Non-semantic shift.

OOD Shift AUROC TNR@TPR95

S NS Baseline / ODIN* / Maha* / DeConf-C*

real-B X 75.1 / 69.9 / 53.6 / 69.8 15.3 / 15.4 / 5.09 / 14.0

sketch-A X 75.5 / 80.7 / 59.5 / 84.5 20.1 / 31.2 / 7.30 / 37.5

sketch-B X X 81.8 / 85.7 / 60.4 / 89.1 25.2 / 36.8 / 7.55 / 44.1

infograph-A X 79.6 / 82.7 / 81.5 / 89.0 23.5 / 27.8 / 21.6 / 45.4

infograph-B X X 82.1 / 85.3 / 80.9 / 90.9 24.8 / 31.7 / 21.9 / 49.6

quickdraw-A X 78.8 / 96.4 / 67.4 / 96.9 21.1 / 79.9 / 3.38 / 83.1

quickdraw-B X X 80.5 / 96.9 / 66.1 / 97.4 22.1 / 83.6 / 2.38 / 86.6

Uniform X X 54.7 / 75.6 / 99.8 / 99.3 1.65 / 5.37 / 100. / 100.

Gaussian X X 71.3 / 95.5 / 99.9 / 99.4 0.64 / 46.9 / 100. / 100.

shift. The semantic shift turns out to be the hardest one

to detect. The second observation is the failure of Maha-

lanobis*. In most cases it is even worse than Baseline,

except detecting random noise. In contrast, ODIN* has

performance gain in most of the cases, but has less gain

with random noise. Our DeConf-C* still performs the best,

showing that its robustness and scalability is capable of han-

dling a more realistic problem setting, although there is still

large room for improvement.

5. Conclusion

In this paper, we propose two strategies, the decomposed

confidence and the modified input preprocessing. These

two simple modifications to ODIN lead to a significant

change in the paradigm, which does not need OoD data for

tuning the method. Our comprehensive analysis shows that

our strategies are effective and even better in several cases

than the methods tuned for each OoD dataset. Our further

analysis using a larger scale image dataset shows that the

data with only semantic shift is harder to detect, pointing

out a challenge for future works to address.
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