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Abstract

By simultaneously learning visual features and data

grouping, deep clustering has shown impressive ability to

deal with unsupervised learning for structure analysis of

high-dimensional visual data. Existing deep clustering

methods typically rely on local learning constraints based

on inter-sample relations and/or self-estimated pseudo la-

bels. This is susceptible to the inevitable errors distributed

in the neighbourhoods and suffers from error-propagation

during training. In this work, we propose to solve this prob-

lem by learning the most confident clustering solution from

all the possible separations, based on the observation that

assigning samples from the same semantic categories into

different clusters will reduce both the intra-cluster compact-

ness and inter-cluster diversity, i.e. lower partition confi-

dence. Specifically, we introduce a novel deep clustering

method named PartItion Confidence mAximisation (PICA).

It is established on the idea of learning the most semanti-

cally plausible data separation, in which all clusters can be

mapped to the ground-truth classes one-to-one, by maximis-

ing the “global” partition confidence of clustering solution.

This is realised by introducing a differentiable partition un-

certainty index and its stochastic approximation as well as a

principled objective loss function that minimises such index,

all of which together enables a direct adoption of the con-

ventional deep networks and mini-batch based model train-

ing. Extensive experiments on six widely-adopted clustering

benchmarks demonstrate our model’s performance superi-

ority over a wide range of the state-of-the-art approaches.

The code is available online.

1. Introduction

As one of the most fundamental problems in machine

learning, clustering has drawn extensive attention in a wide

range of computer vision fields [5, 1, 25, 31] where the

ground-truth labels are hard to acquire. Earlier clustering

algorithms [32, 43, 38] are usually limited when dealing

with high-dimensional imagery data due to the absence of

discriminative visual representations [21, 22]. As a recent

effort to solve this problem, deep clustering [19] is pro-

posed to jointly optimise the objectives of representation

learning and clustering with the help of the deep learning

techniques [12, 30]. Although conducting cluster analysis

with learnable representations holds the potential to benefit

clustering on unlabelled data, how to improve the semantic

plausibility of these clusters remains an open problem.

Recent deep clustering models either iteratively estimate

cluster assignment and/or inter-sample relations which are

then used as hypotheses in supervising the learning of deep

neural networks [44, 6, 7, 50], or used in conjunction with

clustering constraints [24, 16, 23]. In ideal cases, such

alternation-learning methods can approach the performance

of supervised models not the least benefiting from their

robustness against noisy labels [18]. Nevertheless, they

are susceptible to error-propagation as the process of al-

ternating cluster assignment and representation learning is

staged between two learning objectives and any error in

local neighbourhoods is accumulated during this alterna-

tion (Fig. 1(a)). On the other hand, there are a few si-

multaneous learning methods that learn both the represen-

tation and clusters at the same time without explicit stages

of cluster assignment and/or inter-sample relations estima-

tion [24, 23]. They usually train with some pretext tasks that

lead to unsatisfying solutions. Although such methods can

avoid mostly the problem of error-propagation, they suffer

from ambiguous learning constraints due to vague connec-

tion between the training supervision and clustering objec-

tive. Without global solution-level guidance to select from

all the possible separations, the resulted clusters are usually

semantically less plausible.

In this work, we propose a deep clustering method

called PartItion Confidence mAximisation (PICA). Whilst
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(a) Local Constraint (b) Global Constraint

Figure 1. (a) Local vs. (b) global learning constraints in deep

clustering. Ground-truth classes are depicted by coloured back-

grounds, decision boundaries and margins are indicated by grey

solid lines and greyish shadow areas respectively. Arrow means

learning supervision. With local learning constraints, a model is

more likely to propagate errors in the neighbourhood due to lack-

ing global structural guidance at the solution level as in (b).

the existence of intra-class visual discrepancy and inter-

class affinity are common in most natural images, the ma-

jority of samples from the same semantic classes are still

expected to share a high proportion of visual information.

In this case, although a set of data can be separated in nu-

merous ways according to various criteria, assigning sam-

ples from the same semantic categories to different clus-

ters will reduce the resulted intra-cluster compactness and

inter-cluster diversity [45] and lead to lower partition confi-

dence. Based on this insight, PICA is designed specifically

to encourage the model to learn the most confident clusters

from all the possible solutions in order to find the most se-

mantically plausible inter-class separation. This is in spirit

of traditional maximal margin clustering [47, 9] which also

seeks for most separable clustering solutions with shallow

models (e.g. SVM), but differs notably in that both the fea-

ture representations and decision boundaries are end-to-end

learned in our deep learning model. Specifically, we pro-

pose a partition uncertainty index that quantifies how con-

fidently a deep model can make sense and separate a set

of target images when performing both feature representa-

tion learning and cluster assignment concurrently. To fit the

standard mini-batch based model learning, a stochastic ap-

proximation of the partition uncertainty index is introduced.

We further formulate a novel objective loss function based

on the stochastic partition uncertainty index to enable deep

clustering with any off-the-shelf networks.

Our contributions are threefold: (1) We propose the idea

of learning the most semantically plausible clustering solu-

tion by maximising partition confidence, which extends the

classical maximal margin clustering idea [47, 9] to the deep

learning paradigm. The proposed method makes no strong

hypothesis on local inter-sample relations and/or cluster as-

signment which usually leads to error-propagation and in-

ferior clustering solutions. (2) We introduce a novel deep

clustering method, called PartItion Confidence mAximisa-

tion (PICA). PICA is built upon a newly introduced parti-

tion uncertainty index that is designed elegantly to quantify

the global confidence of the clustering solution. To enable

formulating a deep learning objective loss function, a novel

transformation of the partition uncertainty index is further

proposed. PICA can be trained end-to-end using a single

objective loss function without whistles and bells (e.g. com-

plex multi-stage alternation and multiple loss functions) to

simultaneously learn a deep neural network and cluster as-

signment that can be mapped to the semantic category one-

to-one. (3) A stochastic approximation of the partition un-

certainty index is introduced to decouple it from the whole

set of target images, therefore, enabling a ready adoption of

the standard mini-batch model training.

The advantages of PICA over a wide range of the

state-of-the-art deep clustering approaches have been

demonstrated by extensive experiments on six challeng-

ing objects recognition benchmarks, including CIFAR-

10/100 [28], STL-10 [8], ImageNet-10/Dogs [7] and Tiny-

ImageNet [29].

2. Related Work

Existing deep clustering approaches generally fall into

two categories according to the training strategy: (1) Alter-

nate training [49, 46, 7, 44, 6, 50, 15] and (2) Simultaneous

training [23, 36, 35, 16]

Alternate training strategy usually estimates the

ground-truth membership according to the pretrained or up-

to-date model and in return supervises the network training

by the estimated information. DEC [46] initialises cluster

centroids by conducting K-means [32] on pretrained im-

age features and then fine-tunes the model to learn from

the confident cluster assignments to sharpen the resulted

prediction distribution. IDEC [15] shares a similar spirit

and improves by a local structure preservation mechanism.

JULE [50] combines the hierarchical agglomerative cluster-

ing idea with deep learning by a recurrent framework which

merges the clusters that are close to each other. The method

in [49] jointly optimises the objectives of Auto-Encoder [2]

and K-means [32] and alternately estimates cluster assign-

ment to learn a “clustering-friendly” latent space. DAC [7],

DDC [6] and DCCM [44] exploit the inter-samples relations

according to the pairwise distance between the latest sam-

ple features and train the model accordingly. Whilst explicit

local learning constraints on cluster assignment computed

from either the pretrained or up-to-date models usually lead
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to a deterministic clustering solution, these approaches suf-

fer from the problem of more severe error-propagation from

the inconsistent estimations in the neighbourhoods during

training. Comparing with them, our method makes no hard

assumption on neither the cluster assignment nor the inter-

samples relation so that it can refrain better from incorrect-

ness accumulation.

Simultaneous training strategy often integrates deep

representation learning [2, 42] with conventional cluster

analysis [32, 10, 13] or other pretext objectives. These ap-

proaches do not explicitly learn from estimated cluster as-

signment but usually require good cluster structure to fulfil

the training objectives. Methods in [23, 36, 35] train to opti-

mise the objective of cluster analysis and use the reconstruc-

tion constraint from Auto-Encoder to avoid trivial solutions.

ADC [16] formulates the optimisation objective to encour-

age consistent association cycles among cluster centroids

and sample embeddings, while IIC [24] trains a model to

maximise the mutual information between the predictions

of positive sample pairs. Both of them randomly perturb

the data distribution as a cue of positive relationships to

improve model’s robustness to visual transformations. Al-

though the methods from this category alleviate the negative

impact of inaccurate supervision from estimated informa-

tion, their objectives are usually more ambiguous than that

of the alternate approaches as they can be met by multi-

ple different separations. Due to vague connection between

the training supervision and clustering objective, this type

of approaches tend to yield semantically less plausible clus-

ters solutions when global solution-level guidance is absent.

Our PICA model addresses this limitation by introducing a

partition uncertainty index to quantify the global confidence

of the clustering solution so as to select the most semanti-

cally plausible separation. Besides, it can also be trained

in a concise and simultaneous manner without any ad-hoc

strategy for pretraining or alternation.

3. Methodology

Problem Definition Given a set of N unlabelled tar-

get images I = {I1, I2, ..., IN} drawn from K semantic

classes Y = {Y1, Y2, ..., YK}, the objective of deep clus-

tering is learning to separate I into K clusters in an unsu-

pervised manner by a convolutional neural network (CNN)

model. There are typically two components learned jointly

end-to-end: (1) feature extractor fθ(·) that maps the tar-

get images into vector representations: x = fθ(I), and

(2) classifier gφ(·) that assigns each feature representation

x with a cluster membership distribution: p = gφ(x) =
{p1; p2; · · · ; pK}.

Once the CNN model is trained, the cluster assignment

can be predicted in a maximum likelihood manner as:

k⇤ = argmax
k

(pk), k 2 {1, 2, · · · ,K}. (1)

Ideally, all the samples of a cluster would share the same

target class labels. That being said, we aim to discover the

underlying semantic class decision boundary directly from

the raw data samples.

Approach Overview In general, image clustering is not a

well-defined problem as multiple different solutions can all

make sense of the input data [48]. This makes deep cluster-

ing extremely challenging due to totally lacking high-level

guidance knowledge. Given this, in this work, we assume

that the most confident data partition is the most promising

and semantically plausible solution we are seeking for, as

interpreted earlier.

Motivated by this consideration, we formulate a novel

deep clustering method, called PartItion Confidence mAx-

imisation (PICA). PICA is based on a partition uncertainty

index (PUI) that measures how a deep CNN is capable of in-

terpreting and partitioning the target image data. It is there-

fore a global clustering solution measurement (Fig. 1 (b)),

fundamentally different to most existing deep clustering

methods that leverage some local constraints on individual

samples or sample pairs (Fig. 1 (a)) without global solution-

wise learning guidance. This index is differentiable, hence,

PICA simply needs to optimise it without whistles and bells

using any off-the-shelf CNN models. An overview of PICA

is depicted in Fig. 2.

3.1. Partition Uncertainty Index

We start by formulating a partition uncertainty index, a

key element of our PICA. Given an input image Ii, suppose

the cluster prediction of a CNN model is denoted as:

pi =

2

4

pi,1

· · ·
pi,K

3

5 2 R
K⇥1 (2)

where pi,j specifies the predicted probability of the i-th im-

age assigned to the j-th cluster, and there are a total of K

clusters (j 2 [1, 2, · · · ,K]). We then obtain the cluster pre-

diction matrix of all the N target images as

P = [p1,p2, · · · ,pN ] 2 R
K⇥N (3)

For presentation ease, we denote the j-th row of P as:

qj = [p1,j , p2,j , · · · , pN,j ] 2 R
1⇥N , j 2 [1, 2, · · · ,K].

(4)

Clearly, qj collects the probability values of all the images

for the j-th cluster, which summarises the assignment statis-

tics of that cluster over the whole target data. Hence, we call

it as a cluster-wise Assignment Statistics Vector (ASV).

Ideally, each image is assigned to only one cluster, i.e.

each p is a one-hot vector (same as the ground-truth la-

bel vectors in supervised image classification). It is intu-

itive that this corresponds to the most confident clustering
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Figure 2. Overview of the proposed PartItion Confidence mAximisation (PICA) method for unsupervised deep clustering. (a) Given the

input data and the decision boundaries determined by the CNN model, (b) PICA computes the cluster-wise Assignment Statistics Vector

(ASV) in the forward pass using a mini-batch data and its randomly perturbed copy. (c) To minimise the partition uncertainty index (PUI),

(d) PICA is trained to discriminate the ASV of all clusters on the hypersphere through a dedicated objective loss function, so as to learn

the most confident and potentially promising clustering solution.

case which is the objective that PICA aims to achieve. For

enabling the learning process of a deep clustering model

towards this ideal (most confident) case, an objective loss

function is typically needed. To that end, we design a par-

tition uncertainty index as the learning target. Specifically,

we observe that in the ideal case above, the ASV quanti-

ties of any two clusters, qj1 and qj2 , are orthogonal to each

other. Mathematically, this means that their cosine similar-

ity (Eq. (5)) is 0 (due to not negative values in qj1 and qj2 ).

cos(qj1 , qj2) =
qj1 · qj2

kqj1k2kqj2k2
, j1, j2 2 [1, · · · ,K] (5)

In the worst clustering cases where all the cluster prediction

p are the same (e.g. the uniform distribution vector), we also

have a constant value: cos(qj1 , qj2) = 1, since all the ASV

quantities are the same. For any case in-between, the ASV

cosine similarity of two clusters will range from 0 (most

confident) to 1 (least confident).

In light of the above analysis, we formulate a partition

uncertainty index (PUI) as the ASV cosine similarity set of

all the cluster pairs as:

MPUI(j1, j2) = cos(qj1 , qj2), j1, j2 2 [1, · · · ,K] (6)

In form, MPUI is a K⇥K matrix. By doing so, the learning

objective of PICA is then to minimise the PUI (except the

diagonal elements), which is supposed to provide the most

confident clustering solution at its minimum.

A Stochastic Approximation The PUI as formulated in

Eq. (6) requires using the entire target data which is often at

large scale. This renders it unsuited to stochastic mini-batch

based deep learning. To address this problem, we propose a

stochastic approximation of PUI. Specifically, instead of us-

ing all the images (which is deterministic), at each training

iteration we use a random subset It of them. In probability

theory and statistics, this is sampling from a discrete uni-

form distribution in the whole target data space [20]. We

call this approximation as Stochastic PUI. In practice, this

allows to fit easily the mini-batch training of the standard

deep learning, e.g. simply setting It as a mini-batch.

Formally, at the t-th training iteration, we have a mini-

batch B of Nb samples to train the model and set It = B.

Let us denote the cluster prediction matrix of It made by

the up-to-date model as:

P t =

2

4

q
t
1

· · ·
q
t
K

3

5 2 R
K⇥Nb (7)

where qt
j 2 R

1⇥Nb is the ASV of j-th cluster on mini-batch

It. As Eq. (6), we obtain the Stochastic PUI:

MS-PUI(j1, j2) = cos(qt
j1
, qt

j2
), j1, j2 2 [1, · · · ,K]. (8)

The Stochastic PUI is in a spirit of dropout [40]. Instead of

neurons, we randomly drop data samples in this case and

realised in the standard mini-batch sampling process.

3.2. Learning Objective Function

Given the Stochastic PUI MS-PUI, as discussed earlier

PICA is then trained to minimise it excluding the diagonal

elements. To derive a typical objective loss function, we

usually need a scalar measure. However, MS-PUI is a K⇥K

matrix. There is hence a need to transform it.

Recall that for any two different clusters, we want to

minimise their ASV cosine similarity. This is actually re-

inforcing self-attention [41] by treating each cluster as a
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data sample and suppressing all the inter-sample attention.

Hence, we apply a softmax operation as self-attention to

each cluster j and obtain a probabilistic measurement as:

mj,j0 =
exp(MS-PUI(j, j

0))
PK

k=1 exp(MS-PUI(j, k))
, j0 2 [1, · · · ,K] (9)

With this transformation, the learning objective is further

simplified into maximising {mj,j}
K
j=1.

By further treating mj,j as the model prediction proba-

bility on the ground-truth class of a training sample (a clus-

ter j in this context), a natural choice is then to exploit the

common cross-entropy loss function:

Lce =
1

K

K
X

j=1

�log(mj,j) (10)

As such, we formulate a scalar objective loss function Lce

that minimises effectively the matrix MS-PUI.

In clustering, there are algorithm-agnostic trivial solu-

tions that assign a majority of samples into a minority of

clusters. To avoid this, we introduce an extra constraint that

minimises negative entropy of the cluster size distribution:

Lne = log(K)�H(Z), with Z = [z1, z2, · · · , zK ] (11)

where H(·) is the entropy of a distribution, and Z is L1

normalised soft cluster size distribution with each element

computed as zj =
P

(qt
j)P

K
k=1

P
(qt

k
)
. Using log(K) is to ensure

non-negative loss values.

The overall objective function of PICA is formulated as:

L = Lce + λLne (12)

where λ is a weight parameter.

3.3. Model Training

The objective function (Eq. (12)) of PICA is differen-

tiable end-to-end, enabling the conventional stochastic gra-

dient descent algorithm for model training. To improve the

model robustness to visual transformations we use data aug-

mentation to randomly perturb the training data distribution.

We enforce the clustering invariance against image pertur-

bations at the global solution level. More specifically, we

use the original data to compute q
t
j1

and the transformed

data to compute q
t
j2

in Eq. (8) at each iteration. The train-

ing procedure is summarised in Algorithm 1.

4. Experiments

Datasets In evaluation, we used six object recognition

datasets. (1) CIFAR-10(/100) [28]: A natural image dataset

with 50,000/10,000 samples from 10(/100) classes for train-

ing and testing respectively. (2) STL-10 [8]: An Ima-

geNet [39] sourced dataset containing 500/800 training/test

Algorithm 1 Deep clustering by PICA.

Input: Training data I, training epochs Nep, iterations per

epoch Nit, target cluster number K;

Output: A deep clustering model;

for epoch = 1 to Nep do

for iter = 1 to Nit do

Sampling a random mini-batch of images;

Feeding the mini-batch into the deep model;

Computing per-cluster ASV (Eq. (4));

Computing the Stochastic PUI matrix (Eq. (8));

Computing the objective loss (Eq. (12));

Model weights update by back-propagation.

end for

end for

images from each of 10 classes and additional 100,000 sam-

ples from several unknown categories. (3) ImageNet-10

and ImageNet-Dogs [7]: Two subsets of ImageNet: the

former with 10 random selected subjects and the latter with

15 dog breeds. (4) Tiny-ImageNet [29]: A subset of Im-

ageNet with 200 classes. There are 100,000/10,000 train-

ing/test images evenly distributed in each category.

We adopted the clustering setup same as [24, 44, 7]:

Using both the training and test sets (without labels) for

CIFAR10/100 and STL-10, and only the training set for

ImageNet-10, ImageNet-Dogs and Tiny-ImageNet; Taking

the 20 super-classes of CIFAR-100 as the ground-truth.

Evaluation Metrics We used three standard clustering

performance metrics: (a) Accuracy (ACC) is computed by

assigning each cluster with the dominating class label and

taking the average correct classification rate as the final

score, (b) Normalised Mutual Information (NMI) quanti-

fies the normalised mutual dependence between the pre-

dicted labels and the ground-truth, and (c) Adjusted Rand

Index (ARI) evaluates the clustering result as a series of

decisions and measures its quality according to how many

positive/negative sample pairs are correctly assigned to the

same/different clusters. All of these metrics scale from 0 to

1 and higher values indicate better performance.

Implementation Details For fair comparisons with pre-

vious works, we followed the same settings and most of the

implementation choices as [24]. Specifically, we conducted

all the experiments with a ResNet-like backbone. We used

the auxiliary over-clustering strategy in a separate clustering

head to exploit the additional data from irrelevant classes if

available. For the over-clustering head, we set 700 clusters

for Tiny-ImageNet (due to more ground-truth classes) and

70 clusters for all the others. The over-clustering head, dis-

carded finally in test, was trained alternatively with the pri-

mary head. In case of no auxiliary data, we used the target

data in over-clustering head, which plays a role of auxil-

iary learning. For training, we used Adam optimiser [26]
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Dataset CIFAR-10 CIFAR-100 STL-10 ImageNet-10 ImageNet-Dogs Tiny-ImageNet

Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

K-means 0.087 0.229 0.049 0.084 0.130 0.028 0.125 0.192 0.061 0.119 0.241 0.057 0.055 0.105 0.020 0.065 0.025 0.005

SC [52] 0.103 0.247 0.085 0.090 0.136 0.022 0.098 0.159 0.048 0.151 0.274 0.076 0.038 0.111 0.013 0.063 0.022 0.004

AC [14] 0.105 0.228 0.065 0.098 0.138 0.034 0.239 0.332 0.140 0.138 0.242 0.067 0.037 0.139 0.021 0.069 0.027 0.005

NMF [4] 0.081 0.190 0.034 0.079 0.118 0.026 0.096 0.180 0.046 0.132 0.230 0.065 0.044 0.118 0.016 0.072 0.029 0.005

AE [2] 0.239 0.314 0.169 0.100 0.165 0.048 0.250 0.303 0.161 0.210 0.317 0.152 0.104 0.185 0.073 0.131 0.041 0.007

DAE [42] 0.251 0.297 0.163 0.111 0.151 0.046 0.224 0.302 0.152 0.206 0.304 0.138 0.104 0.190 0.078 0.127 0.039 0.007

DCGAN [37] 0.265 0.315 0.176 0.120 0.151 0.045 0.210 0.298 0.139 0.225 0.346 0.157 0.121 0.174 0.078 0.135 0.041 0.007

DeCNN [51] 0.240 0.282 0.174 0.092 0.133 0.038 0.227 0.299 0.162 0.186 0.313 0.142 0.098 0.175 0.073 0.111 0.035 0.006

VAE [27] 0.245 0.291 0.167 0.108 0.152 0.040 0.200 0.282 0.146 0.193 0.334 0.168 0.107 0.179 0.079 0.113 0.036 0.006

JULE [50] 0.192 0.272 0.138 0.103 0.137 0.033 0.182 0.277 0.164 0.175 0.300 0.138 0.054 0.138 0.028 0.102 0.033 0.006

DEC [46] 0.257 0.301 0.161 0.136 0.185 0.050 0.276 0.359 0.186 0.282 0.381 0.203 0.122 0.195 0.079 0.115 0.037 0.007

DAC [7] 0.396 0.522 0.306 0.185 0.238 0.088 0.366 0.470 0.257 0.394 0.527 0.302 0.219 0.275 0.111 0.190 0.066 0.017

ADC [16] † - 0.325 - - 0.160 - - 0.530 - - - - - - - - -

DDC [6] 0.424 0.524 0.329 - - - 0.371 0.489 0.267 0.433 0.577 0.345 - - - - - -

DCCM [44] 0.496 0.623 0.408 0.285 0.327 0.173 0.376 0.482 0.262 0.608 0.710 0.555 0.321 0.383 0.182 0.224 0.108 0.038

IIC [24] † - 0.617 - - 0.257 - - 0.610 - - - - - - - - -

PICA: (Mean) 0.561 0.645 0.467 0.296 0.322 0.159 0.592 0.693 0.504 0.782 0.850 0.733 0.336 0.324 0.179 0.277 0.094 0.016

PICA: (Best) † 0.591 0.696 0.512 0.310 0.337 0.171 0.611 0.713 0.531 0.802 0.870 0.761 0.352 0.352 0.201 0.277 0.098 0.040

Table 1. The clustering performance on six challenging object image benchmarks. The 1
st/2nd best results are indicated in red/blue. The

results of previous methods are taken from [44, 24]. †: The best result among multiple trials.

with a fixed learning rate 0.0001. All the models were ran-

domly initialised and trained with 200 epochs. Considering

no generalisation to test data in clustering, the regularisa-

tion penalties to model weights were deprecated. We set the

batch size to 256 and repeated each in-batch sample 3 times.

Three operations, including random rescale, horizontal flip

and colour jitters, were adopted for data perturbations and

augmentation. We applied the sobel filter for restraining the

model from capturing meaningless patterns of trivial colour

cues. The weight of entropy regularisation in Eq (12) was

set to 2 empirically. We used the same hyper-parameters

for all the experiments without exhaustive per-dataset tun-

ing (which is unscalable, inconvenient nor unfriendly in de-

ployment). To reflect the performance stability, we tested

our model with 5 trials and reported the average and best

results separately.

4.1. Comparisons to State-of-the-Art Methods

Table 1 compares the object image clustering perfor-

mance of the proposed PICA method with a wide range

of the state-of-the-art clustering approaches. We have the

following observations: (1) PICA surpasses all the strong

competitors in most cases, sometimes by a large margin.

Taking the clustering accuracy (ACC) for example, PICA†

outperforms the best competitor [44] on CIFAR-10 and

ImageNet-10 with 7.3% and 16.0% respectively while the

performance gain over IIC [24] on STL-10 is 10.3%. This

demonstrates the overall remarkable ability of our PICA for

image clustering. (2) DCCM [44] serves as a strong state-

of-the-art model on most datasets except for STL-10, on

which it is outperformed by both IIC [24] and our PICA

by more significant margins. We attribute this to the ca-

pability of exploiting auxiliary data of both winner meth-

ods. Also, PICA is clearly superior to IIC for clustering

the images of STL-10, suggesting the outstanding potential

of our method for capitalising extra data during deep clus-

tering. (3) The absolute margins obtained by PICA over

existing methods on the more challenging CIFAR-100 and

ImageNet-Dogs benchmarks are relatively smaller. This is

not surprised, since these datasets present fine-grained ob-

ject classes which give very subtle differences in-between;

Without rich knowledge, even humans may make mistakes

when differentiating such classes. The relative performance

improvements of our method is more consistent.

4.2. Ablation Study

We conducted ablation studies to investigate the effect of

different design choices in PICA with a fixed random seed.

Partition Confidence Dynamics We started with exam-

ining the clustering confidence dynamics during training,

which underpins the key idea of our PICA. In this exam-

ination, we used the maximum prediction probability (Eq.

(1)) of every image to measure the clustering confidence,

and summarised their 50-bins histogram statistics. We per-

formed this test on CIFAR-10 at four accuracy performance

milestones: 0.10 (random guess), 0.30, 0.50 and 0.70. As

shown in Fig. 3, (a) the model started with random clus-

tering close to a uniform prediction; (b,c) Along with the

training process, an increasing number of samples get more

confident cluster assignment; (d) At the end of training, a

majority of samples can be assigned into clusters with 0.98+

probability confidence, nearly one-hot predictions.

Avoiding under-clustering We examined how important

PICA needs to solve the generic “under-clustering” prob-

8854



(a) Accuracy = 0.1 (b) Accuracy = 0.3

(c) Accuracy = 0.5 (d) Accuracy = 0.7

0

0

0.1 0.90.3 0.5 0.7 0.1 0.90.3 0.5 0.7

0.1 0.90.3 0.5 0.70.1 0.90.3 0.5 0.7

60000

30000

10000

20000

40000

50000

60000

30000

10000

20000

40000

50000

60000

30000

10000

20000

40000

50000

60000

30000

10000

20000

40000

50000

Figure 3. Partition confidence evolution in training on CIFAR-10.

lem (assigning most samples to a few clusters, i.e. trivial

solutions) in our context. The results in Table 2 indicate

that it is highly necessary to take into account this prob-

lem in model design otherwise the model will be trivially

guided to such undesired solutions. This also verifies that

the proposed PICA idea is compatible well with the entropy

regularisation of the cluster size distribution (Eq. (11)), en-

abling to eliminate simply trivial results without resorting

to complex designs or tricks.

Entropy CIFAR-10 CIFAR-100 ImageNet-10

7 0.246 0.168 0.650

3 0.696 0.330 0.829

Table 2. Necessity of avoiding under-clustering using the entropy

regularisation of the cluster size distribution. Metric: ACC.

Effect of over-clustering We examined the performance

contribution of over-clustering in PICA which serves two

purposes: (1) Leveraging extra auxiliary data from irrele-

vant classes for mining more information (e.g. on STL-10);

(2) In case of no auxiliary data, playing a role of ensem-

ble learning (e.g. on CIFAR-10). The results are given in

Table 3. It is clear that over-clustering helps in both cases,

and interestingly the margin on CIFAR-10 is even bigger

than that on STL-10. Also note that without using over-

clustering, our PICA can still achieve competitive perfor-

mances (cf. Table 1).

Over-clustering CIFAR-10 STL-10

7 0.582 0.633

3 0.696 0.687

Table 3. Effect of over-clustering. STL-10 has auxiliary data

whilst CIFAR-10 does not. Metric: ACC.

Robustness to data perturbation We tested the cluster-

ing robustness against image perturbation in PICA. Unlike

existing methods typically using data augmentation by ran-

dom perturbation at the local sample level, we exploit it

at the global clustering solution level. The results in Ta-

ble 4 show that our PICA requires data augmentation for

offering strong performances. While seemingly surprised,

this is also rational/sensitive since our method performs

the robustness enhance in a solution-wise manner; This ef-

fectively accumulate the augmentation effect of individual

samples and potentially resulting in amplified effects even-

tually. However, this does not affect the use of PICA in

general since data augmentation is just a standard necessary

element of almost all deep learning methods.

Permutation CIFAR-10 CIFAR-100 ImageNet-10

7 0.310 0.147 0.734

3 0.696 0.330 0.829

Table 4. Robustness to data perturbation in PICA. Metric: ACC.

Sensitivity to model initialisation Model initialisation is

an important part of both deep neural networks and cluster-

ing [2, 3]. We tested its sensitivity in our PICA w.r.t. model

performance on CIFAR-10. Apart from the default initial-

isation of ResNet as delivered in PyTorch [34], we evalu-

ated three more initialisation ways: Gaussian, Xavier [11],

Kaiming [17]. Table 5 shows that PICA can work stably

without clear variation in the overall performance when us-

ing different initialisation methods. This verifies that our

method is insensitive to network initialisation.

Initialisation NMI ACC ARI

Default 0.591 0.696 0.512

Gaussian 0.603 0.681 0.511

Xavier 0.610 0.676 0.511

Kaiming 0.617 0.680 0.525

Table 5. Model performance sensitivity to network initialisation.

4.3. Qualitative Study

Evolution of cluster assignment To provide a better un-

derstanding of how does PICA work, we analysed it qual-

itatively by visualising the evolution of cluster assignment

across the whole training process. This enables us to find

out how does our model gradually attain the final result.

We tracked the model status during the whole training pro-

cess on CIFAR-10 and evaluated at four accuracy perfor-

mance milestones: 0.10 (random guess), 0.30, 0.50 and

0.70. Using t-SNE [33], we plotted the predictions of 6,000

randomly selected samples with the ground-truth classes

colour encoded. Fig. 4 shows that, (a) the model started

from a chaotic status where all the samples were assigned

into each cluster with similar probabilities; (b) With the su-

pervision from the proposed objective, easy samples with
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