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Abstract

Many visual scenes contain text that carries crucial in-

formation, and it is thus essential to understand text in im-

ages for downstream reasoning tasks. For example, a deep

water label on a warning sign warns people about the dan-

ger in the scene. Recent work has explored the TextVQA

task that requires reading and understanding text in im-

ages to answer a question. However, existing approaches

for TextVQA are mostly based on custom pairwise fusion

mechanisms between a pair of two modalities and are re-

stricted to a single prediction step by casting TextVQA as a

classification task. In this work, we propose a novel model

for the TextVQA task based on a multimodal transformer

architecture accompanied by a rich representation for text

in images. Our model naturally fuses different modalities

homogeneously by embedding them into a common seman-

tic space where self-attention is applied to model inter- and

intra- modality context. Furthermore, it enables iterative

answer decoding with a dynamic pointer network, allowing

the model to form an answer through multi-step prediction

instead of one-step classification. Our model outperforms

existing approaches on three benchmark datasets for the

TextVQA task by a large margin.

1. Introduction

As a prominent task for visual reasoning, the Visual

Question Answering (VQA) task [4] has received wide at-

tention in terms of both datasets (e.g. [4, 17, 22, 21, 20]) and

methods (e.g. [14, 3, 6, 25, 33]). However, these datasets

and methods mostly focus on the visual components in the

scene. On the other hand, they tend to ignore a crucial

modality – text in the images – that carries essential in-

formation for scene understanding and reasoning. For ex-

ample, in Figure 1, deep water on the sign warns people

about the danger in the scene. To address this drawback,

new VQA datasets [44, 8, 37] have been recently proposed

with questions that explicitly require understanding and rea-

soning about text in the image, which is referred to as the

TextVQA task.
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Figure 1. Compared to previous work (e.g. [44]) on the TextVQA

task, our model, accompanied by rich features for image text,

handles all modalities with a multimodal transformer over a joint

embedding space instead of pairwise fusion mechanisms between

modalities. Furthermore, answers are predicted through iterative

decoding with pointers instead of one-step classification over a

fixed vocabulary or copying single text token from the image.

The TextVQA task distinctively requires models to see,

read and reason over three modalities: the input question,

the visual contents in the image such as visual objects, and

the text in the image. Several approaches [44, 8, 37, 7] have

been proposed for the TextVQA task, based on OCR results

of the image. In particular, LoRRA [44] extends previous

VQA models [43] with an OCR attention branch and adds

OCR tokens as a dynamic vocabulary to the answer classi-

fier, allowing copying a single OCR token from the image

as the answer. Similarly in [37], OCR tokens are grouped

into blocks and added to the output space of a VQA model.

While these approaches enable reading text in images to

some extent, they typically rely on custom pairwise mul-

timodal fusion mechanisms between two modalities (such

as single-hop attention over image regions and text tokens,

conditioned on the input question), which limit the types

of possible interactions between modalities. Furthermore,

they treat answer prediction as a single-step classification

problem – either selecting an answer from the training set
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answers or copying a text token from the image – making

it difficult to generate complex answers such as book titles

or signboard names with multiple words, or answers with

both common words and specific image text tokens, such as

McDonald’s burger where McDonald’s is from text in the

image and burger is from the model’s own vocabulary. In

addition, the word embedding based image text features in

previous work have limited representation power and miss

important cues such as the appearance (e.g. font and color)

and the location of text tokens in images. For example, to-

kens that have different fonts and are spatially apart from

each other usually do not belong to the same street sign.

In this paper, we address the above limitations with our

novel Multimodal Multi-Copy Mesh (M4C) model for the

TextVQA task, based on the transformer [48] architecture

accompanied by iterative answer decoding through dynamic

pointers, as shown in Figure 1. Our model naturally fuses

the three input modalities and captures intra- and inter-

modality interactions homogeneously within a multimodal

transformer, which projects all entities from each modality

into a common semantic embedding space, and applies the

self-attention mechanism [38, 48] to collect relational rep-

resentations for each entity. Instead of casting answer pre-

diction as a classification task, we perform iterative answer

decoding in multiple steps and augment our answer decoder

with a dynamic pointer network that allows selecting text

in the image in a permutation-invariant way without rely-

ing on any ad-hoc position indices in previous work such as

LoRRA [44]. Furthermore, our model is capable of combin-

ing its own vocabulary with text in the image in a generated

answer, as shown in examples in Figure 4 and 5. Finally,

we introduce a rich representation for text tokens in the im-

ages based on multiple cues, including its word embedding,

appearance, location, and character-level information.

Our contributions in this paper are as follows: 1) We

show that multiple (more than two) input modalities can

be naturally fused and jointly modeled through our multi-

modal transformer architecture. 2) Unlike previous work

on TextVQA, our model reasons about the answer beyond a

single classification step and predicts it through our pointer-

augmented multi-step decoder. 3) We adopt a rich feature

representation for text tokens in images and show that it is

better than features based only on word embedding in previ-

ous work. 4) Our model significantly outperforms previous

work on three challenging datasets for the TextVQA task:

TextVQA [44] (+25% relative), ST-VQA [8] (+65% rela-

tive), and OCR-VQA [37] (+32% relative).

2. Related work

VQA based on reading and understanding image text.

Recently, a few datasets and methods [44, 8, 37, 7] have

been proposed for visual question answering based on text

in images (referred to as the TextVQA task). LoRRA [44],

a prominent prior work on this task, extends the Pythia

[43] framework for VQA and allows it to copy a single

OCR token from the image as the answer, by applying a

single attention hop (conditioned on the question) over the

OCR tokens and including the OCR token indices in the an-

swer classifier’s output space. A conceptually similar model

is proposed in [37], where OCR tokens are grouped into

blocks and added to both the input features and the output

answer space of a VQA model. In addition, a few other

approaches [8, 7] enable text reading by augmenting exist-

ing VQA models with OCR inputs. However, these exist-

ing methods are limited by their simple feature represen-

tation of image text, multimodal learning approaches, and

one-step classification for answer outputs. In this work, we

address these limitations with our M4C model.

Multimodal learning in vision-and-language tasks.

Early approaches on vision-and-language tasks often com-

bined the image and text through attention over one modal-

ity conditioned on the other modality, such as image atten-

tion based on text (e.g. [51, 34]). Some approaches have

explored multimodal fusion mechanisms such as bilinear

models (e.g. [14, 25]), self-attention (e.g. [15]), and graph

networks (e.g. [30]). Inspired by the success of Transformer

[48] and BERT [13] architectures in natural language tasks,

several recent works [33, 1, 47, 31, 29, 45, 53, 11] have

also applied transformer-based fusion between image and

text with self-supervision on large-scale datasets. However,

most existing works treat each modality with a specific set

of parameters, which makes them hard to scale to more in-

put modalities. On the other hand, in our work we project

all entities from each modality into a joint embedding space

and treat them homogeneously with a transformer architec-

ture over the list of all things. Our results suggest that joint

embedding and self-attention are efficient when modeling

multiple (more than two) input modalities.

Dynamic copying with pointers. Many answers in the

TextVQA task come from text tokens in the image such as

book titles or street signs. As it is intractable to have every

possible text token in the answer vocabulary, copying text

from the image would often be an easier option for answer

prediction. Prior work has explored dynamically copying

the inputs in different tasks such as text summarization [42],

knowledge retrieval [52], and image captioning [35] based

on Pointer Networks [50] and its variants. For the TextVQA

task, recent works [44, 37] have proposed to copy OCR to-

kens by adding their indices to classifier outputs. However,

apart from their limitation of copying only a single token

(or block), one drawback of these approaches is that they re-

quire a pre-defined number of OCR tokens (since the classi-

fier has a fixed output dimension) and their output is depen-

dent on the ordering of the tokens. In this work, we over-

come this drawback using a permutation-invariant pointer

network together with our multimodal transformer.
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3. Multimodal Multi-Copy Mesh (M4C)

In this work, we present Multimodal Multi-Copy Mesh

(M4C), a novel approach for the TextVQA task based on

a pointer-augmented multimodal transformer architecture

with iterative answer prediction. Given a question and an

image as inputs, we extract feature representations from

three modalities – the question, the visual objects in the im-

age, and the text present in the image. These three modali-

ties are represented respectively as a list of question words

features, a list of visual object features from an off-the-shelf

object detector, and a list of OCR token features based on

an external OCR system.

Our model projects the feature representations of enti-

ties (in our case, question words, detected objects, and de-

tected OCR tokens) from the three modalities as vectors in

a learned common embedding space. Then, a multi-layer

transformer [48] is applied on the list of all projected fea-

tures, enriching their representations with intra- and inter-

modality context. Our model learns to predict the an-

swer through iterative decoding accompanied by a dynamic

pointer network. During decoding, it feeds in the previous

output to predict the next answer component in an auto-

regressive manner. At each step, it either copies an OCR

token from the image, or selects a word from its fixed an-

swer vocabulary. Figure 2 shows an overview of our model.

3.1. A common embedding space for all modalities

Our model receives inputs from three modalities – ques-

tion words, visual objects, and OCR tokens. We extract fea-

ture representations for each modality and project them into

a common d-dimensional semantic space through domain-

specific embedding approaches as follows.

Embedding of question words. Given a question as a se-

quence of K words, we embed these words into the corre-

sponding sequence of d-dimensional feature vectors {xques

k }
(where k = 1, · · · ,K) using a pretrained BERT model

[13].1 During training, the BERT parameters are fine-tuned

using the question answering loss.

Embedding of detected objects. Given an image, we

obtain a set of M visual objects through a pretrained

detector (Faster R-CNN [41] in our case). Follow-

ing prior work [3, 43, 44], we extract appearance fea-

ture xfr
m using the detector’s output from the m-th ob-

ject (where m = 1, · · · ,M). To capture its location

in the image, we introduce a 4-dimensional location fea-

ture xb
m from m-th object’s relative bounding box coor-

dinates [xmin/Wim, ymin/Him, xmax/Wim, ymax/Him], where

Wim and Him are image width and height respectively.

Then, the appearance feature and the location feature are

1In our implementation, we extract question word features from the

first 3 layers of BERT-BASE. We find it sufficient to use its first few layers

instead of using all its 12 layers, which saves computation.

projected into the d-dimensional space with two learned lin-

ear transforms (where d is the same as in the question word

embedding above), and are summed up as the final object

embedding {xobj
m } as

xobj
m = LN(W1x

fr
m) + LN(W2x

b
m) (1)

where W1 and W2 are learned projection matrices. LN(·)
is layer normalization [5], added on the output of the linear

transforms to ensure that the object embedding has the same

scale as the question word embedding. We fine-tune the last

layer of the Faster R-CNN detector during training.

Embedding of OCR tokens with rich representations.

Intuitively, to represent text in images, one needs to en-

code not only its characters, but also its appearance (e.g.

color, font, and background) and spatial location in the im-

age (e.g. words appearing on the top of a book cover are

more likely to be book titles). We follow this intuition in

our model and use a rich OCR representation consisting

of four types of features, which is shown in our experi-

ments to be significantly better than word embedding (such

as FastText) alone in prior work [44]. After obtaining a set

of N OCR tokens in an image through external OCR sys-

tems, from the n-th token (where n = 1, · · · , N) we ex-

tract 1) a 300-dimensional FastText [9] vector xft
n, which

is a word embedding with sub-word information, 2) an ap-

pearance feature xfr
n from the same Faster R-CNN detec-

tor in the object detection above, extracted via RoI-Pooling

on the OCR token’s bounding box, 3) a 604-dimensional

Pyramidal Histogram of Characters (PHOC) [2] vector xp
n,

capturing what characters are present in the token – this

is more robust to OCR errors and can be seen as a coarse

character model, and 4) a 4-dimensional location feature

xb
n based on the OCR token’s relative bounding box co-

ordinates [xmin/Wim, ymin/Him, xmax/Wim, ymax/Him]. We

linearly project each feature into d-dimensional space, and

sum them up (after layer normalization) as the final OCR

token embedding {xocr
n } as below

xocr
n = LN(W3x

ft
n +W4x

fr
n +W5x

p
n) + LN(W6x

b
n) (2)

where W3, W4, W5 and W6 are learned projection matrices

and LN(·) is layer normalization.

3.2. Multimodal fusion and iterative answer predic
tion with pointeraugmented transformers

After embedding all entities (question words, visual ob-

jects, and OCR tokens) from each modality as vectors in

the d-dimensional joint embedding space as described in

Sec. 3.1, we apply a stack of L transformer layers [48] with

a hidden dimension of d over the list of all K +M +N en-

tities from {xques

k }, {xobj
m }, and {xocr

n }. Through the multi-

head self-attention mechanism in transformers, each entity

is allowed to freely attend to all other entities, regardless of
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Figure 2. An overview of our M4C model. We project all entities (question words, detected visual objects, and detected OCR tokens) into

a common d-dimensional semantic space through domain-specific embedding approaches and apply multiple transformer layers over the

list of projected things. Based on the transformer outputs, we predict the answer through iterative auto-regressive decoding, where at each

step our model either selects an OCR token through our dynamic pointer network, or a word from its fixed answer vocabulary.

whether they are from the same modality or not. For ex-

ample, an OCR token is allowed to attend to another OCR

token, a detected object, or a question word. This enables

modeling both inter- and intra- modality relations in a ho-

mogeneous way through the same set of transformer param-

eters. The output from our multimodal transformer is a list

of d-dimensional feature vectors for entities in each modal-

ity, which can be seen as their enriched embedding in mul-

timodal context.

We predict an answer to the question through iterative

decoding, using exactly the same transformer layers as a

decoder. We decode the answer word by word in an auto-

regressive manner for a total of T steps, where each decoded

word may be either an OCR token in the image or a word

from our fixed vocabulary of frequent answer words. As il-

lustrated in Figure 2, at each step during decoding, we feed

in an embedding of the previously predicted word, and pre-

dict the next answer word based on the transformer output

with a dynamic pointer network.

Let {zocr
1 , · · · , zocr

N } be the d-dimensional transformer

outputs of the N OCR tokens in the image. Assume we have

a vocabulary of V words that frequently appear in the train-

ing set answers. At the t-th decoding step, the transformer

model outputs a d-dimensional vector zdec
t corresponding

to the input xdec
t at step t (explained later in this section).

From zdec
t , we predict both the V -dimensional scores yvoc

t

of choosing a word from fixed answer vocabulary and the

N -dimensional scores yocr
t of selecting an OCR token from

the image at decoding step t. In our implementation, the

fixed answer vocabulary score yvoc
t,i for the i-th word (where

i = 1, · · · , V ) is predicted as a simple linear layer as

yvoc
t,i = (wvoc

i )
T
zdec
t + bvoc

i (3)

where wvoc
i is a d-dimensional parameter for the i-th word

in the answer vocabulary, and bvoc
i is a scalar parameter.

To select a token from the N OCR tokens in the im-

age, we augment the transformer model with a dynamic

pointer network, predicting a copying score yocr
t,n (where

n = 1, · · · , N ) for each token via bilinear interaction be-

tween the decoding output zdec
t and each OCR token’s out-

put representation zocr
n as

yocr
t,n = (W ocrzocr

n + bocr)
T (

W deczdec
t + bdec

)

(4)

where W ocr and W dec are d × d matrices, and bocr and bdec

are d-dimensional vectors.

During prediction, we take the argmax on the concate-

nation yall
t = [yvoc

t ; yocr
t ] of fixed answer vocabulary scores

and dynamic OCR-copying scores, selecting the top scoring

element (either a vocabulary word or an OCR token) from

all V +N candidates.

In our iterative auto-regressive decoding procedure, if

the prediction at decoding time-step t is an OCR token, we

feed in its OCR representation xocr
n as the transformer input

xdec
t+1 to the next prediction step t+1. Otherwise (the previ-

ous prediction is a word from the fixed answer vocabulary),

we feed in its corresponding weight vector wvoc
i in Eqn. 3

as the next step’s input xdec
t+1. In addition, we add two extra

d-dimensional vectors as inputs – a positional embedding

vector corresponding to step t, and a type embedding vec-

tor corresponding to whether the previous prediction is a

fixed vocabulary word or an OCR token. Similar to ma-

chine translation, we augment our answer vocabulary with

two special tokens, <begin> and <end>. Here <begin>

is used as the input to the first decoding step, and we stop

the decoding process after <end> is predicted.

To ensure causality in answer decoding, we mask the

attention weights in the self-attention layers of the trans-

former architecture [48] such that question words, detected

objects and OCR tokens cannot attend to any decoding

steps, and all decoding steps can only attend to previous de-

coding steps in addition to question words, detected objects

and OCR tokens. This is similar to prefix LM in [40].
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3.3. Training

During training, we supervise our multimodal trans-

former at each decoding step. Similar to sequence pre-

diction tasks such as machine translation, we use teacher-

forcing [28] (i.e. using ground-truth inputs to the decoder)

to train our multi-step answer decoder, where each ground-

truth answer is tokenized into a sequence of words. Given

that an answer word can appear in both fixed answer vocab-

ulary and OCR tokens, we apply multi-label sigmoid loss

(instead of softmax loss) over the concatenated scores yall
t .

4. Experiments

We evaluate our model on three challenging datasets for

the TextVQA task, including TextVQA [44], ST-VQA [8],

and OCR-VQA [37] (we use these datasets for research pur-

poses only). Our model outperforms previous work by a

significant margin on all the three datasets.

4.1. Evaluation on the TextVQA dataset

The TextVQA dataset [44] contains 28,408 images from

the Open Images dataset [27], with human-written ques-

tions asking to reason about text in the image. Similar to

VQAv2 [17], each question in the TextVQA dataset has 10

human annotated answers, and the final accuracy is mea-

sured via soft voting of the 10 answers.2

We use d = 768 as the dimensionality of the joint

embedding space and extract question word features with

BERT-BASE using the 768-dimensional outputs from its

first three layers, which are fine-tuned during training.

For visual objects, following Pythia [43] and LoRRA

[44], we detect objects with a Faster R-CNN detector [41]

pretrained on the Visual Genome dataset [26], and keeps

100 top-scoring objects per image. Then, the fc6 feature

vector is extracted from each detected object. We apply the

Faster R-CNN fc7 weights on the extracted fc6 features to

output 2048-dimensional fc7 appearance features and fine-

tune fc7 weights during training. However, we do not use

the ResNet-152 convolutional features [19] as in LoRRA.

Finally, we extract text tokens on each image using the

Rosetta OCR system [10]. Unlike the prior work LoRRA

[44] that uses a multilingual Rosetta version, in our model

we use an English-only version of Rosetta that we find has

higher recall. We refer to these two versions as Rosetta-

ml and Rosetta-en, respectively. As mentioned in Sec. 3.1,

from each OCR token we extract FastText [9] feature, ap-

pearance feature from Faster R-CNN (FRCN), PHOC [2]

feature, and bounding box (bbox) feature.

In our multimodal transformer, we use L = 4 layers

of multimodal transformer with 12 attention heads. Other

hyper-parameters (such as dropout ratio) follow BERT-

BASE [13]. However, we note that the multimodal trans-

2See https://visualqa.org/evaluation for details.

former parameters are initialized from scratch rather than

from a pretrained BERT model. We use T = 12 maximum

decoding step in answer prediction unless otherwise speci-

fied, which is sufficient to cover almost all answers.

We collect the top 5000 frequent words from the answers

in the training set as our answer vocabulary. During train-

ing, we use a batch size of 128, and train for a maximum of

24,000 iterations. Our model is trained using the Adam op-

timizer, with a learning rate of 1e-4 and a staircase learning

rate schedule, where we multiply the learning rate by 0.1 at

14000 and at 19000 iterations. The best snapshot is selected

using the validation set accuracy. The entire training takes

approximately 10 hours on 4 Nvidia Tesla V100 GPUs.

As a notable prior work on this dataset, we show a step-

by-step comparison with the LoRRA model [44]. LoRRA

uses two single-hop attention layers over image visual fea-

tures and OCR features. The attended visual and OCR fea-

tures are then fused with a vector encoding of the question

and fed into a single-step classifier to select either a frequent

answer from the training set or a single OCR token from the

image. Unlike our rich OCR representation in Sec. 3.1, in

the LoRRA model each OCR token is only represented as a

300-dimensional FastText vector.

Ablations on pretrained question encoding and OCR

systems. We first experiment with a restricted version of

our model using the multimodal transformer architecture

but without iterative decoding in answer prediction, i.e.

M4C (w/o dec.) in Table 1. In this setting, we only de-

code for one step, and either select a frequent answer3 from

the training set or copy a single OCR token in the image as

the answer. As a step-by-step comparison with LoRRA, we

start with extracting OCR tokens from Rosetta-ml, repre-

senting OCR tokens only with FastText vectors, and initial-

izing question encoding parameters in Sec. 3.1 from scratch

(rather than from a pretrained BERT-BASE model). The re-

sult is shown in line 3 of Table 1. Compared with LoRRA

in line 1, this restricted version of our model already out-

performs LoRRA by around 3% (absolute) on TextVQA

validation set. This result shows that our multimodal trans-

former architecture is more efficient for jointly modeling the

three input modalities. We also experiment with initializing

the word embedding from GloVe [39] as in LoRRA and the

remaining parameters from scratch, shown in line 2. How-

ever, we find that this setting slightly under-performs ini-

tializing everything from scratch, which we suspect is due

to different question tokenization between LoRRA and the

BERT tokenizer used in our model. We then switch to a pre-

trained BERT for question encoding in line 4, and Rosetta-

en for OCR extraction in line 5. Comparing line 3 to 5,

we see that a pretrained BERT leads to around 0.6% higher

accuracy, and Rosetta-en gives another 1% improvement.

3In this case, we predict the entire (multi-word) answer, instead of a

single word from our answer word vocabulary as in our full model.
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# Method
Question enc. OCR OCR token Output Accu. Accu.

pretraining system representation module on val on test

1 LoRRA [44] GloVe Rosetta-ml FastText classifier 26.56 27.63

2 M4C w/o dec. GloVe Rosetta-ml FastText classifier 29.36 –

3 M4C w/o dec. (none) Rosetta-ml FastText classifier 29.55 –

4 M4C w/o dec. BERT Rosetta-ml FastText classifier 30.15 –

5 M4C w/o dec. BERT Rosetta-en FastText classifier 31.28 –

6 M4C w/o dec. BERT Rosetta-en FastText + bbox classifier 33.32 –

7 M4C w/o dec. BERT Rosetta-en FastText + bbox + FRCN classifier 34.38 –

8 M4C w/o dec. BERT Rosetta-en FastText + bbox + FRCN + PHOC classifier 35.70 –

9 M4C (ours - ablation) (none) Rosetta-ml FastText + bbox + FRCN + PHOC decoder 36.06 –

10 M4C (ours - ablation) BERT Rosetta-ml FastText + bbox + FRCN + PHOC decoder 37.06 –

11 M4C (ours) BERT Rosetta-en FastText + bbox + FRCN + PHOC decoder 39.40 39.01

12 DCD ZJU (ensemble) [32] – – – – 31.48 31.44

13 MSFT VTI [46] – – – – 32.92 32.46

14 M4C (ours; w/ ST-VQA) BERT Rosetta-en FastText + bbox + FRCN + PHOC decoder 40.55 40.46

Table 1. On the TextVQA dataset, we ablate our M4C model and show a detailed comparison with prior work LoRRA [44]. Our multimodal

transformer (line 3 vs 1), our rich OCR representation (line 8 vs 5) and our iterative answer prediction (line 11 vs 8) all improve the accuracy

significantly. Notably, our model still outperforms LoRRA by 9.5% (absolute) even when using fewer pretrained parameters (line 9 vs 1).

Our final model achieves 39.01% (line 11) and 40.46% (line 14) test accuracy without and with the ST-VQA dataset as additional training

data respectively, outperforming the challenge-winning DCD ZJU method by 9% (absolute). See Sec. 4.1 for details.

1 2 4 6 8 10 12
maximum decoding steps T
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50
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Figure 3. Accuracy under different maximum decoding steps T on

the validation set of TextVQA, ST-VQA, and OCR-VQA. There is

a major gap between single-step (T = 1) and multi-step (T > 1)

answer prediction. We use 12 steps by default in our experiments.

Ablations on OCR feature representation We analyze

the impact of our rich OCR representation in Sec. 3.1

through ablations in Table 1 line 5 to 8. We see that OCR

location (bbox) features and the RoI-pooled appearance fea-

tures (FRCN) both improve the performance by a noticeable

margin. In addition, we find that PHOC is also helpful as

a character-level representation of the OCR token. Our rich

OCR representation gives around 4% (absolute) accuracy

improvement compare with using only FastText features as

in LoRRA (line 8 vs 5). We note that our extra OCR fea-

tures do not require more pretrained models, as we apply

exactly the same Faster R-CNN model use in object detec-

tion for OCR appearance features, and PHOC is a manually-

designed feature that does not need pretraining.

Iterative answer decoding. We then apply our full M4C

model with iterative answer decoding to the TextVQA

dataset. The results are shown in Table 1 line 11, which

is around 4% (absolute) higher than its counterpart in line

8 using a single-step classifier and 13% (absolute) higher

than LoRRA in line 1. In addition, we ablate our model us-

ing Rosetta-ml and randomly initialized question encoding

parameters in line 9 and 10. Here, we see that our model in

line 9 still outperforms LoRRA (line 1) by as much as 9.5%

(absolute) when using the same OCR system as LoRRA and

even fewer pretrained components. We also analyze the per-

formance of our model with respect to the maximum de-

coding steps, shown in Figure 3, where decoding for multi-

ple steps greatly improves the performance compared with

a single step. Figure 4 shows qualitative examples (more

examples in appendix) of our M4C model on the TextVQA

dataset in comparison to LoRRA [44], where our model is

capable of selecting multiple OCR tokens and combining

them with its fixed vocabulary in predicted answers.

Qualitative insights. When inspecting the errors, we find

that a major source of errors is OCR failure (e.g. in the last

example in Figure 4, we find that the digits on the watch are

not detected). This suggests that the accuracy of our model

could be improved with better OCR systems, as supported

by the comparison between line 10 and 11 in Table 1. An-

other possible future direction is to dynamically recognize

text in the image based on the question (e.g. if the question

asks about the price of a product brand, one may want to

directly localize the brand name in the image). Some other

errors of our model include resolving relations between ob-

jects and text or understanding large chunks of text in im-

ages (such as book pages). However, our model is able to

correct a large number of mistakes in previous work where

copying multiple text tokens is required to form an answer.
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What does the light sign read on the

farthest right window?

Who is usa today’s bestselling au-

thor?

What is the name of the band? what is the time?

LoRRA: exit LoRRA: roger zelazny LoRRA: 7 LoRRA: 1:45

M4C (ours): bud light M4C (ours): cathy williams M4C (ours): soul doubt M4C (ours): 3:44

human: bud light; all 2 liters human: cathy williams human: soul doubt; h. michael

karshis; unanswerable

human: 5:40; 5:41; 5:42; 8:00

Figure 4. Qualitative examples from our M4C model on the TextVQA validation set (orange words are from OCR tokens and blue words

are from fixed answer vocabulary). Compared to the previous work LoRRA [44] which selects one answer from training set or copies only

a single OCR token, our model can copy multiple OCR tokens and combine them with its fixed vocabulary through iterative decoding.

TextVQA Challenge 2019. We also compare to the win-

ning entries in the TextVQA Challenge 2019.4 We compare

our method to DCD [32] (the challenge winner, based on

ensemble) and MSFT VTI [46] (the top entry after the chal-

lenge), both relying on one-step prediction. We show that

our single model (line 11) significantly outperforms these

challenge winning entries on the TextVQA test set by a

large margin. We also experiment with using the ST-VQA

dataset [8] as additional training data (a practice used by

some of the previous challenge participants), which gives

another 1% improvement and 40.46% final test accuracy –

a new state-of-the-art on the TextVQA dataset.

4.2. Evaluation on the STVQA dataset

The ST-VQA dataset [8] contains natural images from

multiple sources including ICDAR 2013 [24], ICDAR 2015

[23], ImageNet [12], VizWiz [18], IIIT STR [36], Visual

Genome [26], and COCO-Text [49].5 The format of the ST-

VQA dataset is similar to the TextVQA dataset in Sec. 4.1.

However, each question is accompanied by only one or two

ground-truth answers provided by the question writer. The

dataset involves three tasks, and its Task 3 - Open Dictio-

nary (containing 18,921 training-validation images and test

2,971 images) corresponds to our general TextVQA setting

where no answer candidates are provided at test time.

The ST-VQA dataset adopts Average Normalized Lev-

enshtein Similarity (ANLS)6 as its official evaluation met-

ric, defined as scores 1 − dL(apred, agt)/max(|apred|, |agt|)
(where apred and agt are prediction and ground-truth answers

and dL is edit distance) averaged over all questions. Also,

all scores below the threshold 0.5 are truncated to 0 before

averaging. To facilitate comparison, we report both accu-

4https://textvqa.org/challenge
5We notice that many images from COCO-Text [49] in the down-

loaded ST-VQA data (around 1/3 of all images) are resized to 256� 256 for

unknown reasons, which degrades the image quality and distorts their as-

pect ratios. In our experiments, we replace these images with their original

versions from COCO-Text as inputs to object detection and OCR systems.
6https://rrc.cvc.uab.es/?ch=11&com=tasks

# Method
Output Accu. ANLS ANLS

module on val on val on test

1 SAN+STR [8] – – – 0.135

2 VTA [7] – – – 0.282

3 M4C w/o dec. classifier 33.52 0.397 –

4 M4C (ours) decoder 38.05 0.472 0.462

Table 2. On the ST-VQA dataset, our restricted model without de-

coder (M4C w/o dec.) already outperforms previous work by a

large margin. Our final model achieves +0.18 (absolute) ANLS

boost over the challenge winner, VTA [7]. See Sec. 4.2 for details.

racy and ANLS in our experiments.

As the ST-VQA dataset does not have an official split

for training and validation, we randomly select 17,028 im-

ages as our training set and use the remaining 1,893 images

as our validation set. We train our model on the ST-VQA

dataset following exactly the same setting (line 11 in Ta-

ble 1) as in our TextVQA experiments in Sec. 4.1, where

we extract image text tokens using Rosetta-en, use FastText

+ bbox + FRCN + PHOC as our OCR representation, and

initialize question encoding parameters from a pretrained

BERT-BASE model. The results are shown in Table 2.

Ablations of our model. We train two versions of our

model, one restricted version (M4C w/o dec. in Table 2)

with a fixed one-step classifier as output module (similar to

line 8 in Table 1) and one full version (M4C) with iterative

answer decoding. Comparing the results of these two mod-

els, it can be seen that there is a large improvement from

our iterative answer prediction mechanism.

Comparison to previous work. We compare with two

previous methods on this dataset: 1) SAN+STR [8], which

combines SAN for VQA [51] and Scene Text Retrieval [16]

for answer vocabulary retrieval, and 2) VTA [7], the ICDAR

2019 ST-VQA Challenge6 winner, based on BERT [13] for

question encoding and BUTD [3] for VQA. From Table 2,

it can be seen that our restricted model (M4C w/o dec.) al-

ready achieves higher ANLS than these two models, and

our full model achieves as much as +0.18 (absolute) ANLS
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