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Figure 1. Our goal is to reconstruct high-quality textures from an RGB-D scan. Unlike traditional methods which optimize for a parametric

color map to reduce misalignment error (Zhou and Koltun [36]), we learn a misalignment-tolerant discriminator, producing sharper textures.

Abstract

Realistic color texture generation is an important step

in RGB-D surface reconstruction, but remains challenging

in practice due to inaccuracies in reconstructed geometry,

misaligned camera poses, and view-dependent imaging ar-

tifacts. In this work, we present a novel approach for color

texture generation using a conditional adversarial loss ob-

tained from weakly-supervised views. Specifically, we pro-

pose an approach to produce photorealistic textures for ap-

proximate surfaces, even from misaligned images, by learn-

ing an objective function that is robust to these errors. The

key idea of our approach is to learn a patch-based condi-

tional discriminator which guides the texture optimization

to be tolerant to misalignments. Our discriminator takes a

synthesized view and a real image, and evaluates whether

the synthesized one is realistic, under a broadened defini-

tion of realism. We train the discriminator by providing as

‘real’ examples pairs of input views and their misaligned

versions – so that the learned adversarial loss will tolerate

errors from the scans. Experiments on synthetic and real

data under quantitative or qualitative evaluation demon-

strate the advantage of our approach in comparison to state

of the art (see Figure 1, right). Our code is publicly avail-

able1 with video demonstration2.

1https://github.com/hjwdzh/AdversarialTexture
2https://youtu.be/52xlRn0ESek

1. Introduction

The wide availability of consumer range cameras has

spurred extensive research in geometric reconstruction of

real-world objects and scenes, with state-of-the-art 3D

reconstruction approaches now providing robust camera

tracking and 3D surface reconstruction [22, 19, 33, 9].

However, producing photorealistic models of real-world

environments requires not only geometric reconstruction

but also high-quality color texturing. Unfortunately, due

to noisy input data, poorly estimated surface geometry,

misaligned camera poses, unmodeled optical distortions,

and view-dependent lighting effects, aggregating multiple

real-world images into high-quality, realistic surface tex-

tures is still a challenging problem. In order to overcome

these problems, various approaches have been developed

to optimize color textures using models to adjust camera

poses [36, 15], distort images [4, 15, 36], and balance col-

ors [15, 36]. However, these prior approaches are not ex-

pressive enough and/or their optimization algorithms are

not robust enough to handle the complex distortions and

misalignments commonly found in scans with commodity

cameras – and therefore they fail to produce high-quality

results for typical scans, as shown in the results from Zhou

and Koltun [36] in Figure 1.

To address these issues, we propose a flexible texture op-

timization framework based on a learned metric that is ro-

bust to common scanning errors (right side of Figure 1).
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Figure 2. All methods target at optimizing a texture solution. Ex-

isting methods optimize the texture jointly with camera parame-

ters [36, 15], image mapping [36, 4] or color balance [15]. Instead,

we jointly solve texture with an adversarial evaluation metric to

tolerate the errors.

The key idea behind our approach is to account for mis-

alignments in a learned objective function of the texture op-

timization. Rather that using a traditional object function,

like L1 or L2, we learn a new objective function (adversarial

loss) that is robust to the types of misalignment present in

the input data. This novel approach eliminates the need for

hand-crafted parametric models for fixing the camera pa-

rameters [36, 15], image mapping [4, 36], or color balance

[15] (bottom row of Figure 2) and replaces them all with a

learned evaluation metric (green box in Figure 2). As such,

it adapts to the input data.

Inspired by the success of adversarial networks in im-

age synthesis [14], we propose to use a learned conditional

discriminator to serve our objective function, and jointly op-

timize the color texture of a reconstructed surface with this

discriminator. The condition is a captured image IA from

the source view VA, and the query is either (i) “real:” a sec-

ond captured image IB (from an auxiliary view VB) projected

onto the surface and then rendered back to VA, or (ii) “fake:”

an image of the optimized synthetic texture rendered to

view VA. By optimizing the surface texture while jointly

training this conditional discriminator, we aim to produce a

texture that is indistinguishable from reprojections of cap-

tured images from all other views. During the optimization,

the discriminator learns invariance to the misalignments and

distortions present in the input dataset, while recognizing

synthetic artifacts that do not appear in the real images (lo-

cal blurs and seams). Therefore, the textures optimized to

fool the discriminator (ours in Figure 1) appear more real-

istic than in previous approaches.

Our experiments show that this adversarial optimization

framework produces notably improved performance com-

pared to state-of-the-art methods, both quantitatively on

synthetic data and qualitatively on real data. Moreover,

since it tolerates gross misalignments, we are able to gener-

ate realistic textures on CAD models which have been only

roughly aligned to 3D scans, in spite of large mismatches

in surface geometry. This opens up the potential to produce

CAD models with realistic textures for content creation.

2. Related Work

RGB-D scanning has a rich history, and many ap-

proaches have been proposed for color texture generation.

View aggregation. Common texture generation meth-

ods [19, 36] average projected input images to generate tex-

tures. To reduce blurriness artifacts, some approaches select

a single or a few candidate views for each region [11]. Oth-

ers formulate a multi-label selection energy minimization

problem to minimize seam artifacts [21, 27, 30, 32, 15]. For

instance, [15] aims at selecting the best view for each re-

gion to balance the visual sharpness and color consistency

of boundaries between neighboring regions with different

views selected, which is modeled as a multi-label graph-

cut problem [5]. Our method does not explicitly define the

aggregation method, but implicitly aggregates colors from

different views based on a learned adversarial metric.

Parametric color optimization. Several approaches have

been proposed to improve the mapping of input images to

textures with parametric models, leveraging both human su-

pervision [12, 23, 24, 34], as well as automatic optimiza-

tion [3, 25]. Zhou et al. [36] propose to optimize a para-

metric model comprising camera poses and non-rigid grid

deformations of input images to minimize an L2 color con-

sistency metric. While these methods are able to fix small

misalignments, their deformation models are often not ex-

pressive enough to handle many real-world distortions, par-

ticularly those due to largely approximate surface geometry.

In contrast to a hand-crafted deformation model, we learn a

distortion-tolerant adversarial loss.

Patch-based color optimization. Patch-based image syn-

thesis strategies have been proposed for color texture op-

timization [4]. Rather than non-rigid image warping, they

re-synthesize the input image with the nearest patch [26]

to handle misalignments. However, general misalignment

cannot be accurately modeled by translating patches, and

the L2 loss is not robust to color, lighting or sharpness dif-

ferences. Our method optimizes the discriminator to cover

all these problems without requiring explicit re-synthesis.

Neural textures. Recently, neural rendering approaches

have been proposed to synthesize a feature map on a surface

that can be interpreted by a deep network to produce novel

image views. For instance, [29] stores appearance informa-

tion as high-dimensional features in a neural texture map

associated with the coarse geometry proxy and decodes to

color when projected to novel views. [28] stores the appear-

ance information as high-dimensional features in volumes,

and [2] uses features stored with points. These methods rely

on the representation power of generative networks at ren-

dering times to obtain novel viewpoints, which limits their

applicability in standard graphics pipelines.
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Figure 3. Texture Generation. From an input RGB-D scan, we optimize for both its texture image and a learned texture objective function

characterized by a discriminator network. The discriminator operates on reprojections of input color images in order to maintain robustness

to various misalignments. We randomly pick a pair of input images, source and auxiliary, and synthesize the fake and real examples from

the source view, conditioned on the re-projected source image. The texture image and discriminator are trained in an alternating process.

3. Method

Our goal is to optimize for a color texture that can be

used to render a scanned scene using a classical computer

graphics pipeline. During the scanning procedure, we ob-

tain color images and their estimated camera poses. These

views, along with the reconstructed geometry, are input to

our method. To optimize for a texture, we must specify an

objective function; in this case, we must account for mis-

alignments of the color images and the reconstructed model.

Thus we propose to learn the loss function in conjunction

with the texture (see Figure 3). The function is modeled as

an adversarial loss using a discriminator network to iden-

tify ‘real’ and ‘fake’ imagery, and is designed to provide a

misalignment-tolerant metric for our texture optimization.

3.1. Misalignment-Tolerant Metric

Our key insight is to propose to learn a conditional dis-

criminator as a misalignment-tolerant metric adaptive to the

error distribution of the input data. Figure 4(a) shows a 2D

example where two observations (b) and (c) are misaligned

by 2 units in the horizontal directions, and an L2 loss re-

sults in blurry appearance. Ultimately, we aim to synthesize

a texture that appears as realistic as either observation. To

achieve this, we ask the discriminator to consider both (b)

and (c) as real conditioned on either observation. With such

a discriminator, the blurred (d) results in a large loss and the

texture will instead converge to either (b) or (c).

We extend this intuition to 3D where the geometry is ob-

served from different viewpoints. We then aim to optimize

a texture such that local patches of the texture rendered to

various views look realistic. Therefore, conditioned on any

arbitrary view, we generate real examples by a re-projection

from any other view to this view, as shown in Figure 3. Such

re-projection can be achieved by projecting the color image

onto the surface and then rendering back to another view.

Unlike the simple 2D example, it is highly possible that

there is no texture solution so that each local patch perfectly

matches the one view from the input images, given camera

and geometry error. However, the proposed approach is ex-

pected to push those inconsistencies to the smooth textured

regions to hide any artifacts that can be easily identified by

the discriminator, and thereby producing locally consistent

realistic texture solution.

For each optimization iteration, we randomly select two

input images, IA (source image) and IB (auxiliary image)

with corresponding camera poses VA and VB. The condition-

ing is IA from the viewpoint VA, and the ‘real’ image is IB

projected to the scan geometry and rendered from VA, while

the ‘fake’ image is the synthesized texture rendered from

VA. We alternating optimize the texture and discriminator.

During texture optimization, we adjust the texture pixel col-

ors to maximize the adversarial loss such that it looks more

realistic under the discriminator scoring. During discrimi-

nator optimization, we minimize the adversarial loss such

that it better classifies real and fake examples. We linearly

combine adversarial loss with an L1 loss that decays ex-

ponentially as the optimization proceeds, which helps the

optimizer find a good initial texture solution.

Network Architecture Our framework is adopted from

the PatchGAN discriminator architecture proposed by Isola

et al. [18]. We choose that framework because it is designed

to produce local details that look as realistic as a given set

of input images. We use three convolutional layers, result-

ing in a patch size of 70×70, which we find suitable for our

input images of resolution 640×480. We apply a PatchGan

to evaluate local 70× 70 patches of images rather than the

entire image. Patches are selected for discriminator training
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Figure 4. 2D example of a misalignment. (a) shows the ground

truth pattern, which is observed with misalignment in (b) and (c);

an L2 loss results in blurring (d). We train a discriminator which

only accepts (b) and (c) as real examples conditioned on each

other, and use it to optimize the texture, which converges to ei-

ther (b) or (c).

if more than half of the patch is not occluded. Thus, patches

used for training have sufficient overlap. Unlike the origi-

nal, we remove all batch normalization layers and feed a

single view example for each optimization iteration, which

we empirically found to improve performance. Conditioned

on the input view, we ask the discriminator to evaluate the

residual of the synthesized example subtracted by the con-

dition input. Finally, since we focus on evaluating fore-

ground regions (pixels corresponding to input geometry),

we remove the loss terms for regions where background

comprises more than 90% of the receptive field.

3.2. Texture Optimization

To retrieve a texture, we jointly optimize the texture

and the misalignment-tolerant metric. Inspired by the ad-

versarial loss used in Pix2Pix [18], we express our view-

conditioned adversarial loss as:

Lc(T,D) = Ex,y(logD(x,y))+

Ex,Mx(log(1−D(x,Mx(T ))),
(1)

where T and D represent the target texture image and the

discriminator parameters we are optimizing for. x is the

condition, a reprojected color image from the input se-

quence of captured images. Mx is the fixed texture-to-image

mapping given the camera pose associated with x. Here, a

real example is an image y re-projected to the view of x.

We optimize D with the objective to correctly identify real

examples, misaligned real imagery, and fake examples ren-

dered from the texture as Mx(T ). Simultaneously, we opti-

mize the texture T such that it is difficult to be identified as

fake when mapped to view of x.

Since the adversarial loss alone can be difficult to train,

we additionally add an L1 loss to the texture optimization

to provide initial guidance for the optimization:

LL1(T ) = Ex,y,Mx ||y−Mx(T )||1. (2)

Our objective texture solution is:

T ∗ = argmin
T

max
D

Lc(T,D)+λLL1(T ). (3)

During training, we initialize all pixels in texture image

to zero and λ = 10. The high λ allows the L1 loss to provide

an initial texture, and for every 1000 steps we exponentially

decay the lambda by a factor of 0.8. We optimize in alter-

nating fashion for each optimization step, using the Adam

optimizer for both the texture and discriminator with learn-

ing rates 10−3 and 10−4 respectively. For each object or

scene, we optimize for 50000 steps to finalize our texture.

3.3. Differentiable Rendering and Projection

To enable the optimization of the RGB texture of a 3D

model, we leverage a differentiable rendering to gener-

ate synthesized ‘fake’ views. We pre-compute a view-to-

texture mapping using pyRender [17], and can then imple-

ment the rendering with a differentiable bilinear sampling.

To create the misaligned ‘real’ images (IB seen from VA),

we compute a reprojection; note that here we do not need

to maintain gradient information. For each pixel PA in the

source image, we need to determine the corresponding pixel

PB in the auxiliary image, so that a bilinear sampling can

be applied to warp image from the VB to VA. Specifically,

for PA with depth value dA from the source depth map, we

can determine its 3D location in the source view’s space

as pA = dAK−1PA where K is the intrinsic camera matrix.

Suppose the transformations from the camera to the world

space for the source and the auxiliary views are given as

TA and TB, the corresponding 3D and pixel location in the

auxiliary view are pB =T−1
B TApA and PB =KpB. The pixel

is visible in the auxiliary view if PB is in the scope of the

image and the difference between z-dimension of pB and

dB from the auxiliary depth map is < θz. We use θz = 0.1

meters for scenes θz = 0.03 for object level scanning.

4. Experiments

Evaluation Metric For evaluation, we adopt several dif-

ferent metrics to measure the quality of the generated tex-

ture compared to the ground truth. First, we propose the

nearest patch loss as an indicator of how close the patch ap-

pearance of the texture is to the ground truth. Specifically,

for each pixel u we extract a 7×7 patch centered around it

in the generated texture and find the L2 distance d(u) be-

tween it and the nearest neighbor patch in the ground truth

texture. We define the nearest patch loss as the average of

all d(u). Second, we adopt the perceptual metric [35] to

evaluate perceptual quality. Finally, we propose to mea-

sure the difference between generated textures and ground

1562



Ground Truth

L
1

O
u
rs

Result Exact Patch Loss Nearest Patch Loss

Figure 5. Texture Generation on 2D. The texture provided by our

approach is visually closer to the ground truth image while avoid-

ing blurring artifacts such as those introduced by an L1 loss. An

exact patch loss favors alignment over perceptual similarity, while

the nearest patch loss is a more robust metric.

truth according to sharpness [31] and the average intensity

of image gradients, in order to evaluate how robust the gen-

erated textures are to blurring artifacts without introducing

noise artifacts. Note that standard image quality metrics

such as the mean square error, PSNR [10] or SSIM [6] are

ill-suited, as they assume perfect alignment between target

and the ground truth [35].

Synthetic 2D Example We first verify the effectiveness

of our method with a synthesized 2D example. We aim

to optimize for a 2D image, given input observations with

2D micro-translation errors. We use an image resolution of

512× 512 and translation error ∈ [−16,16]2. During tex-

ture optimization, we randomly select one observation as

the source and another observation as the auxiliary, and op-

timize the target image to be more realistic under the current

discriminator. Figure 5 shows the resulting image optimized

with our approach in comparison to a naive L1 loss.

Visually, our optimized image is sharper and perceptu-

ally closer to the ground truth while an L1 loss results in

blurry effect from aggregating multiple misaligned observa-

tions. In this simple setting, we evaluate the exact patch loss

for each pixel quantitatively as the L2 distance of patches

centered at this pixel between the generated image and the

same one in the ground truth. The exact overall exact patch

loss is the L2 norm of exact patch losses for all pixels. We

additionally evaluate the nearest patch loss. Optimization

with the L1 loss achieves 10.7 exact patch loss while ours is

11.3. However, we achieve 1.53 nearest patch loss, which

is smaller than L1 as 7.33. This suggests that our method

prefers realistic misalignment to blur. We successfully de-

rive an image where every local patch is nearly identical to

a misaligned version of the patch in the ground truth image.

Synthetic 3D Example In order to quantitatively evalu-

ate our 3D texture generation, we create a synthetic dataset

Camera / Geometry Patch Perceptual Gradient Sharp

L1 6.01 / 6.65 0.256 / 0.261 0.10 / 0.065 0.041 / 0.037

ColorMap 6.34 / 6.49 0.252 / 0.287 0.14 / 0.061 0.036 / 0.036

Sharpest 6.06 / 6.06 0.385 / 0.407 0.06 / 0.036 0.087 / 0.069

3DLite 5.96 / 5.92 0.236 / 0.281 0.06 / 0.058 0.027 / 0.025

VGG 6.97 / 7.09 0.390 / 0.388 0.15 / 0.094 0.061 / 0.065

Ours 5.81 / 5.29 0.193 / 0.181 0.03 / 0.028 0.022 / 0.018

Table 1. Evaluation of different methods on our 3D synthetic

dataset averaged across different levels of camera pose and ge-

ometry errors.

of 16 models randomly selected from ShapeNet [7] across

different categories. These shapes typically contain sharp

edges and self-occlusion boundaries, complexities reflect-

ing those of real-world objects. Since we aim to address ar-

bitrary texturing, we enrich the appearance of these shapes

by using 16 random color images from the internet as tex-

ture images. To create virtual scans of the objects, we uni-

formly sample > 900 views on a unit hemisphere by subdi-

viding an icosahedron, from which we render the textured

geometry as observed color images. To simulate misalign-

ment, we associate each rendered image with a slightly per-

turbed camera pose, and to simulate geometry errors, we

apply random perturbations to the geometric model. We use

a set of errors increasing from n = 1 to n = 4.5, and refer

to the supplemental material for additional detail regarding

generating camera and geometry perturbations.

In Table 1, we study the effect of varying camera and

geometry errors in this synthetic 3D setting. We re-

port evaluation metrics for our approach as well as sev-

eral state-of-the-art texture optimization methods, includ-

ing methods based on an L1 loss and texturing using

sharpest frame selection [31]. Our approach outperforms

all other methods, as it avoids blurring effects often seen

with L1 and ColorMap [36], and it avoids seams and

over-sharpness introduced by methods relying on sharp-

ness selection (3DLite [15] and sharpest frame selection).

VGG [20] aggregates views by blending deep features,

which is insufficient for handling misalignment artifacts.

Two example scenes with increasing errors in camera and

geometry are shown in Figure 6.

We additionally study the behavior of all methods in this

experiment using the perceptual metric [35] in Figure 8. Al-

though the performance drops for all methods with the in-

crease of camera/geometry errors, our approach maintains

the best perceptual quality as the errors increase. Figure 7

shows a qualitative comparison; our approach maintains a

sharp result while ColorMap produces increasingly blurri-

ness as the error increases.

Alternative Discriminators? We analyze the design

choices for our misalignment-tolerant conditional discrimi-

nator in Figure 9. Removing the auxiliary view (b) and thus

relying only on the source view to provide ‘real’ examples

to the discriminator (similar to pix2pix [18]) renders the
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Figure 7. Texture generation under increasing camera or geometry

errors. ColorMap [36] produces more blurry results under cam-

era/geometry error while ours maintains sharp textures.

metric unable to handle misalignments. We also evaluate

a general discriminator that classifies whether a generated

patch is real or fake among entire input view sets without

any condition (c), resulting in ambiguity as to where real

patches come from. Our conditional discriminator leverag-
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(d) Ours(c) No-condition(b) No-auxiliary(a) Ground Truth

Figure 9. Comparing different discriminator options. (b) removes

the auxiliary view from the discriminator, resulting in the lack of

robustness to misalignments. (c) removes the condition from the

discriminator, resulting in ambiguity in local regions. (d) our con-

ditional discriminator leveraging auxiliary views to provide exam-

ples of realistic misalignments enables tolerance to misalignment

and generation of textures reflecting input image characteristics.

ing reprojected auxiliary views enables robustness to mis-

alignment, resulting in realistic texturing.

Real Object Scans We compare our method to state-of-

the-art texturing methods on scanned objects from real en-

vironments. We use a structure sensor [1] along with its

SLAM system to scan 35 chairs, producing scanned geom-

etry, RGB-D frames and the camera poses (≈ 500 frames

per scan). The foreground/background for the object in the

RGB frames is determined by whether a ray intersects with

the reconstructed geometry. Figure 11 (rows 1-4) shows

qualitative comparisons. With an L1 loss or ColorMap [36],

blur artifacts are induced by misalignment errors. Sharpest

selection and 3DLite [15] use sharp region selection, result-

ing in seams and inconsistent global structures, as shown

in the flower, leaf, and chair arms. A VGG loss [20] pro-

duces excess noise artifacts. Our approach produces sharp

and consistent texturing, including detailed patterns such as

the leaves in row 1 and woven structures in rows 2 and 3.

Additionally, we show a quantitative evaluation in Ta-

ble 2 (first column) by evaluating the perceptual metric [35]

for rendered textures against input observed views; our ap-

proach achieves the most realistic texturing.
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Object ScanNet CAD

L1 0.197 0.470 0.199

ColorMap 0.186 0.461 0.234

Sharpest 0.222 0.510 0.260

3DLite 0.185 0.445 0.238

VGG 0.272 0.534 0.289

Ours 0.175 0.395 0.176

Table 2. Mean perceptual loss comparing the input images and

rendered textures from different methods. Our method achieves

best performance in the real and CAD datasets.

Real Scene Scans To demonstrate the capability of our

approach to optimize texture on a larger scale, we run

our algorithm on the ScanNet dataset [8], which provides

RGB-D sequences and reconstructed geometry of indoor

scenes. We evaluate our approach on scenes with ID ≤ 20

(≈ 2000− 3000 frames per scan) and compare it with the

existing state of the arts. Figure 11 (rows 5-9) and Table 2

(middle column) show qualitative and quantitative compar-

isons. Our method produces texturing most perceptually

similar to the observed images; our misalignment-tolerant

metrics aids in avoiding blur, increased sharpness, or ex-

cess noise produces by other methods due to camera and

geometry errors in real-world scans.

Real to CAD Models Since our method can better han-

dle errors from approximate surface geometry, it is possi-

ble to consider texturing CAD models using real-world im-

ages to attain realistic appearances. While large datasets of

3D CAD models are now available [7], they are often un-

textured or textured simplistically, resulting in notably dif-

ferent appearance from real-world objects. To test whether

our method can be applied in this challenging scenario, we

use our collected dataset of real object scans, retrieve simi-

lar CAD models from ShapeNet manifold [16], and rigidly

align them to the scanned objects. We then replace the

scanned geometry with the CAD model and then use the

captured color images and estimated poses from the scan

to optimize the CAD texture. Qualitative and quantitative

evaluation of our approach in comparison to existing state-

of-the-art methods are show in Figure 11 (rows 10-13) and

Table 2 (right column), respectively. Our approach is able to

handle both camera poses errors as well as the synthetic-real

geometry differences to produce texturing perceptually very

similar to observed imagery, whereas other methods suffer

strong blur, noise, and seam artifacts under these errors.

Perceptual Quality Although we lack ground truth tex-

turing for objects in real environments, we can compare

the perceptual loss [35] of the rendered textured geometry

from the corresponding viewpoint. We select 10 views uni-

formly distributed from the scanning video and render the

textured model to compute the mean of the perceptual loss.

Table 2 shows the performance of different methods on the
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Figure 10. User study. We ask people to vote for the rendered tex-

tures from different methods that look closest to the input image.

object scans, scene scans and the CAD models; our method

achieves the best performance in these three scenarios.

Additionally, we perform a user study to evaluate the

quality of the texture, shown in Figure 10. Our user study

comprised 63 participants who were asked to vote for the

texture which produced a rendering closest to the input im-

age. For some views, it can sometimes be difficult for users

to differentiate between different methods when regions are

largely uniform in color. Nevertheless, our method is still

notably preferred over other texturing approaches. We pro-

vide additional comparisons with [32] and [13] in sup-

plemental C and describe the influence of sparse views for

training discriminators in supplemental D.

Runtime. On average, our released implementation takes

7.3 minutes per object and 33.4 minutes per scene on a sin-

gle TITAN X GPU.

5. Conclusion

We have proposed a misalignment-tolerant metric for

texture optimization of RGB-D scans, introducing a learned

texturing objective function for maintaining robustness to

misalignment errors in camera poses and geometry. We rep-

resent the learned function as a conditional discriminator

trained with an adversarial loss where ‘real’ examples char-

acterize various misalignment errors seen in the input data.

This avoids explicit parametric modeling of scanning errors,

and enables our optimization to produce texturing reflective

of the realism. Our approach opens up the potential for tex-

turing synthetic CAD models with real-world imagery. It

also makes an important step towards creating digital con-

tent from real-world scans, towards democratized use, for

instance in the context of AR and VR applications.
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result in inconsistent regions or breaks in texture structure, and VGG [20] blends learned features resulting in structural artifacts and noise.

Our misalignment-tolerant approach produces sharp and consistent textures.

1566



References

[1] Structure sensor. https://structure.io. 6

[2] Kara-Ali Aliev, Dmitry Ulyanov, and Victor Lempit-

sky. Neural point-based graphics. arXiv preprint

arXiv:1906.08240, 2019. 2

[3] Fausto Bernardini, Ioana M. Martin, and Holly Rushmeier.

High-quality texture reconstruction from multiple scans.

IEEE Transactions on Visualization and Computer Graph-

ics, 7(4):318–332, 2001. 2

[4] Sai Bi, Nima Khademi Kalantari, and Ravi Ramamoorthi.

Patch-based optimization for image-based texture mapping.

ACM Trans. Graph., 36(4):106–1, 2017. 1, 2

[5] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approxi-

mate energy minimization via graph cuts. IEEE Transactions

on pattern analysis and machine intelligence, 23(11):1222–

1239, 2001. 2

[6] Dominique Brunet, Edward R Vrscay, and Zhou Wang. On

the mathematical properties of the structural similarity index.

IEEE Transactions on Image Processing, 21(4):1488–1499,

2011. 5

[7] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:

An information-rich 3d model repository. arXiv preprint

arXiv:1512.03012, 2015. 5, 7

[8] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. Scannet:

Richly-annotated 3d reconstructions of indoor scenes. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 5828–5839, 2017. 7, 8

[9] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram
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