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Abstract

In this paper, we propose ARCH (Animatable Recon-

struction of Clothed Humans), a novel end-to-end frame-

work for accurate reconstruction of animation-ready 3D

clothed humans from a monocular image. Existing ap-

proaches to digitize 3D humans struggle to handle pose

variations and recover details. Also, they do not produce

models that are animation ready. In contrast, ARCH is a

learned pose-aware model that produces detailed 3D rigged

full-body human avatars from a single unconstrained RGB

image. A Semantic Space and a Semantic Deformation

Field are created using a parametric 3D body estimator.

They allow the transformation of 2D/3D clothed humans

into a canonical space, reducing ambiguities in geometry

caused by pose variations and occlusions in training data.

Detailed surface geometry and appearance are learned us-

ing an implicit function representation with spatial local

features. Furthermore, we propose additional per-pixel su-

pervision on the 3D reconstruction using opacity-aware dif-

ferentiable rendering. Our experiments indicate that ARCH

increases the fidelity of the reconstructed humans. We ob-

tain more than 50% lower reconstruction errors for stan-

dard metrics compared to state-of-the-art methods on pub-

lic datasets. We also show numerous qualitative examples

of animated, high-quality reconstructed avatars unseen in

the literature so far.

1. Introduction

3D human reconstruction has been explored for several

decades in the field of computer vision and computer graph-

ics. Accurate methods based on stereo or fusion have been

proposed using various types of sensors [12, 42, 31, 33,

38, 49, 50], and several applications have become pop-

ular in sports, medicine and entertainment (e.g., movies,

games, AR/VR experiences). However, these setups re-

quire tightly controlled environments. To date, full 3D hu-

man reconstruction with detailed geometry and appearance

from in-the-wild pictures is still challenging (i.e., taken in

natural conditions as opposed to laboratory environments).

∗Work performed at Facebook Reality Labs.
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Figure 1. Given an image of a subject in arbitrary pose (left),

ARCH creates an accurate and animatable avatar with detailed

clothing (center). As rigging and albedo are estimated, the avatar

can be reposed and relit in new environments (right).

Moreover, the lack of automatic rigging prevents animation-

based applications.

Recent computer vision models have enabled the recov-

ery of 2D and 3D human pose and shape estimation from

a single image. However, they usually rely on represen-

tations that have limitations: (1) skeletons [11] are kine-

matic structures that are accurate to represent 3D poses,

but do not carry body shape information. (2) surface

meshes [18, 35, 51] can represent body shape geometry,

but have topology constraints; (3) voxels [44] are topology-

free, but memory costly with limited resolution, and need

to be rigged for animation. In this paper, we propose the

ARCH (Animatable Reconstruction of Clothed Humans)

framework that possesses all benefits of current represen-

tations. In particular, we introduce a learned model that

has human body structure knowledge (i.e., body part seman-

tics), and is trained with humans in arbitrary poses.

First, 3D body pose and shape estimation can be in-

ferred from a single image of a human in arbitrary pose

by a prediction model [51]. This initialization step is used

for normalized-pose reconstruction of clothed human shape

within a canonical space. This allows us to define a Se-

mantic Space (SemS) and a Semantic Deformation Field

(SemDF) by densely sampling 3D points around the clothed
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Figure 2. ARCH overview. The framework contains three components: i) estimation of correspondences between an input image space and

the canonical space, ii) implicit surface reconstruction in the canonical space from surface occupancy, normal and color estimation, iii)

refinement of normal and color through differentiable rendering.

body surface and assigning skinning weights. We then learn

an implicit function representation of the 3D occupancy in

the canonical space based on SemS and SemDF, which en-

ables the reconstruction of high-frequency details of the sur-

face (including clothing wrinkles, hair style, etc.) superior

to the state of the art [32, 40, 44]. The surface represent-

ing a clothed human in a neutral pose is implicitly rigged

in order to be used as an animatable avatar. Moreover, a

differentiable renderer is used to refine normal and color in-

formation for each 3D point in space by Granular Render-

and-Compare. Here, we regard them as a sphere and de-

velop a new blending formulation based on the estimated

occupancy. See Fig. 2 for an overview of the framework.

In our experiments, we evaluate ARCH on the task of 3D

human reconstruction from a single image. Both quantita-

tive and qualitative experimental results show ARCH out-

performs state-of-the-art body reconstruction methods on

public 3D scan benchmarks and in-the-wild 2D images. We

also show that our reconstructed clothed humans can be an-

imated by motion capture data, demonstrating the potential

applications for human digitization for animation.

Contributions. The main contributions are threefold:

1) we introduce the Semantic Space (SemS) and Seman-

tic Deformation Field (SemDF) to handle implicit function

representation of clothed humans in arbitrary poses, 2) we

propose opacity-aware differentiable rendering to refine our

human representation via Granular Render-and-Compare,

and 3) we demonstrate how reconstructed avatars can di-

rectly be rigged and skinned for animation. In addition, we

learn per-pixel normals to obtain high-quality surface de-

tails, and surface albedo for relighting applications.

2. Related Work

3D clothed human reconstruction focuses on the task

of reconstructing 3D humans with clothes. There are mul-

tiple attempts to solve this task with video inputs [2, 3,

37, 1, 52], RGB-D data [53, 56] and in multi-view set-

tings [5, 13, 14, 45, 46, 47, 48, 6]. Though richer inputs

clearly provide more information than single images, the

developed pipelines yield more limitations on the hardware

and additional time costs in deployment. Recently, some

progress [7, 15, 18, 20, 21, 23, 41, 51, 54] has been made

in estimating parametric human bodies from a single RGB

image, yet boundaries are under-explored to what extent 3D

clothing details can be reconstructed from such inputs. In

recent work [22, 24, 4], the authors learn to generate surface

geometry details and appearance using 2D UV maps. While

details can be learned, the methods cannot reconstruct loose

clothing (e.g., dress) and recover complex shapes such as

hair or fine structures (e.g., shoe heels). Due to different

types of clothing topology, volumetric reconstruction has

great benefits in this scenario. For example, BodyNet [44]

takes a person image as input and learns to reconstruct vox-

els of the person with additional supervision through body

priors (e.g., 2D pose, 3D pose, part mask); while PIFu [40]

assumes no body prior and learns an implicit surface func-

tion based on aligned image features, leading more clothes

details and less robustness against pose variations.

In this paper, we incorporate body prior knowledge to

transform people in arbitrary poses to the canonical space,

and then learn to reconstruct an implicit representation.

Differentiable rendering makes the rendering opera-

tion differentiable and uses it to optimize parameters of the

scene representation. Existing approaches can be roughly

divided into two categories: mesh rasterization based ren-

dering [9, 19, 25, 29, 43] and volume based rendering [16,

26]. For example, OpenDR [29] and Neural Mesh Ren-

derer [19] manually define approximated gradients of the

rendering operation to move the faces. SoftRasterizer [25]

and DIB-R [9], in contrast, redefine the rasterization as a

continuous and differentiable function, allowing gradients

to be computed automatically. For volume-based differen-
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tiable rendering, [16] represents each 3D point as a mul-

tivariate Gaussian and performs occlusion reasoning with

grid discretization and ray tracing. Such methods require

an explicit volume to perform occlusion reasoning. [26]

develops differentiable rendering for implicit surface rep-

resentations with a focus on reconstructing rigid objects.

In contrast, we use a continuous rendering function as in

[25], but revisit it to handle opacity, and we use geometric

primitives at points of interest and optimize their properties.

3. Proposed Framework

ARCH contains three components, after 3D body es-

timation by [51] (see Fig. 2): pose-normalization using

Semantic Space (SemS) and Semantic Deformation Field

(SemDF), implicit surface reconstruction, and refinement

using a differentiable renderer by Granular Render-and-

Compare (see Sec. 3.4).

3.1. Semantic Space and Deformation Field

Our goal is to transform an arbitrary (deformable) object

into a canonical space where the object is in a predefined

rest pose. To do so, we introduce two concepts: the Se-

mantic Space (SemS) and the Semantic Deformation Field

(SemDF). SemS S = {(p, sp) : p ∈ R
3} is a space consist-

ing of 3D points where each point p ∈ S is associated to

semantic information sp enabling the transformation opera-

tion. SemDF is a vector field represented by a vector-valued

function V that accomplishes the transformation,

In computer vision and graphics, 3D human models have

been widely represented by a kinematic structure mimick-

ing the anatomy that serves to control the pose, and a surface

mesh that represents the human shape and geometry. Skin-

ning is the transformation that deforms the surface given the

pose. It is parameterized by skinning weights that individ-

ually influence body part transformations [28]. In ARCH,

we define SemS in a similar form, with skinning weights.

Assuming a skinned body template model T in a nor-

malized A-pose (i.e., the rest pose), its associated skeleton

in the canonical space, and skinning weights W , SemS is

then
S = {(p, {wi,p}

NK

i=1
) : p ∈ R

3}, (1)

where each point p is associated to a collection of skinning

weights {wi,p} defined with respect to NK body parts (e.g.,

skeleton bones). In this paper, we approximate {wi,p} by

retrieving the closest point p′ on the template surface to p
and assigning the corresponding skinning weights from W .

In practice, we set a distance threshold to cut off points that

are too far away from T .

In ARCH, SemDF actually performs an inverse-skinning

transformation, putting a human in arbitrary pose to its

normalized-pose in the canonical space. This extends stan-

dard skinning (e.g., Linear Blend Skinning or LBS [28])

applied to structured objects to arbitrary 3D space and en-

ables transforming an entire space in arbitrary poses to the

canonical space, as every point p′ can be expressed as a lin-

ear combination of points p with skinning weights {wi,p}.

Following LBS, the canonical space of human body is

tied to a skeletal rig. The state of the rig is described

by relative rotations R = {ri}
NK

i=1
of all skeleton joints

X = {xi}
NK

i=1
. Every rotation is relative to the orientation of

the parent element in a kinematic tree. For a skeleton with

NK body parts, R ∈ R
3×NK , X ∈ R

3×NK . Given a body

template model T in rest pose with NV vertices, the LBS

function V(vi, X,R;W ) takes as input the vertices vi ∈ T ,

the joints X , a target pose R, and deforms every vi to the

posed position v′i with skinning weights W ∈ R
NV ×NK ,

namely,

V(vi, X,R;W ) =
∑NK

k=1

wk,i Gk(R,X) vi, (2)

where Gk(R,X) is the rest-pose corrected affine transfor-

mation to apply to body part k.

3.2. Implicit Surface Reconstruction

We use the occupancy map O to implicitly represent the

3D clothed human, i.e.,

O = {(p, op) : p ∈ R
3, 0 ≤ op ≤ 1}, (3)

where op denotes the occupancy for a point p. To obtain a

surface, we can simply threshold τ the occupancy map O to

obtain the isosurface O′

τ .

In this paper, we incorporate a human body prior by al-

ways reconstructing a neutral-posed shape in the canonical

space. Similar to [40], we develop a deep neural network

that takes a canonical space point p, its correspondent 2D

position q, and the 2D image I as inputs and estimates oc-

cupancy op, normal np, color cp for p; that is,

op = F(fs
p , I; θo),

np = F(fs
p , I, f

o
p ; θn),

cp = F(fs
p , I, f

o
p , f

n
p ; θc),

fs
p ∈ R

171, fo
p ∈ R

256, fn
p ∈ R

64, fc
p ∈ R

64,

(4)

where θo, θn and θc denote the occupancy, normal and color

sub-network weights, fs
p is the spatial feature extracted

based on SemS. We use the estimated 57 canonical body

landmarks from [51] and compute the Radial Basis Func-

tion (RBF) distance between p and the i-th landmark p′i,
that is

fs
p (i) = exp{−D(p, p′i)}, (5)

where D(·) is the Euclidean distance. We also evaluate the

effects of different types of spatial features in Sec. 4.3. fo
p

and fn
p the feature maps extracted from occupancy and nor-

mal sub-networks, respectively (see also Fig. 2). The three

sub-networks are defined as follows:

The Occupancy sub-network uses a Stacked Hourglass

(SHG) [34] as the image feature encoder and a Multi-Layer

Perceptron (MLP) as the regressor. Given a 512 × 512
input image I , the SHG produces a feature map f ∈
R

512×512×256 with the same grid size. For each 3D point

p, we consider the feature located at the corresponding pro-

jected pixel q as its visual feature descriptor fo
p ∈ R

256. For

points that do not align onto the grid, we apply bi-linear in-
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terpolation on the feature map to obtain the feature at that

pixel-aligned location. The MLP takes the spatial feature of

the 3D point p ∈ R
3 and the pixel-aligned image features

fo
p ∈ R

256 as inputs and estimates the occupancy op ∈ [0, 1]
by classifying whether this point lies inside the clothed body

or not.

The Normal sub-network uses a U-net [39] as the im-

age feature encoder and a MLP which takes the spatial fea-

ture, and feature descriptors fn
p ∈ R

64 and fo
p ∈ R

256 from

its own backbone and from the occupancy sub-network as

inputs and estimates the normal vector np.

The Color sub-network also uses a U-net [39] as the

image feature encoder and a MLP which takes the spatial

feature, and feature descriptors f c
p ∈ R

64, fn
p ∈ R

64 and

fo
p ∈ R

256 from its own backbone, as well as the normal and

occupancy sub-networks as inputs and estimates the color

cp in RGB space.

For each sub-network, the MLP takes the pixel-aligned

image features and the spatial features (as described in

Sec. 3.1), where the numbers of hidden neurons are

(1024, 512, 256, 128). Similar to [40], each layer of MLP

has skip connections from the input features. For the occu-

pancy sub-network, the MLP estimates one-dimension oc-

cupancy op ∈ [0, 1] using Sigmoid activation. For the nor-

mal sub-network, the MLP estimates three-dimension nor-

mal np ∈ [0, 1]3, ‖np‖2 = 1 using L2 normalization. For

the color sub-network, the MLP estimates three-dimension

color cp ∈ [0, 1]3 using range clamping.

3.3. Training

During training, we optimize the parameters of all three

sub-models, i.e., the occupancy, normal and color models.

We define the training in three separate loops to train each

part with the appropriate losses and avoid computational

bottlenecks. The total loss function is defined as

L = Lo
3d + Ln

3d + Lc
3d + Ln

2d + Lc
2d, (6)

where Lo
3d is the 3D loss for occupancy network, Ln

3d and

Ln
2d are the 3D and 2D losses for normal network, and Lc

3d

and Lc
2d are the 3D and 2D losses for color network. For

every training iteration, we perform the following three op-

timizations.

Occupancy. We use the available ground truth to train

the occupancy prediction model in a direct and supervised

way. First, we sample 20 480 points in the canonical space.

They are sampled around the template mesh according to a

normal distribution with a standard deviation of 5 cm. This

turned out to cover the various body shapes and clothing

well in our experiments, but can be selected according to the

data distribution at hand. These points are then processed

by the occupancy model, providing us with an estimated

occupancy value for every sampled point. We use a sigmoid

function on these values to normalize the network output to

the interval [0, 1], where we select 0.5 as the position of the

isosurface. 0.5 is the position where the derivative of the

sigmoid function is the highest and we expect to optimize

the surface prediction best. The loss Lo
3d is defined as the

Huber loss comparing the occupancy prediction and ground

truth. Similar to [36], we found a less aggressive loss func-

tion than the squared error better suited for the optimization,

but found the quadratic behavior of the Huber loss around

zero to be beneficial.

Normals and colors for surface points. Colors and nor-

mals can be optimized directly from the ground truth mesh

for points that lie on its surface. To use this strong super-

vision signal we introduce a dedicated training stage. In

this stage, we sample points only from the mesh surface

and push them through the color and normal models. In

our setup, we use 51 200 point samples per model per train-

ing step. The loss terms Ln
3d and Lc

3d are defined as the

L1 loss comparing the predicted normals and colors with

the ground truth across all surface points. The occupancy

predictions are kept unchanged.

Normals and colors for points not on the surface. For

points not on the mesh surface, it is not clear how the ground

truth information can be used in the best way to improve the

prediction without an additional mapping. In a third step

for the training, we sample another set of 51 200 points, and

push them through the occupancy, color and normal models

and use a differentiable renderer on the prediction. We ren-

der the image using the occupancy information as opacity,

and by using the color channels to represent colors or nor-

mals and use the gradients to update the predicted values.

Ln
2d and Lc

2d are defined as the per-pixel L1 loss between

the rendered image and the ground truth. For details on this

step, see Fig. 3 and the following Sec. 3.4.

3.4. Granular RenderandCompare

The prediction from the model is an implicit function

representation. By sampling points in a predefined volume

and optimizing Lo
3d, Ln

3d and Lc
3d, we can optimize the oc-

cupancy, normal and color at these points directly given 3D

ground truth. However, it is not clear what the gradients

should be for points that are located not directly on the sur-

face of the ground truth mesh. To address this problem, we

propose to use a differentiable renderer.

We first create an explicit geometric representation of the

scene at hand. For every sample point to optimize, we place

a geometric primitive with a spatial extent at its position.

To be independent of the viewpoint, we choose this to a

sphere with 1 cm radius for every sampled point (for an

overview of the differentiable rendering loss computation,

see Fig. 3). During training, every scene to render contains

51 200 spheres.

We then define a differentiable rendering function [25]

to project the spheres onto the image plane so that we can

perform pixel-level comparisons with the projected ground

truth. We use a linear combination with a weight wi
j to

associate the color contribution from point pi to the pixel

qj . Having the color ci and normal ni for point pi, the color

and normal for pixel qj are calculated as the weighed linear
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