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Abstract

Motion prediction is essential and challenging for au-

tonomous vehicles and social robots. One challenge of mo-

tion prediction is to model the interaction among traffic ac-

tors, which could cooperate with each other to avoid colli-

sions or form groups. To address this challenge, we propose

neural motion message passing (NMMP) to explicitly model

the interaction and learn representations for directed inter-

actions between actors. Based on the proposed NMMP, we

design the motion prediction systems for two settings: the

pedestrian setting and the joint pedestrian and vehicle set-

ting. Both systems share a common pattern: we use an indi-

vidual branch to model the behavior of a single actor and an

interactive branch to model the interaction between actors,

while with different wrappers to handle the varied input for-

mats and characteristics. The experimental results show

that both systems outperform the previous state-of-the-art

methods on several existing benchmarks. Besides, we pro-

vide interpretability for interaction learning. Code is avail-

able at https://github.com/PhyllisH/NMMP.

1. Introduction

Forecasting the future motion for the interacting actors

in the scene has been a crucial problem in many real-world

scenarios. For example, self-driving vehicles and interac-

tive robotics need to understand human and other traffic

actors’ future behaviors to avoid collisions and for better

planning [5, 6, 8, 9]. The intelligent tracking modules in

surveillance systems also need to understand the pedestri-

ans’ motion to optimize resource allocation [31]. Scien-

tifically, motion prediction is also useful for understanding

human behaviors [22] and motion dynamics [27].

One of the fundamental challenges of this task is to

model the scene constraints, especially the hidden interac-

tions between actors. For example, in the driving scenarios,

traffic actors, such as vehicles and pedestrians, are influ-

Figure 1. Neural motion massage passing is proposed to capture

directed interactions among traffic actors, which can serve as a

plugin module to guide motion prediction.

enced by each other, as well as the traffic conditions and

rules; see Figure 1. Previous works have tried to model

such interactions through three mechanisms: spatial-centric

mechanism, social mechanism, and graph-based mecha-

nism. The spatial-centric mechanism uses the spatial re-

lationship to implicitly model the interaction between ac-

tors [7, 40, 3, 8, 6, 5]. The social mechanism explicitly

aggregates the neighboring actors’ information involved in

the scene through social pooling [1, 11], or attention oper-

ation [34, 28]; however, both mechanisms model the inter-

actions according to the static spatial locations of the actors

and ignore the temporal horizon. The graph-based mech-

anism constructs a graph to explicitly model the pairwise

interactions between actors according to their observed tra-

jectories [16, 34, 14]; however, the previous graph-based

methods only consider features for actors, but do not ex-

plicitly learn features for in-between interactions.

To comprehensively represent the interactions between

actors, we extend the current graph-based mechanism and

propose neural motion message passing (NMMP). The

NMMP infers an interaction graph from actors’ trajecto-

ries, whose nodes are the actors and edges are the inter-

actions. This module updates the neural message passing

framework [15] to the context of motion prediction. It takes

the observed trajectories of traffic actors as input, and pro-
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duces the feature representations for both actors and their

corresponding interactions. A main advantage of the pro-

posed NMMP over the current graph-based methods is that

NMMP not only presents informative feature representa-

tions for both actors and interactions, but also provides in-

terpretability for the motion prediction task. Interaction

representations indicating similar interaction patterns have

similar impacts on the acting actors explicitly. Besides, we

consider the direction of interaction.

We design the motion-prediction systems for two spe-

cific settings: the pedestrian setting, where we consider an

open area and the actors are flexible pedestrian; and the joint

pedestrian and vehicle setting, where we consider an urban

driving scenario and an actor could be either pedestrian or

vehicle. Most previous literature focus on only one of these

two settings. Here we handle both settings based on the

same NMMP module to model interactions, and an individ-

ual branch to model the behavior of a single actor and an

interactive branch to model the interaction between actors.

We handle the different input formats and characteristics

in these two settings with distinct wrappers. The pedes-

trian motion prediction system includes additional GAN

to deal with the uncertain human behaviours in open-area

scenes. The joint motion prediction system includes addi-

tional CNN to process map information required in urban-

driving scenes, and coordinate transformation to handle ve-

hicle headings. Overall, those differences between two sys-

tems are small variations. The experimental results show

that the proposed systems outperform the state-of-the-art

methods in both settings, which not only show the supe-

riority of the proposed systems, but also validate the gen-

eralization and interpretability of the proposed NMMP. The

main contributions of this paper are:

• We propose neural motion message passing (NMMP)

to learn feature representations for both actors and

their interactions from actors’ trajectory;

• We design systems for pedestrian motion prediction,

and joint pedestrian and vehicle motion prediction

based on the NMMP module; both outperform the pre-

vious state-of-the-art methods;

• We provide interpretability for the proposed motion

prediction systems, including both quantitative bench-

marks and visualization analysis.

2. Related Works
Motion prediction. Traditional approaches for mo-

tion prediction are based on hand-crafted rules and energy

potentials [2, 19, 24, 25, 35, 36]. For example, Social

Force [13] models pedestrian behavior with attractive and

repulsive forces; however, those hand-crafted features fail

to generalize to complex scenes. To tackle this problem,

researchers tend towards data-driven tools. For example,

the sequence-to-sequence models, such as recurrent neural

networks [32], are leveraged to encode prior trajectory se-

quences [1, 20]; however, those models consider the behav-

ior of each individual actor and ignore the rich interactions

among multiple actors in a scene. Recently, three mecha-

nisms are developed to model the hidden interactions.

The first one is the spatial-centric mechanism; it repre-

sents the actors’ trajectories in a unifying spatial domain

and uses the spatial relationship to implicitly model the in-

teraction between actors. For example, Social Conv [7] and

MATF [40] leverage the spatial structure of the actors to

learn the interactions; ChauffeurNet [3] and Motion Pre-

diction [8] encode the trajectories of traffic actors and the

scene context into bird’s eye view images; FMNet [6] uses

lightweight CNNs to achieve the real-time inference; and

IntentNet [5] combines LiDAR data with images.

The second one is the social mechanism; it aggregates

the neighboring actors’ information to a social representa-

tion and broadcasts it to each actor. In this way, each actor

is aware of the neighboring information. For example, So-

cial LSTM [1] utilizes max pooling over neighboring actors.

To consider long-range interactions, Social GAN [11] ap-

plies max pooling to all the actors. CIDNN [38] uses inner

product between the prior location embeddings of actors.

However, the max-pooling operation ignores the uniqueness

of each actor and the inner-product operation considers all

the other actors equally. The attention operation is then in-

troduced [34, 28] so that the actor could focus on crucial

impacts. Inevitably, increasing computational complexity

comes along with the attention operation.

The third one is the graph-based mechanism; it con-

structs a graph to explicitly model the pairwise interactions

between actors. For example, Social-BiGAT[16] learns a

global embedding to represent the interactions in the scene

based on a graph attention network(GAT); Social Atten-

tion [34] and STGAT [14] capture the dynamic interaction

changes over time by using spatial-temporal graphs and

LSTM, respectively. In this work, we extend the graph-

based mechanism from two aspect: (i) capture directed in-

teractions; and (ii) provide interpretability for interactions.

Graph neural network. Graph neural networks re-

cently have got a lot of attention and achieved significant

success in various fields [10, 26, 15], especially in social

network analysis [12], scene understanding [37, 39], 3D

point cloud processing [21] and human action understand-

ing [27, 22]. Two mainstream architectures include graph

convolutional networks [30, 23, 33] and neural-message-

passing-based networks [10, 15]. While graph convo-

lutional networks consider the edges as a transient part,

neural-message-passing-based networks treat them as a in-

tegral part of the model. In this work, we use the neural-

message-passing-based networks to learn complicated in-

teractions between traffic actors, where actors are consid-

ered as nodes and interactions are considered as edges.
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Figure 2. The NMMP module explicitly learns trajectory embed-

ding for each actor through LSTM, and interacted actor embedding

and in-between interaction embedding through message passing.

3. Neural Motion Message Passing

In this section, we present NMMP, whose functionality

is to provide feature representations for both actors and their

corresponding interactions from the input trajectories. This

NMMP serves as a core module in the proposed systems as

it enables the traffic actors to share their history information

and collaboratively predict their future trajectories.

Considering N visible traffic actors within the scene.

With p
(t)
i = (x

(t)
i , y

(t)
i ) ∈ R

2 the spatial coordinate of the

ith actor at timestamp t, let the observed trajectory P−

i and

the ground-truth future trajectory P+
i of the ith actors be

P−

i =
[
p
(−Tobs)
i p

(−Tobs+1)
i . . . p

(0)
i

]
∈ R

2×(Tobs+1),

P+
i =

[
p
(1)
i p

(2)
i . . . p

(Tpred)
i

]
∈ R

2×Tpred .

The overall goal of motion prediction is to propose a pre-

diction model g(·), so that the predicted future trajectories

{P̂
+

i }
N
i=1 = g

(
{P−

i }
N
i=1

)
are close to the ground-truth

future trajectories {P+
i }

N
i=1.

See Figure 2, intuitively, the actors are interactively in-

fluenced by each other in real-time, leading to correlated

trajectories. The NMMP is proposed to leverage such a cor-

relation to provide informative feature representations for

the actors and their corresponding interactions. The core

of NMMP is an interaction graph, G(V, E), where the node

vi ∈ V represents the ith traffic actor, and the edge eij ∈ E
denotes the interaction between two actors, vi and vj . We

initialize it as a fully-connected graph and then initialize the

actor and interaction embedding with trajectory embedding

which is obtained though

h
(t)
i = ftemp(p

(t)
i − p

(t−1)
i ), (1a)

hi = fLSTM({h
(t)
i }0t=−Tobs+1) ∈ R

D, (1b)

dij = fspatial

(
p
(0)
i − p

(0)
j

)
. (1c)

we encode the displacement between the coordinates at two

consecutive timestamps in (1a). The LSTM is utilized to

integrate the temporal information to obtain the trajectory

embedding hi of the ith actor in (1b). And (1c) encodes the

difference between the actors at the current time, providing

the relative spatial information. Then, map the trajectory

embedding to the actor space, we get the initial actor em-

bedding of the ith actor, v0
i = f0

v (hi), and concatenate

both actor embeddings and the relative spatial embedding

dij , we get the initial interaction embedding between the ith

and the jth actors, e0ij = f0
e

(
[v0

i ;v
0
j ;dij ]

)
, which includes

both temporal and spatial information. ftemp(·), fLSTM(·),
fspatial(·), f

0
v (·), and f0

e (·) are MLPs.

Following the spirit of the node-to-edge and edge-to-

node message passing mechanism [10, 15], we update the

interaction graphs with the associated actor and interaction

embeddings; see Figure 2. In the node-to-edge phase, each

interaction receives motion messages from the correspond-

ing pair of actors. In the edge-to-node phase, each actor

embedding is updated according to all the corresponding

interaction embeddings. The kth (k ≥ 0) iteration works as

vk+1
i = fk+1

v ([
1

dini

∑

eji∈E

ekji;
1

douti

∑

eij∈E

ekij ]), (2a)

ek+1
ij = fk+1

e

(
[vk+1

i ;vk+1
j ]

)
, (2b)

where fk
e (·), f

k
v (·) are MLPs. vk

i and ekij are the ith actor

embedding and the interaction embedding between the ith

and jth actors at the kth iteration, respectively.

Here we consider a directed graph to model the relative

interactions between traffic actors. For example, when the

front actor slows down, the back actor would be forced to

slow down or turn to avoid collision, while inversely, the

back actor slowing down might not equally affect the front

actor’s behavior. To explicitly reflect this directed informa-

tion, in the edge-to-node phase (2a), we use the concatena-

tion rather than the sum or mean to distinguish the edge di-

rection. dini is the amount of edges pointing to vi, while douti

is the amount of edges vi pointing out; both of which are

used to normalize the interaction embeddings. In the node-

to-edge phase (2b), we concatenate two actor embeddings

to update the interaction embedding. Repeat the node-to-

edge and edge-to-node phases K times, we can get the final

interacted actor embeddings (vi = vK
i ) and the final inter-

action embeddings (eij = eKij ). The interaction density is

positively related to the number of iterations K.

4. Motion Prediction Systems

We propose the motion-prediction systems based on

NMMP for two settings: pedestrian motion prediction, and

joint pedestrian and vehicle motion prediction.

4.1. Pedestrian motion prediction

The pedestrian motion prediction considers open areas,

such as campus squares, where pedestrians walk flexibly.

6321



Figure 3. The pedestrian motion prediction system based on NMMP (PMP-NMMP) consists of a generator and a discriminator. The

generator predicts future trajectories from two branches: the individual branch considers the individual trajectory embedding and the

interactive branch considers the interacted actor embedding. The discriminator classifies the complete trajectories to be real or fake.

The trait of setting is the trajectory is highly nonsmooth.

This setting fits to the scenarios of surveillance systems.

4.1.1 System architecture

This system consists of a generator and a discriminator; see

Figure 3. The generator predicts future trajectories of the

actors and the discriminator classifies the complete trajec-

tories to be real or fake. The model is trained adversarially

to encourage realistic trajectories.

Generator. We predict the future trajectory based on two

branches: the individual branch, which provides a rough

prediction based on each individual actor, and the interac-

tive branch, which refines the rough prediction based on in-

teraction information. The predicted spatial coordinate of

the ith actor at timestamp t, p̂
(t)
i , is obtained through

z
(t)
ind = gind

(
gLSTM

(
q
(t)
i , p̂

(t−1)
i

))
∈ R

2, (3a)

z
(t)
inter = g

(t)
inter(vi) ∈ R

2, (3b)

p̂
(t)
i = p̂

(t−1)
i + z

(t)
ind + z

(t)
inter ∈ R

2, (3c)

where gind(·) and g
(t)
inter(·) are MLPs. q

(t)
i is the hidden

state of the i-th actor’s LSTM at time t, which is intialized

with q
(0)
i = [hi; zi], hi from NMMP (1b), zi is gaussian

noise to encourage diversity. The LSTM gLSTM(·) predicts

the future movements in time order. (3a) predicts the future

trajectories of each individual actor based on its observed

trajectories; (3b) predicts the interaction component with

the interacted actor embedding vi; and (3c) provides the fi-

nal predicted coordinate, which is the sum of the predicted

coordinate at the previous time stamp, and the predicted in-

dividual and interaction components. Note that instead of

using the absolute location, we predict the displacement to

previous moment, p̂
(t)
i − p̂

(t−1)
i , which generalizes better.

Discriminator. The discriminator classifies a complete

trajectory to be real or fake. It uses an individual NMMP

module followed by a classifier. For the ground-truth sam-

ples, the complete trajectory is [P−

i ; P
+
i ], which should be

classified as real; for the generated samples, the complete

trajectory is [P−

i ; P̂
+

i ], which should be classified as fake.

The probability to be real is obtained as

pi = dcls(dNMMP(dLSTM(dMLP([P
−

i ; P̂
+

i ])))),

where dMLP(·) denotes the MLP, dLSTM(·) is the LSTM

to aggregate the temporal information, dNMMP(·) is the

NMMP module, dcls(·) represents the classifier.

4.1.2 Loss function

To train the model, we consider two losses for a scene: the

generator loss LG and the discriminator loss LD,

LG =
∑

i∈1,2,...,N

||P̂
+

i − P+
i ||22,

LD =
∑

i∈1,2,...,N

log(D([P−

i ; P
+
i ]))

+ log(1−D([P−

i ; P̂
+

i ])),

where D(·) produces the real probability of the complete

trajectory generated by the classifier in discriminator. The

generator and the discriminator play a min-max game to get

more stochastic and realistic predictions.

4.2. Joint pedestrian and vehicle motion prediction

The joint pedestrian and vehicle prediction considers ur-

ban driving scenes, where both vehicles and pedestrians are

involved. The trait of this setting is that we need to consider

distinct motion patterns for vehicle and pedestrian, as well

as complicated environmental information, such as drivable

areas for vehicles. This setting fits to autonomous driving.

4.2.1 System architecture

This system includes an individual branches and an inter-

active branch; see Figure 4. Since vehicles and pedestri-

ans have distinct motion behaviors, we use each individual

branch for the same type of actors. The individual branch

predicts the future trajectory for each actor without consid-

ering the interaction. The interactive branch predicts an ad-

ditional compensation component by considering the inter-

actions between actors. We then combine the outputs from

both branches to obtain the final predicted trajectory.

Individual branch. We predict the individual compo-

nent of the future trajectory for each individual actor. We

use ego-coordinate-system where the origin is the current
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Figure 4. The joint pedestrian and vehicle motion prediction sys-

tem based on NMMP (JMP-NMMP) predicts the future trajecto-

ries from two branches: the individual branch considers the indi-

vidual behavior of each actor, and the interactive branch considers

the interactions among actors.

position of each actor to reduce the influence of the start-

ing position and heading and focus on the motion pattern.

The individual branch follows encoder-decoder structure,

where both encoder and decoder are implemented by MLPs.

For the ith actor, the output of the individual branch is

the individual component of the future trajectory, Zi,ind ∈
R

2×Tpred , represented in its ego-coordinate-system.

Interactive branch. We adopt the NMMP module to

predict the interaction component of the future trajectory

for each actor. Since we need to consider all the actors col-

laboratively, we use a global coordinate system. For exam-

ple, we could consider the position of a self-driving vehicle

(SDV) as the origin. We input all the actors’ observed tra-

jectories to the NMMP module, which considers the inter-

actions and then outputs the interacted actor embedding vi

for the ith actor. To further model the complicated environ-

mental information, an additional 2D bird’s-eye-view scene

map is introduced. Such a rasterized scene image is impor-

tant as it provides prior knowledge about the traffic condi-

tion and rules. Following the setting in [18], we rasterize

the scene information to a RGB image; see the rasterization

details in Appendix. We use MobileNet-V2 [29] to extract

scene embedding, S, from the RGB image. We then aggre-

gate the interacted actor embeddding and the scene embed-

ding through MLPs to obtain the output of the interactive

branch. The interaction component of the future trajectory

for the ith actor Zi,inter = MLP ([vi, S]) ∈ R
2×Tpred .

Finally, we combine the outputs from both the individ-

ual branch and the interactive branch, and obtain the overall

future trajectory. The future trajectory for the ith actor is

P̂
+

i = Ti (Zi,ind) + Zi,inter ∈ R
2×Tpred ,

where Ti (·) is the transform from the ego-coordinate-

system of the ith actor to the global coordinate system.

4.2.2 Loss function

To train the system, we consider two losses: one for out-

put from the individual branch and the other for the final

combination; that is,

Lind =
∑

i∈1,2,...,N

||Ti (Zi,ind)− P+
i ||22,

Lfinal =
∑

i∈1,2,...,N

||P̂
+

i − P+
i ||22,

where Lind is the ℓ2 loss between the individual compo-

nent and the ground-truth future trajectory, and Lfinal is

the ℓ2 loss between the final predictions and the ground-

truth future trajectory. We obtain the final loss as, L =
λLind + (1− λ)Lfinal. In the experiment, we set λ = 0.5.

5. Experiments

We validate the proposed network on two settings:

pedestrian motion prediction, and joint pedestrian and ve-

hicle motion prediction.

5.1. Comparison with SOTAs

Metrics. Following previous works [20, 1, 11], we con-

sider two evaluation metrics: average displacement error

(ADE) and final displacement error (FDE). ADE is the av-

erage distance between all the predicted trajectory points

and the true points, and FDE is the distance between the

predicted final destination and the true final destination.

5.1.1 Pedestrian motion prediction

Datasets. We consider two public datasets: ETH-UCY

and Stanford Drone. ETH-UCY dataset contains 5 sets,

ETH, HOTEL, UNIV, ZARA1 and ZARA2. They consist

of human trajectories with rich interactions, such as group

forming, dispersing, and collision avoidance. Following the

experimental setting in SGAN [11], we split the trajectories

into segments of 8s, where we use 0.4s as the time interval,

and use the first 3.2 seconds (8 timestamps) to predict the

following 4.8 seconds (12 timestamps). We use the leave-

one-out approach, training on 4 sets and testing on the re-

maining set. Stanford Drone dataset is a crowd pedestrian

dataset, including 20 unique scenes on a university campus.

The coordinates of multiple actors’ trajectories are provided

in pixels. Following the standard data-split setting, we use

6356 samples and the same segment split as ETH-UCY.

Baselines. SLSTM [1] pools the hidden states with the

neighbors. SAT [34] formulates the trajectory sequence in

a spatial-temporal graph to capture the spatial and temporal

dynamics. CIDNN [38] models the crowd interactions with

the inner product and introduces a displacement prediction

module. SGAN [11] leverages adversarial learning to fit the

uncertain human behavior and pools the hidden state with

all the other actors involved in the scene. Sophie [28] intro-

duces the attention mechanism discriminatively considering
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Table 1. Quantitative results on ETH-UCY dataset. We present ADE/FDE in meters. Given previous 8 (3.2s), predicting future 12 (4.8s).

BASELINES OURS

DATASET SLSTM SAT CIDNN SGAN SOPHIE S-BIGAT MATF GAN STGAT PMP-NMMP

ETH 1.09/2.35 1.39/2.39 1.25/2.32 0.87/1.62 0.70/1.43 0.69/1.29 1.01/1.75 0.65/1.12 0.61/1.08

HOTEL 0.79/1.76 2.51/2.91 1.31/2.36 0.67/1.37 0.76/1.67 0.49/1.01 0.43/0.80 0.35/0.66 0.33/0.63

UNIV 0.67/1.40 1.25/2.54 0.90/1.86 0.76/1.52 0.54/1.24 0.55/1.32 0.44/0.91 0.52/1.10 0.52/1.11

ZARA1 0.47/1.00 1.01/2.17 0.50/1.04 0.35/0.68 0.30/0.63 0.30/0.62 0.26/0.45 0.34/0.69 0.32/0.66

ZARA2 0.56/1.17 0.88/1.75 0.51/1.07 0.42/0.84 0.38/0.78 0.36/0.75 0.26/0.57 0.29/0.60 0.29/0.61

AVG 0.72/1.54 1.41/2.35 0.89/1.73 0.61/1.21 0.54/1.15 0.48/1.00 0.48/0.90 0.43/0.83 0.41/0.82

the impact of other actors. S-BiGAT [16] introduces GAT

to represents the social interactions with a global embed-

ding. STGAT [14] captures the temporal interactions with an

additional LSTM. Desire [20] takes advantage of the varia-

tional auto-encoders and inverse optimal control to generate

and rank predictions. MATF GAN [40] uses shared convo-

lution operations to model the spatial interactions.

Results. Table 1 shows the comparison between the pro-

posed PMP-NMMP against several previous state-of-the-art

methods on ETH-UCY. We see that (i) While most of the

previous SOTAs [28, 16, 40] are superior on average but

perform poorly on some sets, our model is best on 2 sets

and compatible on other 3 sets; (ii) PMP-NMMP improves

the state-of-the-art to 0.41m and 0.82m on ADE and FDE

on average. Table 2 shows the performance comparison

on Stanford Drone. We see that the proposed PMP-NMMP

significantly outperforms the other competitive methods.

The intuition is that it uses the NMMP module to effectively

capture the social interactions in the crowd scenario.

Table 2. Quantitative results on Stanford Drone dataset. ADE and

FDE are reported in pixels.

METHOD ADE FDE

SFORCES 36.38 58.14

SLSTM 31.19 56.97

SGAN 27.25 41.44

DESIRE 19.25 34.05

SOPHIE 16.27 29.38

MATF GAN 22.59 33.53

PMP-NMP 14.67 26.72

Qualitative comparison. Figure. 5 compares the pre-

dicted trajectories to the ground-truth trajectories. We

choose six scenarios from HOTEL set and show the ground-

truth trajectories (green line), our predictions (dashed red

line), and the SGAN baseline (dashed blue line). Our model

outperforms SGAN as the corresponding predictions are

closer to the ground-truth.

5.1.2 Joint motion prediction

Dataset. We create a joint pedestrian and vehicle motion

prediction dataset based on NuScenes [4]. NuScenes is an

autonomous driving dataset, which comprises 1000 scenes,

each 20s long and fully annotated with 3D bounding boxes.

We reorganize the dataset and downsample to avoid the

overlapping issue. In total, we select 3148 samples, where

1888 for training, 629 for validation and 631 for testing.

Each sample contains the ground-truth actors’ trajectory in-

formation and a 2D scene map. The scene map reflects

100 × 100m2 so that 50m in front of and from the back

the self-driving vehicle is rasterized. The pixel resolution is

0.2m and the image size is 500 × 500. The time interval is

0.1s and we forecast the future 3s (30 timestamps) trajecto-

ries from the previous 0.5s (5 timestamps) trajectories.

Table 3. Quantitative comparison on NuScenes dataset. Error met-

rics reported are ADE/FDE in meters. Given previous 5 (0.5s),

predicting the future 30 (3s).

METHOD PEDESTRIANS VEHICLES T(ms)

NOIMAGE 0.41/0.81 1.77/3.87 1.54

ALEXNET 0.39/0.79 1.71/3.79 23.3

ALEXNET-NMMP 0.38/0.78 1.59/3.72 1.98

JMP-NMMP-GAN 0.38/0.78 1.65/3.81 6.23

JMP-NMMP 0.34/0.71 1.54/3.55 3.76

Baselines. ALEXNET [8] extracts the visual cues of

the rasterized actor-centric scene image with AlexNet [17]

and simultaneously and separately encodes and decodes the

prior trajectories with MLPs for each actor in the scene.

We exclude the images in ALEXNET, named NOIMAGE.

See Figure. 4, we add the NMMP module to ALEXNET

and use the SDV-centric scene image instead of multiple

actor-centric scene images, named ALEXTNET-NMMP;

we substitute the AlexNet with MobileNet-V2 [29] in

ALEXTNET-NMMP, named JMP-NMMP; we further in-

troduce GAN as PMP-NMMP, named JMP-NMMP-GAN.

Results. Table 3 shows quantitative comparison. We

see that (i) JMP-NMMP consistently performs the best

for both vehicles and pedestrians, indicating the superior-

ity of the proposed system; (ii) ALEXNET-NMMP is bet-

ter than ALEXNET, indicating that the social interactions

are crucial when forecasting the future movements; (iii)

ALEXNET is better than NOIMAGE and JMP-NMMP is

better than ALEXNET-NMMP, indicating the necessity and
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Figure 5. Predicted trajectory comparison in the pedestrian setting.

The baseline is SGAN [11].

Figure 6. Predicted trajectory comparison in the joint setting. The

baseline is ALEXNET [8].

capacity of scene image; (iv) GAN does not bring gains

but add time cost, indicating the traffic actor behaviours are

much certain and the GAN interferes the optimization; (v)

SDV-centric image highly reduces computational cost and

the final running time is sufficiently fast for real-time use.

Qualitative comparison. Predictions are presented in

Figure. 6. We choose four samples in the complicated urban

street scenarios and only present the moving actors trajec-

tories. Our predictions (red) are more closer to the ground-

truth (green) than the baseline (blue) especially in the mo-

tion changing cases.

5.2. Ablation study

Since pedestrian motion prediction system and joint mo-

tion prediction system are the systems with small variations

and have consistent performance, so here we present the

analysis of PMP-NMMP as a representative.

Effect of NMMP module in PMP-NMMP. To better

model the social interactions between actors involved in the

Table 4. We evaluate the NMMP module by applying it in multi-

ple trajectory encoding phases in generator (G) and discriminator

(D). Xand - means with and without NMMP module respectively.

ADE/FDE are reported in meters.

G D ETH HOTEL UNIV ZARA1 ZARA2

- - 0.74/1.34 0.50/1.01 0.64/1.29 0.34/0.69 0.35/0.73

X- 0.70/1.30 0.41/0.80 0.54/1.15 0.33/0.68 0.31/0.65

XX 0.61/1.08 0.33/0.63 0.52/1.1 0.32/0.66 0.29/0.61

Table 5. The performance as a function of the number of iterations

in NMMP (K) on UNIV set.

K 1 3 5 7

ADE 0.55 0.54 0.52 0.56

FDE 1.16 1.16 1.11 1.20

scene, we propose the NMMP module. In PMP-NMMP,

there are two trajectory encoding phases that use the NMMP

module: one in the generator and the other one in the dis-

criminator. Table 4 compares three models. The first one

is the baseline, where we adopt the pooling module in [11]

instead of the NMMP module to model the social interac-

tions. The second one substitutes the pooling module in the

generator with the NMMP module. The third one further

substitutes the pooling module in the discriminator with our

NMMP module. The stable gains on all the 5 sets shows the

strength of the NMMP module in modeling the interactions.

Effect of the number of iterations in NMMP. We ex-

plore the performance of NMMP with different number of

iterations on the most crowded set (UNIV), where pedes-

trian amounts ranges from 2 to 57 in a single scene. Table 5

shows the quantitative results. The performance gets bet-

ter, and then sharply worse with the increasing number of

iterations. The intuition is as follows. With the increasing

number of iterations, the NMMP module gets more capac-

ity to model the dense interactions; however, when there are

too many iterations, the actor embedding would be over-

smoothing, mixing local information and global context.

Table 6. The exploration of the decoder design on the UNIV set.

ADE/FDE are reported in meters.

INDIVIDUAL FINAL ADE/FDE

SINGLE X 0.56/1.19

DOUBLE X 0.52/1.11

DOUBLE X 0.76/1.17

Effect of decoder structure in PMP-NMMP. We ex-

plore the design of the decoder structure from two aspects.

The first aspect compares the single-decoder structure and

the double-decoder structure. The single-decoder structure

fuses the individual trajectory embedding and interacted ac-

tor embedding in the feature domain, and then feeds the

unifying features to a single decoder to predict the final tra-

jectory; the double structure apply the individual and in-
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teractive decoders to generate two outputs, which add up

to the final trajectory. The comparison between the first and

second rows in Table 6 shows that the double-decoder struc-

ture outperforms the single-decoder structure, indicating the

double-decoder structure can better model the impacts from

other actors involved in the scene. The second aspect com-

pares the output of the individual branch and the final output

in the double-decoder structure. The comparison between

the second and third rows in Table 6 shows that the final

output outperforms the output of the individual branch, in-

dicating the importance of the interactive branch.

5.3. Interpretability exploration

Visualization of interaction embeddings in NMMP.

Figure 7 shows the visualization of interactions in the em-

bedding domain and the corresponding actor pairs in the

spatial domain in HOTEL set. The interaction embeddings

eij are mapped to 2D coordinates via t-SNE and shown in

the first column. We randomly pick three pairs of close in-

teraction samples in the embedding space, which are col-

ored blue and red, and plot the corresponding trajectory

pairs in the followed two columns. The full line denotes

the observed trajectories, while the dash line represents the

future trajectories. We see that (i) close interaction embed-

dings in the embedding domain lead to similar trajectory

relations between associated actors in the spatial domain.

For example, in the first row, pedestrians are walking up-

wards in parallel; in the third row, pedestrians are walking

toward opposite directions; (ii) different interaction types

between actors’ trajectory in the spatial domain are encoded

to different positions in the embedding domain. The top two

rows are close; both are far from the last row in embedding

space. The trajectories show the interaction types of the top

two rows are similar and quite different from the last row.

Figure 7. Close interaction embeddings in the embedding domain

lead to similar trajectory relations between the corresponding actor

pairs in the spatial domain. The first column is the visualization of

interaction embeddings, where each dot represents an interaction

and corresponds to one spatial-domain plot in the right columns.

Figure 8. The ADE and FDE normalization ratio over pedestrian

amounts in the scene. The x-axis is the total pedestrian amount in

the scene. The y-axis is the ADE (Red) and FDE (Blue) normal-

ization ratio compared with SGAN [11].

Performances in crowd scenarios. We split 5 sets of

ETH-UCY dataset according to the pedestrian amounts in

the scene. We evaluate the proposed PMP-NMMP and the

SGAN [11] baseline on this re-split dataset. Then we count

the corresponding ADE/FDE normalization ratio

rADE/FDE =
SGANADE/FDE −NMMPADE/FDE

SGANADE/FDE

for the pedestrians in each split. A positive rADE/FDE indi-

cates that PMP-NMMP outperforms SGAN.

Figure 8 shows the ADE/FDE normalization ratio as a

function of the number of pedestrian in the scene. We see

that (i) the normalization ratio is always positive, indicating

PMP-NMMP consistently outperforms SGAN; and (ii) the

normalization ratio increases as the numbers of pedestrian

gets larger, indicating the advantage of NMMP over SGAN

is larger. The intution behind is that the NMMP module has

a larger capacity to handle the crowd scenarios, where the

social interactions are abundant.

6. Conclusions
In this work, we propose NMMP, a novel module explic-

itly modeling the interactions between the traffic actors in

a scene. Unlike prior work simply tackling a single motion

prediction task, we design NMMP based systems for pedes-

trian motion prediction, and joint pedestrian and vehicle

motion prediction. Both outperforms prior state-of-the-art

methods across several widely used benchmarks. Through

our evaluations and visualizations, we show that NMMP is

able to capture the interaction patterns and our systems can

predict precise trajectories in different scenarios.
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