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Figure 1: What is a good representation for 3D sensor data? We visualize a bird’s-eye-view LiDAR scene and highlight two

regions that may contain an object. Many contemporary deep networks process 3D point clouds, making it hard to distinguish

the two regions (left). But depth sensors provide more than 3D points - they provide estimates of freespace in between the

sensor and the measured 3D point. We visualize freespace by raycasting (right), where green is free and white is unknown.

In this paper, we introduce deep 3D networks that leverage freespace to significantly improve 3D object detection accuracy.

Abstract

Recent advances in 3D sensing have created unique

challenges for computer vision. One fundamental challenge

is finding a good representation for 3D sensor data. Most

popular representations (such as PointNet) are proposed in

the context of processing truly 3D data (e.g. points sampled

from mesh models), ignoring the fact that 3D sensored data

such as a LiDAR sweep is in fact 2.5D. We argue that rep-

resenting 2.5D data as collections of (x, y, z) points fun-

damentally destroys hidden information about freespace.

In this paper, we demonstrate such knowledge can be effi-

ciently recovered through 3D raycasting and readily incor-

porated into batch-based gradient learning. We describe a

simple approach to augmenting voxel-based networks with

visibility: we add a voxelized visibility map as an addi-

tional input stream. In addition, we show that visibility

can be combined with two crucial modifications common

to state-of-the-art 3D detectors: synthetic data augmenta-

tion of virtual objects and temporal aggregation of LiDAR

sweeps over multiple time frames. On the NuScenes 3D de-

tection benchmark, we show that, by adding an additional

stream for visibility input, we can significantly improve the

overall detection accuracy of a state-of-the-art 3D detector.

1. Introduction

What is a good representation for processing 3D sen-

sor data? While this is a fundamental challenge in ma-

chine vision dating back to stereoscopic processing, it has

recently been explored in the context of deep neural pro-

cessing of 3D sensors such as LiDARs. Various representa-

tions have been proposed, including graphical meshes [2],

point clouds [19], voxel grids [31], and range images [17],

to name a few.

Visibility: We revisit this question by pointing out that

3D sensored data, is infact, not fully 3D! Instantaneous

depth measurements captured from a stereo pair, structured
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light sensor, or LiDAR undeniably suffer from occlusions:

once a particular scene element is measured at a particular

depth, visibility ensures that all other scene elements behind

it along its line-of-sight are occluded. Indeed, this loss of in-

formation is one of the fundamental reasons why 3D sensor

readings can often be represented with 2D data structures -

e.g., 2D range image. From this perspective, such 3D sen-

sored data might be better characterized as “2.5D” [16].

3D Representations: We argue that representations for

processing LiDAR data should embrace visibility, particu-

larly for applications that require instantaneous understand-

ing of freespace (such as autonomous navigation). How-

ever, most popular representations are based on 3D point

clouds (such as PointNet [19, 13]). Because these were of-

ten proposed in the context of truly 3D processing (e.g., of

3D mesh models), they do not exploit visibility constraints

implicit in the sensored data (Fig. 1). Indeed, representing a

LiDAR sweep as a collection of (x, y, z) points fundamen-

tally destroys such visibility information if normalized (e.g.,

when centering point clouds).

Occupancy: By no means are we the first to point out the

importance of visibility. In the context of LiDAR process-

ing, visibility is well studied for the tasks of map-building

and occupancy reasoning [24, 8]. However, it is not well-

explored for object detection, with one notable exception:

[30] builds a probabilistic occupancy grid and performs

template matching to directly estimate the probability of

an object appearing at each discretized location. However,

this approach requires knowing surface shape of object in-

stances beforehand, therefore it is not scalable. In this pa-

per, we demonstrate that deep architectures can be simply

augmented to exploit visibility and freespace cues.

Range images: Given our arguments above, one solu-

tion might be defining a deep network on 2D range im-

age input, which implicitly encodes such visibility informa-

tion. Indeed, this representation is popular for structured

light “RGBD” processing [10, 6], and has also been pro-

posed for LiDAR [17]. However, such representations do

not seem to produce state-of-the-art accuracy for 3D object

understanding, compared to 3D voxel-based or top-down,

bird’s-eye-view (BEV) projected grids. We posit that con-

volutional layers that operate along a depth dimension can

reason about uncertainty in depth. To maintain this prop-

erty, we introduce simple but novel approaches that directly

augment state-of-the-art 3D voxel representations with vis-

ibility cues.

Our approach: We propose a deep learning ap-

proach that efficiently augments point clouds with visibil-

ity. Our specific constributions are three-fold; (1) We first

(re)introduce raycasting algorithms that effciently compute

on-the-fly visibility for a voxel grid. We demonstrate that

these can be incorporated into batch-based gradient learn-

ing. (2) Next, we describe a simple approach to augmenting

voxel-based networks with visibility: we add a voxelized

visibility map as an additional input stream, exploring al-

ternatives for early and late fusion; (3) Finally, we show

that visibility can be combined with two crucial modifica-

tions common to state-of-the-art networks: synthetic data

augmentation of virtual objects, and temporal aggregation

of LiDAR sweeps over multiple time frames. We show that

visibility cues can be used to better place virtual objects.

We also demonstrate that visibility reasoning over multiple

time frames is akin to online occupancy mapping.

2. Related Work

2.1. 3D Representations

Point representation: Most classic works on point rep-

resentation employ hand-crafted descriptors and require

robust estimates of local surface normals, such as spin-

images [9] and Viewpoint Feature Histograms (VFH) [21].

Since PointNet [19], there has been a line of work fo-

cuses on learning better point representation, including

PointNet++[20], Kd-networks [11], PointCNN [14], Edge-

Conv [26], and PointConv [27] to name a few. Recent

works on point-wise representation tend not to distinguish

between reconstructed and measured point clouds. We ar-

gue that when the input is a measured point cloud, e.g. a

LiDAR sweep, we need to look beyond points and reason

about visibility that is hidden within points.

Visibility representation: Most research on visibility

representation has been done in the context of robotic map-

ping. For example, Buhmann et al. [3] estimates a 2D prob-

abilistic occupancy map from sonar readings to navigate the

mobile robot and more recently Hornung et al. [8] have de-

veloped Octomap for general purpose 3D occupancy map-

ping. Visibility through raycasting is at the heart of devel-

oping such occupancy maps. Despite the popularity, such

visibility reasoning has not been widely studied in the con-

text of object detection, except a notable exception of [30],

which develops a probabilistic framework based on occu-

pancy maps to detect objects with known surface models.

2.2. LiDAR­based 3D Object Detection

Initial representation: We have seen LiDAR-based

object detectors built upon range images, bird’s-eye-view

feature maps, raw point clouds, and also voxelized point

clouds. One example of a range image based detector is

LaserNet [17], which treats each LiDAR sweep as a cylin-

drical range image. Examples of bird-eye-view detectors in-

clude AVOD [12], HDNet [29], and Complex-YOLO [23].

One example that builds upon raw point clouds is PointR-

CNN [22]. Examples of voxelized point clouds include the

initial VoxelNet[31], SECOND [28], and PointPillars [13].

Other than [30], we have not seen a detector that uses visi-

bility as the initial representation.
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Figure 2: Overview of a general 3D detection framework, designed to solve 3D detection as a bird’s-eye-view (BEV) 2D

detection problem. The framework consists of two parts: anchors (left) and network (right). We first define a set of 3D

anchor boxes that match the average box shape of different object classes. Then we hypothesize placing each anchor at

different spatial locations over a ground plane. We learn a convolutional network to predict confidence and adjustments for

each anchor placement. Such predictions are made based on 2D multi-channel feature maps, extracted from the input 3D

point cloud. The predictions for each anchor consist of a confidence score S and a set of coefficients C for adjusting the

anchor box. Eventually, the framework produces a set of 3D detections with oriented 3D boxes.

Object augmentation: Yan et al. [28] propose a novel

form of data augmentation, which we call object augmenta-

tion. It copy-pastes object point clouds from one scene into

another, resulting in new training data. This augmentation

technique improves both convergence speed and final per-

formance and is adopted in all recent state-of-the-art 3D de-

tectors, such as PointRCNN [22] and PointPillars [13]. For

objects captured under the same sensor setup, simple copy-

paste preserves the relative pose between the sensor and the

object, resulting in approximately correct return patterns.

However, such practice often inserts objects regardless of

whether it violates the scene visibility. In this paper, we

propose to use visibility reasoning to maintain correct visi-

bility while augmenting objects across scenes.

Temporal aggregation: When learning 3D object detec-

tors over a series of LiDAR sweeps, it is proven helpful to

aggregate information across time. Luo et al. [15] develop

a recurrent architecture for detecting, tracking, and fore-

casting objects on LiDAR sweeps. Choy et al. [5] propose

to learn spatial-temporal reasoning through 4D ConvNets.

Another technique for temporal aggregation, first found in

SECOND [28], is to simply aggregate point clouds from

different sweeps while preserving their timestamps relative

to the current one. These timestamps are treated as addi-

tional per-point input feature along with (x, y, z) and fed

into point-wise encoders such as PointNet. We explore tem-

poral aggregation over visibility representations and point

out that one can borrow ideas from classic robotic mapping

to integrate visibility representation with learning.

3. Exploit Visibility for 3D Object Detection

Before we discuss how to integrate visibility reason-

ing into 3D detection, we first introduce a general 3D de-

tection framework. Many 3D detectors have adopted this

framework, including AVOD [12], HDNet [29], Complex-

YOLO [23], VoxelNet [31], SECOND [28], and PointPil-

lars [13]. Among the more recent ones, there are two cru-

cial innovations: (1) object augmentation by inserting rarely

seen (virtual) objects into training data and (2) temporal ag-

gregation of LiDAR sweeps over multiple time frames.

We integrate visibility into the aforementioned 3D detec-

tion framework. First, we (re)introduce a raycasting algo-

rithm that efficiently computes visibility. Then, we intro-

duce a simple approach to integrate visibility into the ex-

isting framework. Finally, we discuss visibility reasoning

within the context of object augmentation and temporal ag-

gregation. For object augmentation, we modify the raycast-

ing algorithm to make sure visibility remains valid while in-

serting virtual objects. For temporal aggregation, we point

out that visibility reasoning over multiple frames is akin to

online occupancy mapping.

3.1. A General Framework for 3D Detection

Overview: We illustrate the general 3D detection frame-

work in Fig. 2. Please refer to the caption. We highlight the

fact that once the input 3D point cloud is converted to a

multi-channel BEV 2D representation, we can make use of

standard 2D convolutional architectures. We later show that

visibility can be naturally incorporated into this 3D detec-

tion framework.

Object augmentation: Data augmentation is a crucial

ingredient of contemporary training protocols. Most aug-

mentation strategies perturb coordinates through random

transformations (e.g. translation, rotation, flipping) [12,

18]. We focus on object augmentation proposed by Yan

et al. [28], which copy-pastes (virtual) objects of rarely-

seen classes (such as buses) into LiDAR scenes. Our ab-

lation studies (g→i in Tab. 3) suggest that it dramatically

improves vanilla PointPillars by an average of +9.1% on

the augmented classes.

Temporal aggregation: In LiDAR-based 3D detection,
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researchers have explored various strategies for temporal

reasoning. We adopt a simple method that aggregates

(motion-compensated) points from different LiDAR sweeps

into a single scene [28, 4]. Importantly, points are aug-

mented with an additional channel that encodes the relative

timestamp (x, y, z, t). Our ablation studies (g→j in Tab. 3)

suggest that temporal aggregation dramatically improves

the overall mAP of vanilla PointPillars model by +8.6%.

3.2. Compute Visibility through Raycasting

Physical raycasting in LiDAR: Each LiDAR point is

generated through a physical raycasting process. To gener-

ate a point, the sensor emits a laser pulse in a certain direc-

tion. The pulse travels through air forward and back after

hitting an obstacle. Upon its return, one can compute a 3D

coordinate derived from the direction and the time-of-flight.

However, coordinates are by no means the only information

offered by such active sensing. Crucially, it also provides

estimates of freespace along the ray of the pulse.

Simulated LiDAR raycasting: By exploiting the causal

relationship between freespace and point returns - points lie

along the ray where freespace ends, we can re-create the

instantaneous visibility encountered at the time of LiDAR

capture. We do so by drawing a line segment from the sen-

sor origin to a 3D point. We would like to use this line seg-

ment to define freespace across a discretized volume, e.g. a

3D voxel grid. Specifically, we compute all voxels that in-

tersect this line segment. Those that are encountered along

the ray are marked as free, except the last voxel enclosing

the 3D point is marked as occupied. This results in a visibil-

ity volume where all voxels are marked as occupied, free, or

unknown (default). We will integrate the visibility volume

into the general detection framework (Fig. 2) in the form of

a multi-channel 2D feature map (e.g. a RGB image is an

example with 3 channels) where visibility along the vertical

dimension (z-axis) is treated as different channels.

Efficient voxel traversal: Visibility computation must

be extremely efficient. Many detection networks exploit

sparsity in LiDAR point clouds: PointPillars[13] process

only non-empty pillars (about 3%) and SECOND [28] em-

ploys spatially sparse 3D ConvNets. Inspired by these ap-

proaches, we exploit sparsity through an efficient voxel

traversal algorithm [1]. For any given ray, we need tra-

verse only a sparse set of voxels along the ray. Intuitively,

during the traversal, the algorithm enumerates over the six

axis-aligned faces of the current voxel to determine which

is intersected by the exiting ray (which is quite efficient).

It then simply advances to the neighboring voxel with a

shared face. The algorithm begins at the voxel at the ori-

gin and terminates when it encounters the (precomputed)

voxel occupied by the 3D point. This algorithm is linear

in the grid dimension, making it quite efficient. Given an

instantaneous point cloud, where points are captured at the

Algorithm 1: Raycasting with Augmented Objects

Input: mode m, sensor origin s, original points P, augmented points Q

Output: occupancy grid O

Initialize: O[:]← UNKNOWN ;

/* Raycast P with Q as a ray stopper */

Compute B such that ∀q in Q,B[vq]← BLOCKED ;

for p in P do

v ← vs; /* vs: sensor voxel */

while v 6= vp do

v ← next voxel(v,p− s) ;

if B[v] = BLOCKED then

break; /* stop the ray */

if v = vp then

O[v]← OCCUPIED ;

else

O[v]← FREE ;

/* Raycast Q with P as a ray stopper */

Compute B such that ∀q in Q,B[vq]← BLOCKED ;

for q in Q do

v ← vs; /* vs: sensor voxel */

while v 6= vq do

v ← next voxel(v,q− s) ;

if B[v] = BLOCKED then

if m = CULLING then

break; /* stop the ray */

else if m = DRILLING then

O[v]← FREE; /* let ray through */

/* Do nothing under the naı̈ve mode */

if v = vq then

O[v]← OCCUPIED ;

else

O[v]← FREE ;

same timestamp, we perform raycasting from the origin to

each point and aggregate voxels’ visibility afterwards. To

reduce discretization effects during aggregation, we follow

best-practices outlined in Octomap (Sec. 5.1 in [8]).

Raycasting with augmented objects: Prior work aug-

ments virtual objects while ignoring visibility constraints,

producing LiDAR sweeps with inconsistent visibility (e.g.,

by inserting an object behind a wall that should occlude it

- Fig. 3-(b)). We can use raycasting as a tool to “rectify”

the LiDAR sweep. Specifically, we might wish to remove

virtual objects that are occluded (a strategy we term culling

- Fig. 3-(c)). Because this might excessively decrease the

number of augmented objects, another option is to remove

points from the original scene that occlude the inserted ob-

jects (a strategy we term drilling - Fig. 3-(d)).

Fortunately, as we show in Alg. 1, both strategies are ef-

ficient to implement with simple modifications to the vanilla

voxel traversal algorithm. We only have to change the ter-

minating condition of raycasting from arriving at the end

point of the ray to hitting a voxel that is BLOCKED. For culling,

when casting rays from the original scene, we set voxels oc-

cupied by virtual objects as BLOCKED; when casting rays from

the virtual objects, we set voxels occupied in original scenes

as BLOCKED. As a result, points that should be occluded will

be removed. For drilling, we allow rays from virtual objects

to pass through voxels occupied in the original scene.

Online occupancy mapping: How do we extend instan-

taneous visibility into a temporal context? Assume knowing

the sensor origin at each timestamp, we can compute instan-
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(a) original (b) naive

(c) culling (d) drilling

Figure 3: Different types of object augmentation we can do through visibility reasoning. In (a), we show the original LiDAR

point cloud. In (b), we naively insert new objects (red) into the scene. Clearly, the naive strategy may result in inconsistent

visibility. Here, a trailer is inserted behind a wall that should occlude it. We use raycasting as a tool to “rectify” the LiDAR

sweep. In (c), we illustrate the culling strategy, where we remove virtual objects that are occluded (purple). In practice,

this may excessively remove augmented objects. In (d), we visualize the drilling strategy, where we remove points from the

original scene that occlude the virtual objects. Here, a small piece of wall is removed (yellow).

(a) instantaneous visibility (b) temporal occupancy

Figure 4: We visualize instantaneous visibility vs. temporal occupancy. We choose one xy-slice in the middle to visualize.

Each pixel represents a voxel on the slice. On the left, we visualize a single LiDAR sweep and the instantaneous visibil-

ity, which consists of three discrete values: occupied (red), unknown (gray), and free (blue). On the right, we visualize

aggregated LiDAR sweeps plus temporal occupancy, computed through Bayesian Filtering [8]. Here, the color encodes the

probability of the corresponding voxel being occupied: redder means more occupied.

taneous visibility over every sweep, resulting in 4D spatial-

temporal visibility. If we directly integrate a 4D volume

into the detection framework, it would be too expensive.

We seek out online occupancy mapping [25, 8] and apply

Bayesian filtering to turn a 4D spatial-temporal visibility

into a 3D posterior probability of occupancy. In Fig. 4, we

plot a visual comparison between instantaneous visibility

and temporal occupancy. We follow Octomap [8]’s formu-

lation and use their off-the-shelf hyper-parameters, e.g. the

log-odds of observing freespace and occupied space.

3.3. Approach: A Two­stream Network

Now that we have discussed raycasting approaches for

computing visibility, we introduce a novel two-stream net-

work for 3D object detection. We incorporate visibility into

a state-of-the-art 3D detector, i.e. PointPillars, as an addi-

tional stream. The two-stream approach leverages both the

point cloud and the visibility representation and fuses them

into a multi-channel representation. We explore both early

and late fusion strategies, as illustrated in Fig. 5. This is a
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Figure 5: We explore both early fusion and late fusion when integrating visibility into the PointPillars model. In the early

fusion (a), we concatenate visibility volume with pillar features before applying a backbone network for further encoding.

For late fusion, we build one separate backbone network for each stream and concatenate the output of each stream into a

final multi-channel feature map. We compare these two alternatives in ablation studies (Tab. 3).

part of the overall architecture illustrated in Fig. 2.

Implementation: We implement our two-stream ap-

proach by adding an additional input stream to PointPillars.

We adopt PointPillars’s resolution for discretization in or-

der to improve ease of integration. As a result, our visibility

volume has the same 2D spatial size as the pillar feature

maps. A simple strategy is to concatenate and feed them

into a backbone network. We refer to this strategy as early

fusion (Fig. 5-(a)). Another strategy is to feed each into a

separate backbone network, which we refer to as late fu-

sion (Fig. 5-(b)). We discuss more training details in the

Appendix B. Our code is available online1.

4. Experiments

We present both qualitative (Fig. 6) and quantitative re-

sults on the NuScenes 3D detection benchmark. We first

introduce the setup and baselines, before we present main

results on the test benchmark. Afterwards, we perform di-

agnostic evaluation and ablation studies to pinpoint where

improvements come from. Finally, we discuss the efficiency

of computing visibility through raycasting on-the-fly.

Setup: We benchmark our approach on the NuScenes

3D detection dataset. The dataset contains 1,000 scenes

captured in two cities. We follow the official protocol for

NuScenes detection benchmark. The training set contains

700 scenes (28,130 annotated frames). The validation set

contains 150 scenes (6,019 annotated frames). Each anno-

tated frame comes with one LiDAR point cloud captured by

a 32-beam LiDAR, as well as up to 10 frames of (motion-

compensated) point cloud. We follow the official evalua-

tion protocol for 3D detection [4] and evaluate average mAP

over different classes and distance threshold.

Baseline: PointPillars [13] achieves the best accuracy

on the NuScenes detection leaderboard among all pub-

lished methods that have released source code. The offi-

cial PointPillars codebase2 only contains an implementa-

1https://www.cs.cmu.edu/˜peiyunh/wysiwyg
2https://github.com/nutonomy/second.pytorch

tion for KITTI [7]. To reproduce PointPillars’s results on

NuScenes, the authors of PointPillars recommend a third-

party implementation3.Using an off-the-shelf configuration

provided by the third-part implementation, we train a Point-

Pillars model for 20 epochs from scratch on the full training

set and use it as our baseline. This model achieves an over-

all mAP of 31.5% on the validation set, which is 2% higher

than the official PointPillars mAP (29.5%) [4] (Tab. 2). As

suggested by [4], the official implementation of PointPillars

employ pretraining (ImageNet/KITTI). There is no pretrain-

ing in our re-implementation.

Main results: We submitted the results of our two-

stream approach to the NuScenes test server. In Tab. 1, we

compare our test-set performance to PointPillars on the offi-

cial leaderboard [4]. By augmenting visibility, our proposed

approach achieves a significant improvement over PointPil-

lars in overall mAP by a margin of 4.5%. Specifically, our

approach outperforms PointPillars by 10.7% on cars, 5.3%

on pedestrians, 7.4% on trucks, 18.4% on buses, and 16.7%

on trailers. Our model underperforms official PointPillars

on motorcycles by a large margin. We hypothesize this

might be due to us (1) using a coarser xy-resolution or (2)

not pretraining on ImageNet/KITTI.

Improvement at different levels of visibility: We com-

pare our two-stream approach to PointPillars on the valida-

tion set, where visibility improves overall mAP by 4%. We

also evaluate each object class at different levels of visibil-

ity. Here, we focus on the two most common classes: car

and pedestrian. Interestingly, we observe the biggest im-

provement over heavily occluded cars (0-40% visible) and

the smallest improvement over fully-visible cars (80-100%

visible). For pedestrian, we also find the smallest improve-

ment is over fully-visible pedestrians (3.2%), which is 1-3%

less than the improvement over pedestrians with heavier oc-

clusion.

Ablation studies: To understand how much improve-

ment each component provides, we perform ablation studies

3https://github.com/traveller59/second.pytorch
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Table 1: 3D detection mAP on the NuScenes test set.

car pedes. barri. traff. truck bus trail. const. motor. bicyc. mAP

PointPillars [4] 68.4 59.7 38.9 30.8 23.0 28.2 23.4 4.1 27.4 1.1 30.5

Ours 79.1 65.0 34.7 28.8 30.4 46.6 40.1 7.1 18.2 0.1 35.0

Figure 6: We visualize qualitative results of our two-stream approach on the NuScenes test set. We assign each class a

different color (top). We use solid cuboids to represent ground truth objects and wireframe boxes to represent predictions.

To provide context, we also include an image captured by the front camera in each scenario. Note the image is not used as

part of input for our approach. In (a), our approach successfully detects most vehicles in the scene on a rainy day, including

cars, trucks, and trailers. In (b), our model manages to detect all the cars around and also two motorcycles on the right side.

In (c), we visualize a scene with many pedestrians on the sidewalk and our model is able to detect most of them. Finally, we

demonstrate a failure case in (d), where our model fails to detect objects from rare classes. In this scenario, our model fails

to detect two construction vehicles on the car’s right side, reporting one as a truck and the other as a bus.

by starting from our final model and removing one compo-

nent at a time. Key observations from Tab. 3 are:

• Early fusion (a,b): Replacing early fusion (a) with late

fusion (b) results in a 1.4% drop in overall mAP.

• Drilling (b,c,d): Replacing drilling (b) with culling (c)

results in a 11.4% drop on bus and a 4.9% drop on

trailer. In practice, most augmented trucks and trail-

ers tend to be severely occluded and are removed if

the culling strategy is applied. Replacing drilling (b)

with naive augmentation (d) results in a 1.9% drop on

bus and 3.1% drop on trailer, likely due to inconsistent

visibility when naively augmenting objects.

• Object augmentation (b,e): Removing object aug-

mentation (b→e) leads to significant drops in mAP on

classes affected by object augmentation, including in a

2.5% drop on truck, 13.7% on bus, and 7.9% on trailer.
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Table 2: 3D detection mAP on the NuScenes validation set.
†: reproduced based on an author-recommended third-party implementation.

car pedes. barri. traff. truck bus trail. const. motor. bicyc. mAP

PointPillars [4] 70.5 59.9 33.2 29.6 25.0 34.4 16.7 4.5 20.0 1.6 29.5

PointPillars† 76.9 62.6 29.2 20.4 32.6 49.6 27.9 3.8 11.7 0.0 31.5

Ours 80.0 66.9 34.5 27.9 35.8 54.1 28.5 7.5 18.5 0.0 35.4

car 0-40% 40-60% 60-80% 80-100%

Proportion 20% 12% 15% 54%

PointPillars† 27.2 40.0 57.2 84.3

Ours 32.1 42.6 60.6 86.3

Improvement 4.9 2.6 3.4 2.0

pedestrian 0-40% 40-60% 60-80% 80-100%

Proportion 20% 12% 15% 54%

PointPillars† 17.3 23.4 28.0 68.3

Ours 22.1 27.8 34.2 71.5

Improvement 4.8 4.4 6.2 3.2

Table 3: Ablation studies on the NuScenes validation set. We italicize classes for which we perform object augmentation.

OA stands for object augmentation and TA stands for temporal aggregation.

Fusion OA TA car pedes. barri. traff. truck bus trail. const. motor. bicyc. avg

(a) Early Drilling Multi-frame 80.0 66.9 34.5 27.9 35.8 54.1 28.5 7.5 18.5 0.0 35.4

(b) Late Drilling Multi-frame 77.8 65.8 32.2 24.2 33.7 53.0 30.6 4.1 18.8 0.0 34.0

(c) Late Culling Multi-frame 78.3 66.4 33.2 27.3 33.4 41.6 25.7 5.6 17.0 0.1 32.9

(d) Late Naive Multi-frame 78.2 66.0 32.7 25.6 33.6 51.1 27.5 4.7 15.0 0.1 33.5

(e) Late N/A Multi-frame 77.9 66.8 31.3 22.3 31.2 39.3 22.7 5.2 15.5 0.6 31.3

(f) Late N/A Single-frame 67.9 45.7 24.0 12.4 22.6 29.9 8.5 1.3 7.1 0.0 21.9

(g) No V N/A Single-frame 68.0 38.2 20.7 8.7 23.7 28.7 11.0 0.6 5.6 0.0 20.5

(h) Only V N/A Single-frame 66.7 28.6 15.8 4.4 17.0 25.4 6.7 0.0 1.3 0.0 16.6

(i) No V Naive Single-frame 69.7 38.7 22.5 11.5 28.1 40.7 21.8 1.9 4.7 0.0 24.0

(j) No V N/A Multi-frame 77.7 61.6 26.4 17.2 31.2 38.5 24.2 3.1 11.5 0.0 29.1

(k) No V Naive Multi-frame 76.9 62.6 29.2 20.4 32.6 49.6 27.9 3.8 11.7 0.0 31.5

• Temporal aggregation (e,f): Removing temporal ag-

gregation (e→f) leads to worse performance for every

class and a 9.4% drop in overall mAP.

• Visibility stream (f,g,h): Removing the visibility

stream off a vanilla two-stream approach (f→g) drops

overall mAP by 1.4%. Interestingly, the most dramatic

drops are over pedestrian (+7.5%), barrier(+3.3%), and

traffic cone (+3.7%). Shape-wise, these objects are all

“skinny” and tend to have less LiDAR points on them.

This suggests visibility helps especially when having

less points. The network with only a visibility stream

(h) underperforms a vanilla PointPillars (g) by 4%.

• Vanilla PointPillars (g,i,j,k): On top of vanilla Point-

Pillars, object augmentation (g→i) improves mAP

over augmented classes by 9.1%; temporal aggrega-

tion (g→j) improves overall mAP by 8.6%. Adding

both (g→k) improves overall mAP by 11.0%.

Run-time speed: We implement visibility computation

in C++ and integrate it into PyTorch training as part of (par-

allel) data loading. On an Intel i9-9980XE CPU, it takes

24.4±3.5ms on average to compute visibility for a 32-beam

LiDAR point cloud when running on a single CPU thread.

Conclusions: We revisit the problem of finding a good

representation for 3D data. We point out that contemporary

representations are designed for true 3D data (e.g. sampled

from mesh models). In fact, 3D sensored data such as a Li-

DAR sweep is 2.5D. By processing such data as a collection

of normalized points (x, y, z), important visibility informa-

tion is fundementally destroyed. In this paper, we augment

visibility into 3D object detection. We first demonstrate that

visibility can be efficiently re-created through 3D raycast-

ing. We introduce a simple two-stream approach that adds

visibility as a separate stream to an existing state-of-the-art

3D detector. We also discuss the role of visibility in placing

virtual objects for data augmentation and explore visibil-

ity in a temporal context - building a local occupancy map

in an online fashion. Finally, on the NuScenes detection

benchmark, we demonstrate that the proposed network out-

performs state-of-the-art detectors by a significant margin.
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