
Single-Stage 6D Object Pose Estimation

Yinlin Hu, Pascal Fua, Wei Wang, Mathieu Salzmann

CVLab, EPFL, Switzerland

{firstname.lastname}@epfl.ch

Abstract

Most recent 6D pose estimation frameworks first rely on

a deep network to establish correspondences between 3D

object keypoints and 2D image locations and then use a

variant of a RANSAC-based Perspective-n-Point (PnP) al-

gorithm. This two-stage process, however, is suboptimal:

First, it is not end-to-end trainable. Second, training the

deep network relies on a surrogate loss that does not di-

rectly reflect the final 6D pose estimation task.

In this work, we introduce a deep architecture that di-

rectly regresses 6D poses from correspondences. It takes

as input a group of candidate correspondences for each 3D

keypoint and accounts for the fact that the order of the cor-

respondences within each group is irrelevant, while the or-

der of the groups, that is, of the 3D keypoints, is fixed. Our

architecture is generic and can thus be exploited in con-

junction with existing correspondence-extraction networks

so as to yield single-stage 6D pose estimation frameworks.

Our experiments demonstrate that these single-stage frame-

works consistently outperform their two-stage counterparts

in terms of both accuracy and speed.

1. Introduction

Detecting 3D objects in images and computing their

6D pose must be addressed in a wide range of applica-

tions [11, 31, 48, 29], ranging from robotics to augmented

reality. State-of-the-art approaches [39, 41, 32, 16, 13, 36,

54, 34, 24] follow a two-stage paradigm: First use a deep

network to establish correspondences between 3D object

points and their 2D image projections, then use a RANSAC-

based Perspective-n-Point (PnP) algorithm to compute the 6

pose parameters [9, 20, 40, 47, 21, 18, 7, 46].

While effective, this paradigm suffers from several

weaknesses. First, the loss function used to train the deep

network does not reflect the true goal of pose estimation, but

encodes a surrogate task, such as minimizing the 2D errors

of the detected image projections. The relationship between

such errors and the pose accuracy, however, is not one-to-

(a) (b)

Figure 1: Motivation. Consider the modern 6D pose estimation

algorithm of [13] that uses a deep network to predict several 2D

correspondences for each of the eight 3D corners of the pitcher’s

bounding box. (a) Because it minimizes the average 2D error of

these correspondences, two instances of such a framework could

produce correspondences that differ but have the same average ac-

curacy, such as the green and the red ones. As evidenced by the

projected green and red reference frames, applying a RANSAC-

based PnP algorithm to these two sets of correspondences can

yield substantially different poses. (b) Even when using only the

set of green correspondences, simply changing their order causes

a RANSAC-based PnP algorithm to return different solutions.

one. As shown in Fig. 1 (a) for the state-of-the-art frame-

work of [13], two sets of correspondences with the same

average 2D error can result in different pose estimates. Sec-

ond, the two-stage process is not end-to-end trainable. Fi-

nally, the iterative RANSAC is time-consuming when there

are many correspondences that need to be handled.

In principle, an end-to-end framework could be designed

by exploiting a deep version of RANSAC [1, 2], followed

by another network performing pose estimation from cor-

respondences [5]. However, the time-consuming character

of RANSAC in the presence of many outliers, and the poor

repeatability of its solution, arising from the fact that, as

shown in Fig. 1 (b), the order of the correspondences af-

fects the resulting pose, do not make it a good candidate

for inclusion into an end-to-end trainable network. Further-

2930



more, the approach of [5] relies on using a Direct Linear

Transform (DLT) [9] to compute the pose, which is known

to be imprecise and would exacerbate in the poor repeata-

bility problem.

As a result, there are still no end-to-end frameworks that

can handle jointly keypoint localization and 6D pose esti-

mation. In this paper, we overcome this by introducing a

simple but effective network that directly regresses the 6D

pose from groups of 3D-to-2D correspondences associated

to each 3D object keypoint. Its architecture explicitly en-

codes that the order of the correspondences in each group

is irrelevant, while exploiting the fact that the order of the

groups is fixed and corresponds to that of the 3D keypoints.

We then demonstrate the generality of this network

by combining it with two state-of-the-art correspondence-

extraction frameworks [13, 36]. This yields end-to-end

trainable 6D pose estimation frameworks that are both ac-

curate and repeatable. We show that these single-stage

frameworks systematically outperform the original two-

stage ones [13, 36], in terms of both accuracy and runtime.

2. Related Work

Detecting keypoints in the input image followed by run-

ning a RANSAC-based PnP algorithm on the established

3D-to-2D correspondences is a classical way for solving the

6D object pose estimation problem. Over the years, many

methods have been proposed to improve 3D-to-2D match-

ing [28, 42, 43, 44, 35, 33], relying on diverse techniques,

such as template-matching [10, 11], edge-matching [22,

27], and 3D model-based matching [14, 26, 12]. However,

these traditional methods still often fail in the presence of

severe occlusions and cluttered background.

As in many other areas, the modern take on 6D object

pose estimation from an RGB image involves deep neural

networks. The simplest approach is to directly regress from

the image to the pose parameters [17, 50]. However, this

tends to be less accurate than first establishing 3D-to-2D

correspondences [39, 41, 32, 16, 13, 36, 54, 34, 24] and

then running a RANSAC-based Perspective-n-Point (PnP)

algorithm [9] to estimate the object position and orientation

given the camera intrinsic parameters. What these meth-

ods all have in common is that the correspondences are es-

tablished independently from each other and consistency is

only imposed after the fact by the RANSAC PnP algorithm,

which is not part of the deep network. As shown in [53],

albeit in a different context, this fails to exploit the fact that

all correspondences are constrained by the camera pose and

are therefore not independent from each other.

Our goal in this paper is to turn the two-stage process

described above into a single-stage one by implementing

the RANSAC-based PnP part of the process as a deep net-

work that can be combined with the one that establishes the

correspondences. This is not a trivial problem because the

standard approach to PnP involves performing a Singular

Value Decomposition (SVD), which can be embedded in

a deep network but often results in numerical instabilities.

In [5], this was addressed by avoiding the explicit use of

SVD and instead treating PnP as a least-square fitting prob-

lem via the Direct Linear Transform (DLT) approach [9].

This, however, does not guarantee that the result describes

a true rotation and further post processing is still needed.

By contrast, the backpropagation-friendly eigendecom-

position method of [49] performs explicit SVD, and could

in principle used to perform PnP. Doing so, however, would

fail to account for the RANSAC part of the algorithm to se-

lect the correct correspondences. While RANSAC can be

implemented via a deep network [1, 2], its poor repeata-

bility, evidenced in Fig. 1(b), makes it ill-suited to train an

end-to-end 6D pose estimation network. In short, no one

yet has proposed a satisfying solution to designing a single-

stage 6D pose estimation network, which is the problem we

address here.

Our architecture is inspired by PointNet [37, 38]. How-

ever, PointNet was designed to deliver invariance to rigid

transformations, which is the opposite of what we need.

Furthermore, we introduce a grouped feature aggregation

scheme to effectively hande correspondence clusters in 6D

object pose estimation.

3. Approach

Given an RGB image captured by a calibrated camera,

our goal is to simultaneously detect objects and estimate

their 6D pose. We assume them to be rigid and their 3D

model to be available. In this section, we first formalize the

6D pose estimation problem assuming that sets of 2D cor-

respondence are given a priori for each 3D keypoint on the

target object and propose a network architecture that yields

6D poses from such inputs. This network is depicted by

Fig. 3. We then discuss how to obtain a single-stage 6D

pose estimation framework when these correspondences are

the output of another network.

3.1. 6D Pose from Correspondence Clusters

Let us assume that we are given the 3×3 camera intrinsic

parameter matrix K and m potential 2D correspondences

uik for each one of n 3D object keypoints pi, with 1 ≤ i ≤
n and 1 ≤ k ≤ m. The pi is expressed in a coordinate

system linked to the object, as shown in Fig. 2(a). For each

valid 3D to 2D correspondence pi ↔ uik, we have

λik

[

uik

1

]

= K(Rpi + t), (1)

where λi is a scale factor, and R and t are the rotation ma-

trix and translation vector that define the camera pose. Be-

cause R is a rotation, it only has three degrees of freedom

and t likewise, for a total of 6.

2931



Note that the 3D-to-2D correspondences above are not

restricted to 3D point to 2D point correspondences. In par-

ticular, as shown in Fig. 2(b), our formalism can handle

3D point to 2D vector correspondences, which have been

shown to be better-suited to use in conjunction with a deep

network [36]. In that case, the 2D locations can be infered

as the crosspoint of two 2D vectors, and Eq. 1 still holds

on crosspoints. Our approach as discussed below also still

applies, and we therefore do not explicitly distinguish be-

tween these two types of 3D-to-2D correspondences unless

necessary.

Classical PnP methods [21, 7, 46] try to recover R and t

given several correspondences, which typically involves us-

ing RANSAC to find the valid ones. In the process, an SVD

has to be performed on the many randomly chosen subsets

of correspondences that must be tried before one contain-

ing only valid correspondences is found. In this work, we

propose to replace this cumbersome process by a non-linear

regression implemented by an appropriately designed deep

network g with parameters Θ. In other words, we have

(R, t) = g({(pi ↔ uik)}1≤i≤n,1≤k≤m; Θ) . (2)

We now turn to the actual implementation of gθ. In

the remainder of this section, we first discuss the proper-

ties of the set of 3D to 2D correspondences C3

2
= {(pi ↔

uik)}1≤i≤n,1≤k≤m that the network takes as input and then

the architecture we designed to account for them.

3.1.1 Properties of the Correspondence Set

We will refer to all the 2D points associated to a specific

3D point as a cluster because, assuming that the algorithm

used to find them is a good one, they tend to cluster around

the true location of the 3D point’s projection, as can be seen

in Fig. 1. Our implementation choice were driven by the

following considerations:

Cluster ordering. The order of the correspondences

within a cluster is irrelevant and should not affect the re-

sult. However, the order of the clusters corresponds to the

order of the 3D points, which is given and fixed.

Interaction within a cluster and across clusters. Al-

though the points in the same cluster correspond to the same

3D point, the 2D location estimate for each point should be

expected to be noisy. Thus the model needs to capture the

noise distribution within each cluster. More importantly,

one single cluster can tell us nothing about the pose, and

the final pose can only be inferred by capturing the global

structure for multiple clusters.

Rigid transformations matter. When processing 3D

point clouds with a deep network, one usually wants the

result to be invariant to rigid transformations. By contrast,

here, we want our 2D points to represent projections of 3D

pi

image
plan

e

O

{uik}

W pi

image
plan

e

O

{uik}

W

(a) (b)

Figure 2: 3D to 2D correspondences. (a) Given m potential 2D

correspondences uik for each one of n 3D object keypoints pi,

{(pi ↔ uik)}1≤i≤n,1≤k≤m, the pose can be computed based on

these 3D-to-2D correspondences. Here, we only show the corre-

spondence cluster for pi. The camera and object coordinate sys-

tems are denoted by O and W respectively. (b) The pose can also

be obtained from point-to-vector correspondences, in which case

a 3D-to-2D correspondence is defined between a 3D point and a

2D vector. Our method can handle both cases.

points, and the features that we extract from them should de-

pend on their absolute positions, which are critical to pose

estimation.

3.1.2 Network Architecture

We construct a simple network architecture, depicted by

Fig. 3, that utilizes the properties discussed above to pre-

dict the pose from correspondence clusters. It comprises

three main modules: A local feature extraction module with

shared network parameters, a feature aggregation module

within individual clusters, and a global inference module

made of simple fully-connected layers.

Local feature extraction. We use an MLP with three

layers to extract local features for each correspondence,

with weights shared across the correspondences and across

the clusters.
Grouped feature aggregation. As the order of the clus-

ters is given but the points within each cluster are order-
less, to extract the representation for each cluster, we de-
sign a grouped feature aggregation method that insensitive
to the correspondence order. In theory, we could have used
an architecture similar to that of PointNet [37, 38]. How-
ever, PointNet is designed to deliver invariance to rigid
transformations, which is the opposite of what we need.
Instead, given n clusters, each containing m 2D points
{uik}, 1 ≤ i ≤ n, 1 ≤ k ≤ m, we define a set function
F : X → R

nD that maps correspondences {uik}1≤k≤m to
the nD-dimensional vector

CAT
(

MAX
k

({f1k}),MAX
k

({f2k}), ..,MAX
k

({fnk})
)

, (3)

2932



m
×

4
m

×
4

m
×

4

shared

shared

m
×
12
8

m
×
12
8

m
×
12
8

n
×

12
8

MLP

(512,256,7)

MLP
(128,128,128)

Max
Pooling

Local Feature ExtractionCNN Grouped Feature Aggregation Global Inference

· · ·

· · ·

· · ·

· · ·

Figure 3: Overall architecture for single-stage 6D object pose estimation. After establishing 3D-to-2D correspondences by some

segmentation-driven CNN for 6D pose [13, 36], we use three main modules to infer the pose from these correspondence clusters directly:

a local feature extraction module with shared network parameters, a feature aggregation module operating within the different clusters,

and a global inference module consisting of simple fully-connected layers to estimate the final pose as a quaternion and a translation. The

color in the CNN outputs indicates the direction of the 2D offset from the grid cell center to the corresponding projected 3D bounding box

corner.

where fik is the D-dimensional feature representation of

uik obtained via the above-mentioned fully-connected lay-

ers, MAX() is the max-pooling operation and CAT () is

the concatenation operation. In our experiments, we found

that neither instance normalization [45, 52] nor batch nor-

malization [15] improved the performance here. Therefore,

we do not use these operations in our network gθ.

In principle, one could use a single max-pooling opera-

tion, without accounting for the order of the groups, just as

PointNet [37] does to achieve permutation invariance for all

points. In our case, however, this would mean ignoring the

property that the order of the groups is fixed. By contrast,

Eq. 3 is invariant to any permutation within a cluster but still

accounts for the pre-defined cluster order. We demonstrate

the benefits of this approach in the results section.

Global inference. We then pass the nD-dimensional

vector aggregating the group features through another MLP

which outputs the 6D pose. To this end, we use three fully-

connected layers and encode the final pose as a quaternion

and a translation.

3.2. Single­Stage 6D Object Pose Estimation

The deep network described above gives us a differen-

tiable way to predict the 6D pose from correspondence clus-

ters for a given object. Given the input image, we therefore

still need to detect each object and establish the 3D to 2D

correspondences. To do so, we use another deep regressor

f with parameters Φ, which, for one object, lets us write

[ui1, . . . ,uim] = f(pi, I; Φ), 1 ≤ i ≤ n (4)

where I is the input RGB image. To implement f , we

use the recent encoder-decoder architecture of either [13]

or [36].

In practice, the {pi} are often taken to be the eight cor-

ners of the 3D bounding box of the object’s 3D model [39,

32, 13], which leads to different 3D points {pi}, for differ-

ent object types. In our experiments, we have observed that

using the same {pi} for every object has little impact on

the accuracy of fφ and makes the subsequent training of gθ
much easier. We therefore use a single cube for all dataset

objects, defined as the largest cube contained by a sphere

whose radius is the average of that of the bounding spheres

of all object 3D models. This means that the 3D keypoint

coordinates are implicitly given by the order of the clusters

and do not need to be explicitly specified as network inputs.

We therefore a use of 4D representation for each input cor-

respondence, which does not include the 3D coordinates.

Instead, because the network of [13] operates on an image

grid, when we use it to find the correspondences, we take the

input to be the x and y coordinates of the center of the grid

cell in which the 2D projections are and the dx and dy off-

sets from that center. In other words, the image coordinates

of a 2D correspondence are x + dx and y + dy. We tried

using these directly as input but we found out experimen-

tally that giving the network what amounts to a first order

expansion works better. When using the network of [36] in-

stead of that of [13] to find the correspondences, we use the

same input format but normalize the dx and dy so that they

represent an orientation.

Our complete model can therefore be written as

(R, t) = g
(

f(p1, I; Φ), · · · , f(p8, I; Φ);Θ
)

. (5)

To train it, we minimize the loss function

L = Ls + Lk + Lp , (6)

2933



Figure 4: Synthetic data. We create synthetic data by randomly

changing the pose of a unit sphere in 3D space relative to the cam-

era. We capture 20K images for training and 2K for testing.

which combines segmentation term Ls aiming to assign

each grid cell to an object class of to the background, a key-

point regression term Lk, and a pose estimation term Lp.

We take Ls to be the Focal Loss of [25], and Lk to be the

regression term of either [13] or [36] depending on which

of the two architectures we use. As in [50, 23], we take Lp

to be the 3D space reconstruction error, that is

Lp =
1

n

n
∑

i=1

‖(R̂pi + t̂)− (Rpi + t)‖ , (7)

where R̂ and t̂ are the estimated rotation matrix and transla-

tion vector, R and t are the ground-truth ones. The rotations

are estimated from the estimated and ground-truth quater-

nions, which can be done in a differentiable manner [55].

We also normalize the translations to make sure the regres-

sion targets all have a comparable range.

Our architecture simultaneously outputs a segmentation

mask and potential 2D locations for a set of predefined 3D

keypoints. More specifically, for a dataset with S object

classes and an input image I of size h× w × 3, it outputs a

3D tensor of size H×W×C. The dimensions H and W are

proportional to the input resolution and C = (S+1)+2∗n
with (S + 1) channels for segmentation, including one for

the background class, and 2 ∗ n for the 2D locations (or

2D direction vectors) corresponding to the n 3D points pi.

To obtain correspondence clusters for a given object, we

randomly sample m = 200 grid cells on the output feature

tensor that fall under the segmentation mask of a particular

class label.

4. Experiments

We compare our single-stage approach to more tradi-

tional but state-of-the-art two-stage frameworks [13, 36],

first on synthetic data and then on real data from the chal-

lenging Occluded-LINEMOD [19] and YCB-Video [50]

datasets. Our source code is publicly available at

https://github.com/cvlab-epfl/single-stage-pose.

4.1. Synthetic Data

As in [21, 7], we create synthetic 3D-to-2D correspon-

dences using a virtual calibrated camera, with image size

640 × 480, focal length 800, and principal point at the im-

age center. We take our target object to be a unit 3D sphere,

Figure 5: Generating correspondences. We project each corner

of the sphere’s 3D bounding box in the image and, for each grid

cell within the object mask, create a correspondence by recording

the center x, y of the grid cell and the offset dx, dy to the projected

corner.

which we randomly rotate and whose center we randomly

translate within the interval [−2, 2] × [−2, 2] × [4, 8] ex-

pressed in the camera coordinate system, as shown in Fig. 4.

Recall from Section 3.2, that gθ, the network that re-

gresses poses from the correspondence clusters, expects 4D

inputs in the form [x, y, dx, dy], where x, y represent the

center of an image grid location and dx, dy a shift from that

center. Here, each one should represent a potential image

correspondence for a specific corner of the sphere’s bound-

ing box for a particular object. Given the segmentation

mask of a particular object obtained by projecting the ob-

ject’s 3D model in the image, we create correspondences

in the following manner. We project each corner of the

sphere’s 3D bounding box in the image and, for each grid

cell in the segmentation mask, record the cell center x, y

and the displacement dx, dy to the projected corner. We

then take the resulting correspondences from 200 randomly

sampled grid cells within the mask. We add Gaussian noise

to their dx, dy values as well as create outliers by setting

some percentage of the dx, dy to values uniformly sampled

in the image. Fig. 5 demonstrates this procedure.

We trained gθ for 300 epoch on 20K synthetic training

images with batch size 32, and a learning rate of 1e-3 using

the Adam optimizer. During training we randomly add 2D

noise with variance σ in the range of [0, 15] and create from

0% to 30% of outliers. To test the accuracy obtained with

different noise levels and outlier rates, we use 2K synthetic

test images and report the mean pose accuracy in terms of

the ratio of the 3D space reconstruction error of Eq. 7 to the

diameter of the target object.

Comparing with RANSAC PnP. Combining a PnP al-

gorithm with RANSAC is the most widespread approach

to handling noisy correspondences [39, 41, 13, 54]. Fig. 6

shows that RANSAC-based EPnP [21] and RANSAC-based

P3P [8] yield similar performance. While they are more ac-

curate than our learning-based method when there is very

2934



5 10 15 20 25
0

0.05

0.1

0.15

noise level σ (outliers=10%)

p
os
e
er
ro
r

RANSAC EPnP
RANSAC P3P
Ours

5 10 15 20 25
0

0.05

0.1

0.15

noise level σ (outliers=30%)
p
os
e
er
ro
r

RANSAC EPnP
RANSAC P3P
Ours

Figure 6: Comparison with RANSAC PnP. We compare our net-

work with two classical RANSAC-based PnP methods, EPnP [21]

and P3P [8]. The two RANSAC-based methods have very sim-

ilar performance. More importantly, our method is much more

accurate and robust when the noise increases. The pose error is

reported as the ratio of the 3D space reconstruction error to the

diameter of the target object.

5 10 15 20 25
0

0.05

0.1

0.15

noise level σ (outliers=10%)

p
os
e
er
ro
r

w/o groups
w/ groups

5 10 15 20 25
0

0.05

0.1

0.15

noise level σ (outliers=30%)

p
os
e
er
ro
r

w/o groups
w/ groups

Figure 7: Importance of correspondence clustering. We com-

pare our network with one having a single max-pooling operation,

thus not accounting for the order of the clusters. Ignoring this

property clearly degrades the performance.

little noise, our method quickly becomes much more accu-

rate when the noise level increases.

Importance of correspondence clustering. To show-

case the importance to structure our network in the way we

did, we implemented a simplified version that uses a single

max-pooling operation to achieve permutation invariance

for all correspondences, without accounting for the order of

the clusters that matches that of the keypoints. To make this

work, we had to incorporate explicitly the 3D keypoint co-

ordinates associated to each correspondence as input to the

network. As shown in Fig. 7, not modeling the fixed order

of the keypoints yields a significant decreases in accuracy.

Comparing with PVNet’s voting-based PnP. In the

above experiments, the 2D correspondences were expressed

in terms of 2D locations of image points. Since one of the

best current techniques [36] uses directions instead and in-

fers poses from those using a voting-based PnP scheme, we

feed the same 3D point to 2D vector correspondences to our

own network. In this setting, as shown in Fig. 8, the pose is

more sensitive to the correspondence noise. However, as in

the previous case, while voting-based PnP yields more ac-

curate results when there is little noise, our method is much

more robust and accurate when the noise level increases.

5 10 15 20 25
0

0.1

0.2

0.3

noise level σ (outliers=10%)

p
os
e
er
ro
r

Voting-based PnP
Ours

5 10 15 20 25
0

0.1

0.2

0.3

noise level σ (outliers=30%)

p
os
e
er
ro
r

Voting-based PnP
Ours

Figure 8: Comparison with PVNet’s voting-based PnP [36].

When using 3D point to 2D vector correspondences, we com-

pare our network with the voting-based PnP used by PVNet. Our

method is much more robust to noise than voting-based PnP.

4.2. Real Data

We evaluate our method on real data from two chal-

lenging datasets, Occluded-LINEMOD [19] and YCB-

Video [50].

Occluded-LINEMOD consists of 8 objects and is a sub-

set of the older LINEMOD dataset [11]. Unlike LINEMOD

in which only one object per image is annotated, Occluded-

LINEMOD features multiple annotated objects. This makes

it more meaningful for evaluating methods that perform

both instance detection and pose estimation. In addition to

the cluttered backgrounds, textureless objects, and changing

lighting conditions of LINEMOD, Occluded-LINEMOD

also has severe occlusions between multiple object in-

stances. As there are only 1214 testing images and no ex-

plicit training data in Occluded-LINEMOD, we train our

network based on the LINEMOD training data.

YCB-Video is more recent and even more challenging.

It features 21 objects taken from the YCB dataset [4, 3]

and comprises about 130K real images from 92 video

sequences. It offers all the challenges of Occluded-

LINEMOD plus more diverse object sizes, including sev-

eral tiny textures-less objects.

Data preparation. For Occluded-LINEMOD, as in [41,

13, 36], we first use the Cut-and-Paste synthetic tech-

nique [6] to generate 20K images from LINEMOD data

and random background data [51], with 4 to 10 different

instances for each image. Then, we generate 10K render-

ing images for each object type from the textured 3D mesh,

as in [36]. The pose range during the rendering proce-

dure is the same as in LINEMOD except for one thing: To

handle pose ambiguities when encountering symmetry ob-

jects [30], we restrict the pose range to a subrange according

to the symmetry type of the object during training to avoid

confusing the network [39]. In the end, our training data

consists of 20K synthetic images with multiple instances

and 10K rendered images with only one instance for each

object, a total of (20 + 10× 8)K images.

For YCB-Video, we follow a similar procedure. We ren-

2935



Figure 9: Qualitative results on Occluded-LINEMOD. Our method yields accurate results even in the presence of large occlusions,

as shown in the first three columns. The last column shows two failure cases, where the target egg box is occluded too much and the

target glue exhibits subtle symmetry ambiguities, making it not easy for the correspondence-extraction network [36] to establish stable

correspondences. Here, the pose is visualized as the reprojection of the 3D mesh for each object.

[13] [13] + Ours [36] [36] + Ours

Ape 12.1 14.8 15.8 19.2

Can 39.9 45.5 63.3 65.1

Cat 8.2 12.1 16.7 18.9

Driller 45.2 54.6 65.7 69.0

Duck 17.2 18.3 25.2 25.3

Eggbox∗ 22.1 30.2 50.2 52.0

Glue∗ 35.8 45.8 49.6 51.4

Holepun. 36.0 37.4 39.7 45.6

Average 27.0 32.3 40.8 43.3

Table 1: Evaluation with different correspondence-extraction

networks on Occluded-LINEMOD. We evaluate two state-of-

the-art correspondence-extraction networks: SegDriven [13] and

PVNet [36], by replacing their original RANSAC-based post pro-

cessing with our small network. Our method consistently outper-

forms the original versions in both cases. Here, we report the

ADD-0.1d.

der 10K images for each of the 21 objects using the 3D

mesh models that are provided and according to the pose

statistic of the dataset. However, we do not use the Cut-and-

Paste technique to generate images with multiple instances

because in the original YCB-Video images are already an-

notated with multiple objects and we use that directly.

Training Procedure. For both datasets, we use an input

image resolution of 640 × 480 for both training and testing,

as in [36]. We use Adam to optimize with the initial learn-

ing rate set to 1e-3 and divided by 10 after processing 50%,

75%, and 90% of the total number of data samples. We set

the batch size to be 8 and rely on the usual data augmen-

tation techniques, that is as random luminance, Gaussian

noise, translation, scaling, and also occlusions [56]. We

train the network on 5M training samples through online

data augmentation.

Metrics. We quantify the pose error in both 3D and 2D as

in [50, 13]. In 3D, it use the average distance between the

3D model points transformed using the predicted pose and

those obtained with the ground-truth one, and we refer to it

as ADD [50]. In 2D, we use the usual 2D reprojection er-

ror of the 3D model points, and we refer it as REP [13]. We

measure the pose accuracy in terms the percentage of recov-

ered poses that are correct. In the tables below, we report

ADD-0.1d and REP-5px, for which the predicted pose are

considered to be correct if ADD is smaller than 10% of the

model diameter and REP is below 5 pixel, respectively. For

each metric, we use the symmetric version for symmetric

objects, which we denote by a ∗ superscript.

4.2.1 Occluded-LINEMOD Results

As discussed before, to demonstrate that our method is

generic, we test it in conjunction with two correspondence-

extraction networks SegDriven [13] and PVNet [36]. Ta-

ble 1 shows that, by replacing the original RANSAC-based

post processing by our network to turn the approach into a

single-stage one we improve performance in both cases.

2936



ADD-0.1d REP-5px

PoseCNN SegDriven PVNet Ours PoseCNN SegDriven PVNet Ours

Ape 9.6 12.1 15.8 19.2 34.6 59.1 69.1 70.3

Can 45.2 39.9 63.3 65.1 15.1 59.8 86.1 85.2

Cat 0.9 8.2 16.7 18.9 10.4 46.9 65.1 67.2

Driller 41.4 45.2 65.7 69.0 7.4 59.0 73.1 71.8

Duck 19.6 17.2 25.2 25.3 31.8 42.6 61.4 63.6

Eggbox∗ 22.0 22.1 50.2 52.0 1.9 11.9 8.4 12.7

Glue∗ 38.5 35.8 49.6 51.4 13.8 16.5 55.4 56.5

Holepun. 22.1 36.0 39.7 45.6 23.1 63.6 69.8 71.0

Average 24.9 27.0 40.8 43.3 17.2 44.9 61.1 62.3

Table 2: Comparison with the state of the art on Occluded-LINEMOD. We compare our results with those of PoseCNN [50], Seg-

Driven [13], and PVNet [36] in terms of both ADD-0.1d and REP-5px. Our method outperforms the state of the art, especially in ADD-0.1d.

correspondence

extraction
fusion

total

time
FPS

PoseCNN - - >250 <4

SegDriven 30 20 50 20

PVNet 14 26 40 25

Ours 14 8 22 45

Table 3: Comparing speed. We compare the running times

(in milliseconds) of PoseCNN [50], SegDriven [13], PVNet [36]

and our method on a modern GPU (GTX1080 Ti). Except for

PoseCNN, these methods first extract correspondences and then

fuse them. With the same correspondence-extraction backbone as

in PVNet, our method runs about 2 times faster, thanks to our net-

work that prevents the need for RANSAC-based fusion.

ADD-0.1d REP-5px

PoseCNN 21.3 3.7

SegDriven 39.0 30.8

PVNet - 47.4

Ours 53.9 48.7

Table 4: Comparison with the state of the art on YCB-

Video. We compare our results with those of PoseCNN [50], Seg-

Driven [13], and PVNet [36] in terms of ADD-0.1d and REP-5px.

We denote by “-” the result missing from the original PVNet paper.

In Table 2, we shown that our single-stage network out-

perform the state-of-the-art methods, PoseCNN [50], Seg-

Driven [13] and PVNet [36]. Fig. 9 provides qualitative

results. In Table 3, we report runtimes for an input image

containing about 4-5 objects. Our method is also faster than

the others because it does away for the iterative RANSAC

procedure.

4.2.2 YCB-Video Results

Table 4 summarizes the results comparing against

PoseCNN [50], SegDriven [13], and PVNet [36]. It shows

that our method consistently also outperforms the others on

this dataset. Furthermore, note that it runs nearly 10 times

faster than PoseCNN and also nearly 2 times faster than

SegDriven and PVNet.

4.3. Limitations

While our method is accurate and fast when used in

conjunction with state-of-the-art correspondence-extraction

networks [13, 36], the network that estimates the poses from

the correspondences is still not as accurate as traditional

geometry-based PnP algorithms when very precise corre-

spondences can be obtained by other means, as shown in

Fig. 6. Furthermore, it does not address the generic PnP

problem because we only trained it for fixed sets of 3D co-

ordinates. Addressing this will be the focus of our future

work.

5. Conclusion

We have introduced a single-stage approach approach

to 6D detection and pose estimation. Its key ingredient is

a small network that takes candidate 3D-to-2D correspon-

dences and returns a 6D pose. When combined with state-

of-the-art approaches to establish the correspondences, it

boosts performance by allowing end-to-end training and

eliminating the cumbersome RANSAC style procedure that

they normally require.

Future work will focus on making the pose estimation

network more accurate and more generic so that it can be

used in a broader context.

Acknowledgments

This work was supported in part by the Swiss Innovation

Agency (Innosuisse). We would like to thank Vincent Lep-

etit, Kwang Moo Yi and Eduard Trulls for helpful discus-

sions.

2937



References

[1] Eric Brachmann, Alexander Krull, Sebastian Nowozin,

Jamie Shotton, Frank Michel, Stefan Gumhold, and Carsten

Rother. DSAC – Differentiable RANSAC for Camera Local-

ization. Conference on Computer Vision and Pattern Recog-

nition, 2017. 1, 2

[2] Eric Brachmann and Carsten Rother. Neural-Guided

RANSAC: Learning Where to Sample Model Hypotheses.

In International Conference on Computer Vision, 2019. 1, 2

[3] Berk Calli, Arjun Singh, James Bruce, Aaron Walsman, Kurt

Konolige, Siddhartha Srinivasa, Pieter Abbeel, and Aaron M

Dollar. Yale-Cmu-Berkeley Dataset for Robotic Manipu-

lation Research. In International Journal of Robotics Re-

search, 2017. 6

[4] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srini-

vasa, Pieter Abbeel, and Aaron Dollar. The YCB Object

and Model Set: Towards Common Benchmarks for Manip-

ulation Research. In International Conference on Advanced

Robotics, 2015. 6

[5] Zheng Dang, Kwang Moo Yi, Yinlin Hu, Fei Wang, Pas-

cal Fua, and Mathieu Salzmann. Eigendecomposition-Free

Training of Deep Networks with Zero Eigenvalue-Based

Losses. In European Conference on Computer Vision, 2018.

1, 2

[6] Debidatta Dwibedi, Ishan Misra, and Martial Hebert. Cut,

Paste and Learn: Surprisingly Easy Synthesis for Instance

Detection. In International Conference on Computer Vision,

2017. 6

[7] Luis Ferraz, Xavier Binefa, and Francesc Moreno-Noguer.

Very Fast Solution to the PnP Problem with Algebraic Out-

lier Rejection. In Conference on Computer Vision and Pat-

tern Recognition, pages 501–508, 2014. 1, 3, 5

[8] Xiao-Shan Gao, Xiao-Rong Hou, Jianliang Tang, and Hang-

Fei Cheng. Complete Solution Classification for the

Perspective-Three-Point Problem. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 25(8):930–943,

2003. 5, 6

[9] Richard Hartley and Andrew Zisserman. Multiple View Ge-

ometry in Computer Vision. Cambridge University Press,

2000. 1, 2

[10] Stefan Hinterstoißer, Cedric Cagniart, Slobodan Ilic, Peter F.

Sturm, Nassir Navab, Pascal Fua, and Vincent Lepetit. Gra-

dient Response Maps for Real-Time Detection of Textureless

Objects. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 34, May 2012. 2

[11] Stefan Hinterstoißer, Vincent Lepetit, Slobodan Ilic, Stefan

Holzer, Gary R. Bradski, Kurt Konolige, and Nassir Navab.

Model Based Training, Detection and Pose Estimation of

Texture-Less 3D Objects in Heavily Cluttered Scenes. In

Asian Conference on Computer Vision, 2012. 1, 2, 6

[12] Edward Hsiao, Sudipta N. Sinha, Krishnan Ramnath, Si-

mon Baker, C. Lawrence Zitnick, and Richard Szeliski. Car

Make and Model Recognition Using 3D Curve Alignment.

In IEEE Winter Conference on Applications of Computer Vi-

sion, 2014. 2

[13] Yinlin Hu, Joachim Hugonot, Pascal Fua, and Mathieu Salz-

mann. Segmentation-Driven 6D Object Pose Estimation. In

Conference on Computer Vision and Pattern Recognition,

2019. 1, 2, 4, 5, 6, 7, 8

[14] Daniel P. Huttenlocher, Gregory A. Klanderman, and

William Rucklidge. Comparing Images Using the Hausdorff

Distance. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, pages 850–863, 1993. 2

[15] Sergey Ioffe and Christian Szegedy. Batch Normalization:

Accelerating Deep Network Training by Reducing Internal

Covariate Shift. In International Conference on Machine

Learning, 2015. 4

[16] Omid Hosseini Jafari, Siva Karthik Mustikovela, Karl

Pertsch, Eric Brachmann, and Carsten Rother. Ipose:

Instance-Aware 6D Pose Estimation of Partly Occluded Ob-

jects. In Asian Conference on Computer Vision, 2018. 1,

2

[17] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobo-

dan Ilic, and Nassir Navab. SSD-6D: Making Rgb-Based 3D

Detection and 6D Pose Estimation Great Again. In Interna-

tional Conference on Computer Vision, 2017. 2

[18] Laurent Kneip, Hongdong Li, and Yongduek Seo. UPnP: An

Optimal O(n) Solution to the Absolute Pose Problem with

Universal Applicability. In European Conference on Com-

puter Vision, 2014. 1

[19] Alexander Krull, Eric Brachmann, Frank Michel,

Michael Ying Yang, Stefan Gumhold, and Carsten Rother.

Learning Analysis-By-Synthesis for 6D Pose Estimation in

RGB-D Images. In International Conference on Computer

Vision, 2015. 5, 6

[20] Vincent Lepetit and Pascal Fua. Monocular Model-Based

3D Tracking of Rigid Objects: A Survey. Now Publishers,

September 2005. 1

[21] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua.

EPnP: An Accurate O(n) Solution to the PnP Problem. In-

ternational Journal of Computer Vision, 2009. 1, 3, 5, 6

[22] Dengwang Li, Hongjun Wang, Yong Yin, and Xiuying

Wang. Deformable Registration Using Edge-preserving

Scale Space for Adaptive Image-guided Radiation Therapy.

In Journal of Applied Clinical Medical Physics, 2011. 2

[23] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox.

DeepIM: Deep Iterative Matching for 6D Poseestimation. In

European Conference on Computer Vision, 2018. 5

[24] Zhigang Li, Gu Wang, and Xiangyang Ji. CDPN:

Coordinates-Based Disentangled Pose Network for Real-

Time RGB-Based 6-DoF Object Pose Estimation. In Inter-

national Conference on Computer Vision, 2019. 1, 2

[25] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He,

and Piotr Dollár. Focal Loss for Dense Object Detection. In

International Conference on Computer Vision, 2017. 5

[26] Ming-Yu Liu, Oncel Tuzel, Ashok Veeraraghavan, and Rama

Chellappa. Fast Directional Chamfer Matching. In Confer-

ence on Computer Vision and Pattern Recognition, 2010. 2

[27] David G. Lowe. Fitting Parameterized Three-Dimensional

Models to Images. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 13(5):441–450, June 1991. 2

[28] David G. Lowe. Distinctive Image Features from Scale-

Invariant Keypoints. International Journal of Computer Vi-

sion, 20(2):91–110, November 2004. 2

2938



[29] Subhransu Maji and Jitendra Malik. Object Detection using a

Max-margin Hough Transform. In Conference on Computer

Vision and Pattern Recognition, 2009. 1

[30] Fabian Manhardt, Diego Martin Arroyo, Christian Rup-

precht, Benjamin Busam, Tolga Birdal, Nassir Navab, and

Federico Tombari. Explaining the Ambiguity of Object De-

tection and 6D Pose From Visual Data. In International Con-

ference on Computer Vision, 2019. 6

[31] Frank Michel, Alexander Kirillov, Eric Brachmann, Alexan-

der Krull, Stefan Gumhold, Bogdan Savchynskyy, and

Carsten Rother. Global Hypothesis Generation for 6D Ob-

ject Pose Estimation. In Conference on Computer Vision and

Pattern Recognition, 2017. 1

[32] Markus Oberweger, Mahdi Rad, and Vincent Lepetit. Mak-

ing Deep Heatmaps Robust to Partial Occlusions for 3D Ob-

ject Pose Estimation. In European Conference on Computer

Vision, 2018. 1, 2, 4

[33] Yuki Ono, Eduard Trulls, Pascal Fua, and Kwang Moo Yi.

LF-Net: Learning Local Features from Images. In Advances

in Neural Information Processing Systems, 2018. 2

[34] Kiru Park, Timothy Patten, and Markus Vincze. Pix2Pose:

Pixel-Wise Coordinate Regression of Objects for 6D Pose

Estimation. In International Conference on Computer Vi-

sion, 2019. 1, 2

[35] Georgios Pavlakos, Xiaowei Zhou, Aaron Chan, Konstanti-

nos G. Derpanis, and Kostas Daniilidis. 6-DoF Object Pose

from Semantic Keypoints. In International Conference on

Robotics and Automation, 2017. 2

[36] Sida Peng, Yuan Liu, Qixing Huang, Hujun Bao, and Xi-

aowei Zhou. PVNet: Pixel-Wise Voting Network for 6DoF

Pose Estimation. In Conference on Computer Vision and Pat-

tern Recognition, 2019. 1, 2, 3, 4, 5, 6, 7, 8

[37] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.

PointNet: Deep Learning on Point Sets for 3D Classification

and Segmentation. In Conference on Computer Vision and

Pattern Recognition, 2017. 2, 3, 4

[38] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Point-

Net++: Deep Hierarchical Feature Learning on Point Sets in

a Metric Space. In Advances in Neural Information Process-

ing Systems, 2017. 2, 3

[39] Mahdi Rad and Vincent Lepetit. Bb8: A Scalable, Accu-

rate, Robust to Partial Occlusion Method for Predicting the

3D Poses of Challenging Objects Without Using Depth. In

International Conference on Computer Vision, 2017. 1, 2, 4,

5, 6

[40] Fred Rothganger, Svetlana Lazebnik, Cordelia Schmid, and

Jean Ponce. 3D Object Modeling and Recognition Using Lo-

cal Affine-Invariant Image Descriptors and Multi-View Spa-

tial Constraints. International Journal of Computer Vision,

66(3), 2006. 1

[41] Bugra Tekin, Sudipta N. Sinha, and Pascal Fua. Real-Time

Seamless Single Shot 6D Object Pose Prediction. In Confer-

ence on Computer Vision and Pattern Recognition, 2018. 1,

2, 5, 6

[42] Engin Tola, Vincent Lepetit, and Pascal Fua. DAISY: An

Efficient Dense Descriptor Applied to Wide Baseline Stereo.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 32(5):815–830, 2010. 2

[43] Tomasz Trzcinski, C. Mario Christoudias, Vincent Lep-

etit, and Pascal Fua. Learning Image Descriptors with the

Boosting-Trick. In Advances in Neural Information Process-

ing Systems, December 2012. 2

[44] Shubham Tulsiani and Jitendra Malik. Viewpoints and Key-

points. In Conference on Computer Vision and Pattern

Recognition, 2015. 2

[45] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-

stance Normalization: The Missing Ingredient for Fast Styl-

ization. In arXiv Preprint, 2016. 4

[46] Steffen Urban, Jens Leitloff, and Stefan Hinz. MLPnP-

A Real-Time Maximum Likelihood Solution to the

Perspective-N-Point Problem. arXiv Preprint, 2016. 1, 3

[47] Daniel Wagner, Gerhard Reitmayr, Alessandro Mulloni, Tom

Drummond, and Dieter Schmalstieg. Pose Tracking from

Natural Features on Mobile Phones. In International Sym-

posium on Mixed and Augmented Reality, September 2008.

1

[48] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martı́n-Martı́n,

Cewu Lu, Li Fei-Fei, and Silvio Savarese. DenseFusion: 6D

Object Pose Estimation by Iterative Dense Fusion. In Con-

ference on Computer Vision and Pattern Recognition, 2019.

1

[49] Wei Wang, Zheng Dang, Yinlin Hu, Pascal Fua, and Math-

ieu Salzmann. Backpropagation-Friendly Eigendecomposi-

tion. In Advances in Neural Information Processing Systems,

2019. 2

[50] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and

Dieter Fox. PoseCNN: A Convolutional Neural Network for

6D Object Pose Estimation in Cluttered Scenes. In Robotics:

Science and Systems Conference, 2018. 2, 5, 6, 7, 8

[51] Jianxiong Xiao, James Hays, Krista A. Ehinger, Aude Oliva,

and Antonio Torralba. SUN database: Large-scale scene

recognition from abbey to zoo. In Conference on Computer

Vision and Pattern Recognition, 2010. 6

[52] Kwang Moo Yi, Eduard Trulls, Yuki Ono, Vincent Lepetit,

Mathieu Salzmann, and Pascal Fua. Learning to Find Good

Correspondences. In Conference on Computer Vision and

Pattern Recognition, 2018. 4

[53] Kwang Moo Yi, Yannick Verdie, Pascal Fua, and Vincent

Lepetit. Learning to Assign Orientations to Feature Points.

In Conference on Computer Vision and Pattern Recognition,

2016. 2

[54] Sergey Zakharov, Ivan Shugurov, and Slobodan Ilic. DPOD:

6D Pose Object Detector and Refiner. In International Con-

ference on Computer Vision, 2019. 1, 2, 5

[55] Yinqiang Zheng, Yubin Kuang, Shigeki Sugimoto, Kalle

Åström, and Masatoshi Okutomi. Revisiting the PnP Prob-

lem: A Fast, General and Optimal Solution. In International

Conference on Computer Vision, 2013. 5

[56] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and

Yi Yang. Random Erasing Data Augmentation. In arXiv

Preprint, 2017. 7

2939


