
OctSqueeze: Octree-Structured Entropy Model for LiDAR Compression

Lila Huang1,2 Shenlong Wang1,3 Kelvin Wong1,3 Jerry Liu1 Raquel Urtasun1,3

1Uber Advanced Technologies Group 2University of Waterloo 3 University of Toronto

{lila.huang,shenlong.wang,kelvin.wong,jerryl,urtasun}@uber.com

Abstract

We present a novel deep compression algorithm to re-

duce the memory footprint of LiDAR point clouds. Our

method exploits the sparsity and structural redundancy be-

tween points to reduce the bitrate. Towards this goal, we

first encode the LiDAR points into an octree, a data-efficient

structure suitable for sparse point clouds. We then de-

sign a tree-structured conditional entropy model that mod-

els the probabilities of the octree symbols to encode the oc-

tree into a compact bitstream. We validate the effectiveness

of our method over two large-scale datasets. The results

demonstrate that our approach reduces the bitrate by 10-

20% at the same reconstruction quality, compared to the

previous state-of-the-art. Importantly, we also show that

for the same bitrate, our approach outperforms other com-

pression algorithms when performing downstream 3D seg-

mentation and detection tasks using compressed represen-

tations. Our algorithm can be used to reduce the onboard

and offboard storage of LiDAR points for applications such

as self-driving cars, where a single vehicle captures 84 bil-

lion points per day.

1. Introduction

In the past few decades, we have witnessed artificial in-

telligence revolutionizing robotic perception. Robots pow-

ered by these AI algorithms often utilize a plethora of differ-

ent sensors to perceive and interact with the world. In par-

ticular, 3D sensors such as LiDAR and structured light cam-

eras have proven to be crucial for many types of robots, such

as self-driving cars, indoor rovers, robot arms, and drones,

thanks to their ability to accurately capture the 3D geometry

of a scene. These sensors produce a significant amount of

data: a single Velodyne HDL-64 LiDAR sensor generates

over 100,000 points per sweep, resulting in over 84 billion

points per day. This enormous quantity of raw sensor data

brings challenges to onboard and offboard storage as well as

real-time communication. Hence, it is necessary to develop

an efficient compression method for 3D point clouds.

Raw 3D point clouds are represented as unstructured

n × 3 matrices at float precision. This uncompressed data

representation does not exploit the fact that the geometry of

the scene is usually well structured. Prior works have ap-

proached point cloud compression by using data structures

such as KD-trees [4] and octrees [19] to encode a point

cloud’s structure. Quantization is exploited to further re-

duce storage. However, there remains a massive quantity of

redundant information hidden in these representations, such

as repetitive local structures, planar surfaces, or object cate-

gories with a strong shape prior, such as cars and humans. In

theory, this redundant information can be exploited during

compression to reduce the bitrate even further. However,

this has not yet been exploited to its full potential in point

cloud compression.

The recent success of deep neural networks in image and

video compression brings a new paradigm towards struc-

tured data compression for point clouds. These approaches

typically contain three steps: 1) encode the data into a hid-

den representation through a convolutional neural network;

2) quantize the hidden features; and 3) learn an entropy

model to reduce the bitstream further through entropy cod-

ing. The key to the learned entropy model is encoding

context information to improve the predictability of a sym-

bol’s occurrence, which directly increases its compressibil-

ity. However, it is non-trivial to apply these deep compres-

sion algorithms directly on a LiDAR point cloud, as it is

sparse and non-grid structured. Hence, there are two major

challenges that we need to address: 1) What is a memory-

efficient data structure to represent LiDAR while exploiting

its sparsity? 2) How can we train a deep entropy model to

encode the representation to bitstreams efficiently?

In this work, we propose a novel deep learning model

for LiDAR point cloud compression. Our approach first ex-

ploits the efficient and self-adaptive octree structure to get

an initial encoding of the raw point cloud. We then learn

a tree-structured deep conditional entropy model over each

intermediate node of the tree, incorporating both the prior

and the context of the scene simultaneously to help pre-

dict the node symbols. The predicted probabilities from our

learned entropy model are then passed to an entropy coder

to encode the serialized symbols into the final bitstream.

We evaluate the performance of our approach over two
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Figure 1: The overview of the proposed octree-structured entropy model for LiDAR point cloud compression. The input point cloud, received as a n×3 float

array, is quantized to k bits by scaling to [0, 2k) and rounding down. An octree is constructed from the quantized point cloud. Each node is represented by

an 8-bit occupancy symbol. We apply a tree-structured conditional entropy model on top of the octree to estimate the probability of each symbol conditioned

on prior context. Finally, we use the estimated probability to encode the serialized symbols into the final compressed bitstream.

challenging LiDAR point cloud datasets comprising of

complicated urban traffic scenes, namely the KITTI [3] and

NorthAmerica datasets. Our results show that the proposed

model outperforms all state-of-the-art methods in terms of

both reconstruction quality and downstream task perfor-

mance. At the same reconstruction quality, our bitrate is

10-20% lower than the previous state-of-the-art.

2. Related Work

2.1. Point Cloud Compression

Tree structures are the primary methods used in prior

point cloud compression algorithms. Numerous approaches

store data in an octree and perform entropy coding with

hand-crafted entropy models such as adaptive histograms,

parent context [6], and estimations based on planar ap-

proximations [31] or neighbour proximity [13]. To exploit

temporal redundancies in point cloud streams, Kammerl et

al. [14] encode the xor differences between successive oc-

tree representations and Mekuria et al. [20] use ICP to en-

code blocks with rigid transformations. Both methods use

range coding with empirical histograms for entropy coding.

The advantage of the octree structure is that it can model

arbitrary point clouds in a hierarchical structure, which

provide a natural progressive coding—if the octree is tra-

versed in breadth-first order, then decoding can stop at any

time; the longer the decoding, the finer the precision of the

point cloud reconstruction. A related structure is utilized

in Google’s open-source compression software Draco [8]

which uses a KD-tree compression method [5]. All of the

above approaches do not leverage deep learning.

Besides tree structures, point clouds can be represented

as regular voxel grids [27, 12]. These methods use voxel-

based convolutional autoencoders which can learn surface

representations of point clouds but struggles with large-

scale sparse data. Moreover, since the geometry of a Li-

DAR scan can be represented by a panorama image with

one channel for distance, point clouds can also be repre-

sented as range images, and compressed via image com-

pression techniques. For example, Houshiar et al. [11] use

conventional image compressors such as JPEG, PNG, and

TIFF to compress LiDAR range images.

2.2. Deep Learning on Point Clouds

Inspired by recent successes in the image domain, re-

searchers have developed a flurry of new deep learning

methods for point cloud data. One class of methods uses

deep convolutional neural networks to process voxel repre-

sentations of the 3D point cloud [47, 18, 25, 51, 50, 49].

These approaches, however, require large memory foot-

prints and thus induce a trade-off between input resolution

and model capacity. To address this shortcoming, [28, 9]

propose to use sparse operators on the point cloud’s voxel

representation and [33, 23] propose to process 2D projec-

tions of the point cloud instead.

Another line of work tackles this problem by directly

operating on the point cloud, thus leveraging its sparsity

to sidestep this trade-off. PointNet [24] uses multi-layer

perceptrons to extract features from individual points and

then pools them into a global feature. As PointNet can-

1314



Figure 2: Construction of octree structures to represent a point cloud. Max depth of the octree (from left to right): 8, 10, 12, 14.

not capture local structures in the point cloud, a number

of follow-up works have proposed to hierarchically aggre-

gate local information [26, 42, 46, 48, 35]. These meth-

ods can be viewed as graph neural networks that operate on

graphs defined by each point’s local neighbourhood; e.g.,

k-nearest neighbors graph. Other possible graphs include

KD-trees [15] and octrees [29, 41]. Inspired by the success

of these graph-structured networks, we designed an entropy

model that operates on an octree’s serialized byte streams

but exploits its structure to encode contextual information.

2.3. Deep Image and Video Compression

The field of image and video compression is extensive

and has been well-explored over the past few decades, rang-

ing from lossless image formats (PNG, TIFF), to lossy im-

age codecs (JPEG, BPG), to video codecs (AVC/H.264,

HEVC/H.265). In recent years, there has been a rapid in-

crease in learned image and video compression methods

[37, 1, 2, 21, 34, 45, 30, 17, 10], which exploit concepts

from traditional codecs and the power of deep neural net-

works. These approaches typically use deep convolutional

autoencoders to apply nonlinear transforms to traditional

components of the compression pipeline, from transform

coding used in JPEG to motion compensation used in video

codecs. Moreover, many approaches use separate neural

nets to model the entropy of the image/video latent codes

as a tight lower bound of the bitrate; this model is then used

during entropy coding to losslessly compress the symbols

into bits. Such approaches have included fully factorized

models [1, 34], encoding “side information” as latent vari-

ables for entropy prediction [2, 22, 17] as well as using au-

toregressive models (e.g. PixelCNN [40]) to model pixel-

level conditional distributions [21, 37, 10, 45]. Inspired by

these approaches towards entropy modeling, we aim to ap-

ply these insights towards the compression of point clouds.

3. Octree-Structured Entropy Model

In this work we tackle the problem of lossy compression

on 3D LiDAR point clouds. Our goal is to reduce the stor-

age footprint of our encodings as much as possible while

preserving reconstruction quality. Towards this goal, we

propose a novel, octree-structured compression method us-

ing a deep entropy model.

Specifically, we firstly quantize and encode a LiDAR

point cloud into an octree. Each node of the tree uses an

8-bit symbol to encode the occupancy of its children. We

then serialize the octree into an intermediate, uncompressed

bytestream of symbols. For each node, we select a set of

context features that are available during decoding time.

We then feed these context features into our tree-structured

deep entropy model, which is trained to predict the prob-

ability of each symbol’s presence given the context input.

These probabilities are then directly fed into arithmetic en-

coding with the symbol bytestream to produce the final bit-

stream, where the bitrate is approximately measured by the

cross-entropy of these probabilities with the actual symbol

distribution. Our overall approach is shown in Fig. 1.

3.1. Octree Structure

Two difficulties in LiDAR point cloud compression are

the sparsity of the data and the lack of structure in a raw

point cloud. Space-partitioning data structures, such as oc-

trees and KD-trees, effectively provide a representation for

3D spatial data while keeping sparsity in mind, as their

memory usage scales with the number of points in the cloud

compared to voxel representations which scale with the

cloud’s bounding volume. In addition, tree structures give

implicit levels of detail which can be used for progressive

decoding. We choose to use an octree as the base data struc-

ture for quantization due to its memory efficiency and ease

of construction and serialization.

Bit Representation: An octree [19] stores point clouds

by recursively partitioning the input space into equal oc-

tants and storing occupancy in a tree structure. Each inter-

mediate node of the octree contains a 8-bit symbol to store

the occupancy of its eight child nodes, with each bit cor-

responding to a specific child. Each leaf contains a single

point and stores additional information to represent the po-

sition of the point relative to the cell corner. The size of leaf

information is adaptive and depends on the level. An octree

with k levels can store k bits of precision by keeping the

last k− i bits of each of the (x, y, z) coordinates for a child

on the i-th level of the octree. The resolution increases as

the number of levels in the octree increases. The advantage

of such a representation is twofold: firstly, only non-empty

cells are further subdivided and encoded, which makes the

data structure adapt to different levels of sparsity; secondly,

the occupancy symbol per node is a tight bit representation.

Fig. 2 shows the partial construction of the octree structure

at different levels from a KITTI point cloud [7].
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Serialization: Using a breadth-first or depth-first traver-

sal, an octree can be serialized into two intermediate un-

compressed bytestreams of occupancy codes and leaf-node

offsets. The original tree can be completely reconstructed

from these streams. We note that serialization is a lossless

scheme in the sense that offsets and occupancy information

are all exactly preserved. Thus the only lossy procedure is

due to quantization during construction of the octree. Con-

sequently, octree-based compression schemes are lossy up

to this quantization error, which gives an upper bound on

the distortion ratio.

We use the occupancy serialization format during our en-

tropy coding stage, detailed in Sec. 3.2 and Sec. 3.3. Dur-

ing range decoding of a given occupancy code, we note that

information such as node depth, parent occupancy, and spa-

tial locations of the current octant are already known given

prior knowledge of the traversal format. Hence we incorpo-

rate this information as a context ci for each node that we

can use during entropy coding.

3.2. A Deep Entropy Model for Entropy Coding

The serialized occupancy bytestream of the octree can be

further losslessly encoded into a shorter bit-stream through

entropy coding. Entropy encoding is theoretically grounded

in information theory. Specifically, an entropy model esti-

mates the probability of occurrence of a given symbol; the

probabilities can be adaptive given available context infor-

mation. A key intuition behind entropy coding is that sym-

bols that are predicted with higher probability can be en-

coded with fewer bits, achieving higher compression rates.

Existing entropy models on octree structures tend to ei-

ther lack the ability to accurately represent the data in the

case of adaptive histograms [31, 14], or require very long

decoding times in the case of geometric predictions [13].

Moreover, these entropy models do not fully utilize the hi-

erarchical octree structure to encode geometric priors of

the scene to facilitate entropy prediction. Inspired by the

success of using deep entropy models in image and video

compression, we propose a deep network which models the

entropy of the serialized octree data during entropy cod-

ing. Our approach extends prior methods in the sense that

we better utilize the contextual information over the oc-

tree structure for prediction through an end-to-end learnable

density estimation network.

Formulation: Given the sequence of occupancy 8-bit

symbols x = [x1, x2 . . . xn], the goal of an entropy model

is to learn an estimated distribution q(x) such that it min-

imizes the cross-entropy with the actual distribution of the

symbols p(x):

H(p, q) = Ex∼p[− log2 q(x)] (1)

According to Shannon’s source coding theorem [32], the

cross-entropy between q(x) and p(x) provides a tight lower

bound on the bitrate achievable by arithmetic or range cod-

ing algorithms [43]; the better q(x) approximates p(x), the

lower the true bitrate. We thus train to minimize the cross-

entropy loss between the models predicted distribution q

and the distribution of training data.

Entropy Model: We now describe the formulation of our

entropy model over the octree structure x. We factorize

q(x) into a product of conditional probabilities of each in-

dividual occupancy symbol xi as follows:

q(x) =
∏

i

qi(xi | xan(i), ci;w). (2)

where xan(i) = {xpa(i), xpa(pa(i)), ..., xpa(...(pa(i)))} with

|xan(i)| ≤ K is the set of ancestor nodes of a given node i,

up to a given order K, and w is the weights parametrizing

our entropy model. Here, ci is the context information that

is available as prior knowledge during encoding/decoding

of xi, such as octant index, spatial location of the octant,

level in the octree, parent occupancy, etc. These models

take advantage of the tree structure to gather both the in-

formation from nodes at coarser levels and the context in-

formation available at the current node. Intuitively, condi-

tioning on ancestor nodes can help to reduce the entropy

for the current node prediction, since it is easier to predict

the finer geometry structure at the current node when the

coarse structure represented by ancestor nodes is already

known. Context information such as location information

help to reduce entropy even further by capturing the prior

structure of the scene. For instance, in the setting of using

LiDAR in the self-driving scenario, an occupancy node 0.5

meters above the LiDAR sensor is unlikely to be occupied.

Architecture: Our proposed entropy architecture models

qi(xi | xan(i), ci;w) by first extracting an independent con-

textual embedding for each xi, and then performing pro-

gressive aggregation of contextual embeddings to incorpo-

rate ancestral information xan(i) for a given node.

For a given intermediate octree node xi, the input con-

text feature ci includes the node’s location, octant, level,

and parent (see Fig. 1). Specifically, ‘location’ is the node’s

3D location encoded as a vector in R
3, ‘octant’ is its oc-

tant index encoded as an integer in {0, . . . , 7}, ‘level’ is

its depth encoded as an integer in {0, . . . , tree-depth}, and

‘parent’ is its parent’s 8-bit occupancy encoded as an inte-

ger in {0, . . . , 255}. We extract an independent deep feature

for each node through a multi-layer perceptron (MLP) with

the context feature ci as input:

h
(0)
i = MLP(0)(ci) (3)
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Figure 3: Quantitative results on NorthAmerica and KITTI. From left to right: point-to-plane PSNR, IOU, and Chamfer distance.

Then, starting with the feature h
(0)
i for each node, we per-

form K aggregations between the current node feature and

the feature of its parent. At iteration k, the aggregation can

also be modeled as an MLP:

h
(k)
i = MLP(k)([h

(k−1)
i ,h

(k−1)
pa(i) ]) (4)

where h
(k−1)
pa(i) is the hidden feature of node i’s parent. For

the root node, we consider its parent feature as all zero fea-

tures for model consistency. The final output of our model

is a linear layer on top of the K-th aggregated feature h
(k)
i ,

producing a 256-dimensional softmax of probabilities for

the 8-bit occupancy symbol of the given node:

qi(· | xan(i), ci;w) = g(h
(k)
i ) (5)

Note that these aggregations only aggregate the node feature

with that of its parent, never its child; the child input con-

text is not available during sequential decoding. Moreover,

each additional aggregation increases the receptive field of

ancestral features by 1, and so the k-th aggregation has a

receptive field of k ancestors. Fig. 1 depicts our proposed

stacked entropy model with K = 3. In this figure, a model

with K levels of aggregations predicts the probability of

the current node xi by considering the node feature itself as

well as K − 1 generations of the ancestor’s feature.

In this sense, we can view our aggregation as concep-

tually similar to other autoregressive models, such as the

“masked convolution” used PixelCNN [39] and “causal

convolution” proposed in Wavenet [38]. Unlike previous

work either on 2D grids or 1D sequences, our autoregres-

sive model is applied along the octree traversal path from

the root to each node.

Detailed Architecture: Here we discuss the detailed ar-

chitecture of the each submodule of our stacked entropy

model. The first MLP is a 5-layer MLP with 128 dimen-

sional hidden features. All subsequent MLPs are 3-layer

MLPs (with residual layers) with 128 dimensional hidden

features. A final linear layer followed by a softmax is used

to make the 256-way prediction. Every MLP is Linear +

ReLU without normalization layers.

Learning: At training time, the full entropy model is

trained end-to-end with the cross-entropy loss on each node:

ℓ = −
∑

i

∑

j

yi,j log qi,j (6)

where yi is the one-hot encoding of the ground-truth sym-

bol at node i, and qi,j is the predicted probability of symbol

j’s occurrence at node i.

3.3. Entropy Coder

Encoding: At the encoding stage, we apply our model se-

quentially across different levels, from the root to leaves.

Our proposed entropy model does not propagate informa-

tion between nodes at the same level. Therefore, within

each level, we are able to parallelize the computation for

probability estimation. Afterwards, we losslessly compress

the octree raw bit-stream using an entropy coding algorithm

such as arithmetic coding. Our network determines the

arithmetic coder’s entropy model by predicting the categor-

ical distribution (0 to 255) for each byte xi in the sequence.
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Bitrate

L P O LL Depth = 12 Depth = 14 Depth = 16

3.91 9.99 16.21

X 3.86 9.79 15.91

X X 3.62 9.33 15.41

X X X 3.59 9.27 15.35

X X X X 3.48 8.91 14.97

Table 1: Ablation study on input context features. L, P, O, and LL stand

for the node’s octree level, its parent occupancy symbol, its octant index,

and its spatial location respectively.

Bitrate

# Aggregations Depth = 12 Depth = 14 Depth = 16

0 3.48 8.91 14.97

1 3.39 8.78 14.84

2 3.31 8.59 14.64

3 3.25 8.47 14.51

4 3.17 8.32 14.33

Table 2: Ablation study on the number of aggregations.

Decoding: To decode, the same entropy model is used in

the arithmetic coder’s decoding algorithm. An octree is then

built from the decompressed bitstream and used to recon-

struct the point cloud. Due to the auto-regressive fasion of

the entropy model, each node probability estimation is only

dependent on itself and decoded node features at higher

level of the octree. In addition, the octree is serialized in a

breadth-first search fashion. As a result, given a node xi, its

ancestors in the octree xan(i) are decoded before xi, making

it feasible for the decoder to also decode xi.

4. Experiments

In this section we validate the effectiveness of our

proposed approach on two challenging real-world LiDAR

datasets with drastically varying scenes. We compare our

method against several state-of-the-art point cloud compres-

sion algorithms in terms of both reconstruction quality and

their effects on downstream perception tasks.

4.1. Datasets

NorthAmerica: We collected a new internal dataset com-

prising of driving scenes from a wide variety of urban and

highway environments in multiple cities/states across North

America. From this dataset, we sampled 500K raw LiDAR

scans collected by a Velodyne HDL-64 sensor to train our

entropy model. No additional filtering or processing is ap-

plied to these LiDAR point clouds. For evaluation of re-

construction quality, we collected 472 snippets each con-

taining 250 LiDAR scans. In addition, we also annotate

these frames with 2D bird’s eye view bounding boxes for

the vehicle, pedestrian, and motorbike classes, as well as

per-point semantic labels for the vehicle, pedestrian, motor-

bike, road, and background classes. We use these labels for

evaluation on downstream perception tasks.

KITTI: To evaluate our method’s domain transfer capa-

bility, we show results on SemanticKITTI [3]—a public

self-driving dataset containing 21351 scans with 4.5 billion

points collected from a Velodyne HDL-64 sensor. As Se-

manticKITTI also contains dense point-wise labels from 25

classes, we also evaluate downstream task performance on

this dataset. Note that there is a significant domain shift

from our internal data to KITTI in terms of the scene lay-

out as well as sensor configuration, such as sensor height,

ego-occlusion, ray angles, etc.

4.2. Experimental Details

Baselines: Our baselines include two of the best off-

the-shelf point cloud compression approaches, namely

Google’s Draco encoder (‘Draco’) [8] and Mekuria et al.’s

octree-based algorithm [20] which serves as the MPEG

anchor (‘MPEG anchor’). In addition, we compare our

method against a deep baseline model using a range im-

age representation for the point cloud (‘Deep Range’). For

the range image representation, we utilize the rolling shutter

characteristics to convert each LiDAR scan from Euclidean

coordinates to polar coordinates, and store it as a 2.5D range

image. We then train the Ballé hyperprior model [2], a state-

of-the-art image compression model, on these images. Dur-

ing decoding we reconstruct the 2.5D range image and con-

vert it back to Euclidean point cloud.

Implementation Details: We train our entropy models on

full 16-level octrees. Training a single model on the full

16-level octree allows for variable rate compression within

the same model, since during test time, we can truncate

the same octree over different levels to evaluate our mod-

els over different levels of quantization. Specifically, we

evaluate our octree models with depths ranging from 11 to

16 to measure the bitrate-quality tradeoff. The quantization

error ranges from 0.3cm to 9.75cm, and every decrement in

tree height doubles this value.

Our entropy model is implemented in PyTorch and

trained over 16 GPUs with the Adam optimizer. We use

a learning rate of 1e−4 for 500K iterations.

4.3. Compression Metrics

Reconstruction Quality: To evaluate reconstruction

quality, we use two families of metrics: distance and oc-

cupancy. A commonly used distance-based metric to evalu-

ate point cloud similarity is the symmetric point-to-point

Chamfer distance CDsym. For a given GT point cloud

P = {pi}i=1,...,N and reconstructed point cloud P̂:

CD(P, P̂) =
1

|P|

∑

i

min
j

‖pi − p̂j‖
2
2 (7)
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GT (NorthAmerica) Ours: PSNR 80.06, Bitrate 11.36 Draco: PSNR 79.38, Bitrate 12.53 Range: PSNR 50.35, Bitrate 13.99

GT (NorthAmerica) Ours: PSNR 58.54, Bitrate 2.06 Draco: PSNR 51.52, Bitrate 2.17 Range: PSNR 46.50, Bitrate 5.58

GT (KITTI) Ours: PSNR 71.59, Bitrate 13.59 Draco: PSNR 68.85, Bitrate 13.65 Range: PSNR 34.43, Bitrate 13.27

GT (KITTI) Ours: PSNR 54.81, Bitrate 2.02 Draco: PSNR 51.16, Bitrate 2.35 Range: PSNR 33.30, Bitrate 3.61

Figure 4: Qualitative results on NorthAmerica and KITTI. From left to right: Ground Truth, Ours, Draco, and Deep Range.

CDsym(P, P̂) = CD(P, P̂) + CD(P̂,P) (8)

A second distance-based metric, point-to-plane PSNR, [36]

accounts for point cloud resolution:

PSNR(P, P̂) = 10 log10
p2

MSEsym(P, P̂)
(9)

where p = maxi‖pi − p̂i‖
2
2 and MSEsym(P, P̂) is the sym-

metric point-to-plane distance:

MSE(P, P̂) =
1

|P|

∑

i

((p̂i − pi) · ni)
2 (10)

MSEsym(P, P̂) = MSE(P, P̂) + MSE(P̂,P) (11)

where p̂i = argmin
p∈P̂

‖pi−p‖22 is the closest point in P̂
for each point pi, and ni is the normal at each pi.

Occupancy Quality: It is common practice to use Li-

DAR point clouds in voxelized form for perception tasks

[16, 51, 49]. To reflect this, we computed occupancy-based

metrics. In particular, we report the intersection-over-union

(IOU) using 0.2× 0.2× 0.1 meter voxels:

IOU =
TP

TP + FP + FN
(12)

where TP, FP, FN are the numbers of true positives, false

positives, and false negatives in terms of voxel occupancy.

4.4. Compression Results

Quantitative Results on NorthAmerica: We report the

bitrate versus reconstruction quality metrics (PSNR, IOU,

Chamfer) over all competing algorithms on the NorthAmer-

ica dataset. As shown in Fig. 3, our method outpeforms

all previous state-of-the-art algorithms, with a 10-20% bi-

trate reduction over Draco and MPEG Anchor at the same

reconstruction quality. All three methods significantly out-

perform the deep range image compression method. Note

that since we use the same octree data structure, our ap-

proach has the same reconstruction quality as MPEG An-

chor. However, our bitrate is much lower thanks to the deep

entropy model. These results validate our proposed deep

entropy model and our choice of an octree data structure to

compress sparse LiDAR point clouds.

Quantitative Results on KITTI: In Fig. 3, we show

the bitrate versus reconstruction quality metrics on KITTI.

Although our model was trained using only data from

NorthAmerica, it can still significantly outperform all com-

peting algorithms, especially at lower bitrates.

Qualitative Results: Fig. 4 shows point cloud reconstruc-

tions on KITTI and NorthAmerica colored by reconstruc-

tion error. For fair comparison, we choose results from the

competing algorithms that have been compressed at a sim-

ilar bitrate rate. All cases show that our method and Draco
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Figure 5: Quantitative results of downstream perception tasks. The leftmost two figures show IOU performance on semantic segmentation for KITTI and

NorthAmerica respectively. The rightmost three figures show AP performance on object detection for NorthAmerica.

Oracle: IOU 38.02, Bitrate: 96.00 Ours: IOU 31.94, Bitrate: 4.18 Oracle: AP@70: 100, Bitrate: 96.00 Ours: AP@70: 100, Bitrate: 6.11

Figure 6: Qualitative results of semantic segmentation (right) and object detection (left).

give more faithful reconstructions than range image com-

pression at comparable bitrates, as the range image recon-

struction suffers from noise and errors at object boundaries

as well as lower/upper LiDAR beam. At the same bitrate,

our reconstruction quality is also better than Draco.

Ablation Studies: We perform ablation studies on the en-

tropy model, both over the context features ci as well as

over the number of aggregations K. In Tab. 1, we ab-

late over context features by progressively incorporating the

four features that we use: the node’s octree level, its parent

occupancy symbol, its octant index, and its spatial location.

Note that these ablations are performed without any aggre-

gations (K = 0), demonstrating the predictive power of

context features alone. As shown in the table, we can see

that gradually adding more context information consistently

lowers the entropy of our encoding.

Next, we evaluate how the high-order ancestor informa-

tion helps to predict the probability. We evaluate the pro-

posed entropy model with different levels of aggregation,

K = 0, ..., 4, incorporating K levels of “ancestor” contexts.

Tab. 2 show that in general, conducting more aggregations

consistently improves the entropy of our model.

4.5. Effects on Downstream Perception Tasks

Another important of metric for compression is its ef-

fects on the performance of relevant downstream tasks. We

quantify these effects for two fundamental perception tasks:

semantic segmentation and object detection.

In our experiments, we evaluate the semantic seg-

mentation and object detection models described in [44]

over point clouds reconstructed from various compression

schemes. Note that we train these perception models on

uncompressed point clouds with detection and segmenta-

tion labels—for NorthAmerica, we use the training dataset

described in [44], and for KITTI, we use the official train-

ing dataset [3]. For semantic segmentation, we report mean

intersection-over-union (IOU) computed using voxelized

ground truth labels. For object detection, we report aver-

age precision (AP) at 50% IOU threshold for pedestrians

and motorbikes, and 70% for vehicles.

As shown in Fig. 5 and Fig. 6, our method outperforms

all competing baselines on both NorthAmerica and KITTI.

Our method’s strength is particularly highlighted in seman-

tic segmentation where preserving the fine-grained details

of the point cloud is especially important. For example, at 5

bits-per-point, our method achieves a 5-10% improvement

over Draco and MPEG for NorthAmerica. In object de-

tection, our method consistently outperforms the baselines,

albeit more slightly than in segmentation; this is due to the

fact that the object detection model is already robust to a

range of bitrates. Overall, these results attest to the perfor-

mance of our method and help illustrate its effects on tasks

relevant to many robotics applications.

5. Conclusion

We presented a novel LiDAR point cloud compression

algorithm. Our method uses a deep tree-structured entropy

model on an octree representation of the points that lever-

ages available context information to reduce the entropy of

each intermediate node. This entropy model exploits both

the sparsity and structural redundancy between points to re-

duce the overall bitrate. We validate the effectiveness of

our method over two large-scale datasets. The results sug-

gest that our approach significantly reduces the bitrate com-

pared against other competing algorithms at the same re-

construction quality. In addition, we demonstrate that our

compressed representations achieve a lower error on down-

stream tasks than prior state-of-the-art work.
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