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Abstract

We address the problem of fine-grained generalized zero-

shot recognition of visually similar classes without training

images for some classes. We propose a dense attribute-

based attention mechanism that for each attribute focuses

on the most relevant image regions, obtaining attribute-

based features. Instead of aligning a global feature vec-

tor of an image with its associated class semantic vector,

we propose an attribute embedding technique that aligns

each attribute-based feature with its attribute semantic vec-

tor. Hence, we compute a vector of attribute scores, for

the presence of each attribute in an image, whose similarity

with the true class semantic vector is maximized. Moreover,

we adjust each attribute score using an attention mecha-

nism over attributes to better capture the discriminative

power of different attributes. To tackle the challenge of

bias towards seen classes during testing, we propose a new

self-calibration loss that adjusts the probability of unseen

classes to account for the training bias. We conduct experi-

ments on three popular datasets of CUB, SUN and AWA2 as

well as the large-scale DeepFashion dataset, showing that

our model significantly improves the state of the art.

1. Introduction

Fine-grained recognition, which is to classify categories

that are visually very similar, is an important yet challeng-

ing task with a wide range of applications from fashion in-

dustry, e.g., recognition of different types of shoe or cloth

[1, 2, 3], to face recognition [4, 5, 6] and environmental con-

servation, e.g., recognizing endangered species of birds or

plants [7, 8, 9, 10, 11, 12]. However, training fine-grained

classification systems is challenging, as collecting training

samples from every class requires costly annotations by do-

main experts to distinguish between similar classes, e.g.,

‘Parakeet Auklet’ and ‘Least Auklet’ bird species, see Fig-

ure 3. As a result, training samples often follow a long-tail

distribution [13, 14], where many classes have few or no

training samples. In this work, we aim to generalize fine-

grained recognition to new classes without training samples

Figure 1: Traditional zero-shot classification (top) compresses

visual features to perform global embedding with class seman-

tic descriptions, hence, not efficiently capturing fine-grained dis-

criminative visual information. Our method (bottom) finds local

discriminative regions through dense attribute-based attention and

individually embeds each attribute-based feature with the attribute

semantic description, allowing for knowledge transfer to unseen

classes while preserving all fine-grained details.

via capturing and transferring fine-grained knowledge from

seen to unseen classes without overfitting on seen classes.

Although fine-grained classification has achieved re-

markable performance by using feature pooling [15, 16, 9]

and discriminative region localization [11, 7, 3, 1, 12, 2]

techniques, it cannot generalize to unseen classes, as it re-

quires training samples from every class, and cannot lever-

age auxiliary information such as class semantic vectors,

which is fundamental for transferring knowledge to unseen

classes. With the need for costly training data, conventional

fine-grained classification methods cannot scale to a large

number of classes. However, fine-grained classes can often

be described in terms of attributes that are common among

classes. Thus, effectively using these semantic descriptions

to transfer knowledge among classes can significantly re-

duce the amount of annotations for training.

Zero-shot classification, on the other hand, leverages

auxiliary information in the form of class semantic descrip-

tions to generalize to unseen classes [17, 18, 19, 20]. A

large group of existing work learns an embedding function
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Figure 2: The overview of our proposed fine-grained zero-shot learning based on dense attribute-based attention with attribute embedding

and self-calibration. Image features of R regions are extracted and fed into our dense attention mechanism to compute attention features

for all attributes. The attention features are then aligned with attribute semantic vectors to measure the scores of attributes in the image,

which are combined to form the final prediction.

to align the visual feature of an image with its class seman-

tic vector, which allows to classify test images from both

seen and unseen classes [18, 19, 20, 21, 12]. However,

these works rely on holistic image features that are insuffi-

cient for distinguishing fine-grained classes, where the dis-

criminative information is contained in a few regions corre-

sponding to a few attributes. While feature synthesis tech-

niques [22, 23, 24, 25], which learn to generate images fea-

tures using class semantic vectors and convert the problem

to the standard classification, have achieved strong results

for zero-shot learning, they only synthesize high-level im-

age features, which cannot capture fine-grained differences

in details of seen/unseen classes.

Few works [26, 27, 28, 29] have explored localizing in-

formative image regions for fine-grained zero-shot learning.

[28] assumes access to ground-truth discriminative parts

during both training and testing, which is restrictive. On

the other hand, [26, 27, 29] can only scale up to a dozen

attention modules without exploiting visual guidance from

attribute semantics, with [26] requiring access to the costly

part annotations during training. While emphasizing on dis-

criminative regions of images, these work build a global

image feature vector which, similar to the prior work, is

aligned with the class semantic vector, incorporating all at-

tributes, see Figure 1. Orthogonal to this direction, recent

work [30, 31] show that adjusting the influence of different

attributes can significantly improve the performance, yet,

they rely on holistic image features, which cannot capture

fine-grained discriminative regions.

Paper Contributions. In this paper, we develop a new

framework for fine-grained zero-shot learning that ad-

dresses limitations of the existing work, discussed above.

We propose a dense attribute-based attention mechanism

that for each attribute focuses on the most relevant image

regions, obtaining attribute-based features. Our attribute-

based attention model is guided by each attribute semantic

vector, hence, building the same number of feature vectors

as the number of attributes. Instead of aligning a combina-

tion of all attribute-based features with the true class seman-

tic vector, we propose an attribute embedding technique that

aligns each attribute-based feature with its attribute seman-

tic vector, see Figure 2. Hence, we compute a vector of

attribute scores, for the presence of each attribute in an im-

age, whose similarity with the true class semantic vector is

maximized. Moreover, we adjust each attribute score using

an attention model over attributes to better capture the dis-

criminative power of different attributes. Thus, our model

handles classes that are different in only a few attributes.

To tackle the challenge of bias towards seen classes dur-

ing testing, we propose a new self-calibration loss that ad-

justs the probability of unseen classes to account for the

training bias. We conduct experiments on three popular

datasets of CUB, SUN and AWA2. Moreover, we perform

experiments on the much larger DeepFashion dataset for

fine-grained generalized zero-shot cloth recognition. By ex-

tensive experiments, we show that our model significantly

improves the state of the art.

2. Related Work

The goal of fine-grained recognition is to capture the

small but discriminative features across different classes.

[15, 16, 9, 32] captures the interaction between discrimina-

tive feature maps through pooling technique while [33, 34,

35] propose better ways to learn global image features that

capture fine-grained details. On the other hand, [12, 36]

localize discriminative parts of images through part-based

supervision. To avoid the localization annotation of dis-

criminative parts, [37, 10, 7, 38] localize them in a weakly

supervised setting. Despite tremendous success in the fully

supervised setting, these works cannot generalize to zero-

shot learning where only high-level attribute descriptions

are given for unseen classes.

To deal with unseen classes without training samples,

[18, 19, 20, 21, 12] propose to learn an embedding func-

tion that aligns visual and semantic modalities where un-

seen classes are recognized based on the distance between

visual features and unseen attribute descriptions. Recently,

generative methods [22, 23, 24, 25] have shown great po-

4484



Figure 3: Visualization of three fine-grained classes and their

attribute descriptions from the CUB dataset. Notice that these

classes are different only in a few attributes.

tential in zero-shot learning by synthesizing features of un-

seen classes based on attribute descriptions, transforming

the problem into the traditional supervised learning with full

training samples. However, they can only generate high-

level image features and ignore discriminative local regions

of images. [26, 27] introduce attention mechanisms for

zero-shot learning to capture finer details. Attention can

also be recursively learned in a hierarchical fashion [39, 40].

However, these works are designed for sequential input,

thus are nor suitable for image recognition.

Unseen class bias is the direct consequence of the do-

main shift [41] between training and testing time, where

the model overfits on classes seen at training time. Thus,

[41, 42] propose transductive zero-shot learning methods,

where the model has access to unlabeled samples from un-

seen classes during training to learn the testing distribution.

However, it is yet costly to collect unseen samples even

without labels. Other approaches have been explored, such

as prediction smoothing based on similarity between seen

and unseen attribute descriptions [43], prediction calibra-

tion [44, 45] and novelty detection [46, 47]. These works

either trade off discriminative power for unseen class ac-

curacy or are non-differentiable and do not allow effective

end-to-end training.

3. Visual Attention Review

Visual attention generates a feature from the most rel-

evant region of an image and has been shown to be effec-

tive for image classification, saliency detection and caption-

ing, among others [48, 49, 50, 51, 52, 53]. More specifi-

cally, one first divides an image I into R regions denoted

by {Ir}r∈R, which can be arbitrary [54] or equal-size grid

cells [52]. For simplicity and reproducibility, we use the

latter approach. Let fr = f(Ir) denote the feature vector

of the region r, extracted using a ResNet-101 pretrained on

ImageNet. Given region features {fr}Rr=1
, the goal of the

attention module, g(·), is to find the most relevant regions

for the task. This is done by finding an attention feature, f ,

which is defined as

f = g
(

f1, . . . ,fR
)

=

R
∑

r=1

αr(f
r)fr, (1)

where αr(f
r) denotes the weight or preference of select-

ing the region r. These weights are unknown and the task

of the attention module is to find them for an input image.

In the soft-attention mechanism [52], which we use in the

paper, one assumes that αr ∈ [0, 1] and
∑R

r=1
αr = 1 to se-

lect different regions with different weights. The attention

weights are often normalized using the softmax function.

4. Dense Attribute-Based Attention for Fine-

Grained Generalized Zero-Shot Learning

In this section, we discuss our proposed attribute-based

attention with attention over attributes for recognizing seen

and unseen fine-grained classes in addition to our self-

calibration loss to prevent bias towards seen classes. We

first define the problem and then present our approach.

4.1. Problem Setting

Assume we have two sets of classes Cs and Cu, where Cs
denotes seen classes that have training samples, Cu denotes

unseen classes without training samples and C , Cs∪Cu de-

notes the set of all classes. Let (I1, y1), . . . , (IN , yN ) be N

training samples, where Ii denotes the i-th training image

and yi ∈ Cs corresponds to its class.

The goal of generalized zero-shot learning is to clas-

sify a test image that could belong to a seen or an unseen

class.1 Given that there are no training images for un-

seen classes, Cu, similar to exiting work on (generalized)

zero-shot learning [55, 56, 57, 20], we assume access to

class semantic vectors {zc}c∈C that provide descriptions of

classes. More specifically, zc = [zc
1
, . . . , zcA]

⊤ is the se-

mantic vector of the class c with A attributes, where zca de-

notes the score of having the a-th attribute in the class c

[55, 56, 57, 20, 58, 59]. We normalize each zc to have unit

Euclidean norm. Similar to [57], we assume both seen and

unseen class semantic vectors are available at the training

time. In addition, we assume access to attribute seman-

tic vectors {va}
A
a=1

, where va denotes the average GloVe

representations of words in the a-th attribute, e.g., ‘yellow

beak’. We allow the attribute semantic vectors to be refined

during training (see below for details).

4.2. Proposed Framework

In this section, we present our method for fine-grained

generalized zero-shot classification. For each attribute, our

method extracts a spatial attention feature from the most

relevant regions of the input image, which will be subse-

quently used to find a compatibility score between the at-

tribute semantic vector and the attribute-based image fea-

ture. We use the attribute-image compatibility scores and

class semantic vectors to define the score of the image be-

longing to each class. To incorporate the utility of each

attribute for computing the class score, we further scale

1This is more challenging than the traditional zero-shot learning, which

assumes a test image can only belong to an unseen class.
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the attribute-image compatibility scores by attention over

attributes. To learn the spatial and attribute attention net-

works and the parameters of the attention-image compati-

bility function, we propose a loss function that augments the

standard cross-entropy loss with a new self-calibration loss

that prevents the prediction bias towards only seen classes.

4.2.1 Attribute Localization via Dense Attention

The ability to learn visual models of attributes is crucial for

transferring knowledge from seen to unseen classes. Recent

work either embed image features into the class semantic

space [18, 19, 20, 21, 12] or generate image features from

class semantic vectors [22, 23, 24, 25]. However, without

localizing each attribute, they ignore discriminative visual

features of fine-grained classes, obtaining holistic features

that contain information from non-discriminative or irrele-

vant image regions.

As the first component of our method, we propose an

attribute-based spatial attention model, where for each at-

tribute, we localize the most relevant image regions to the

attribute to extract an attribute-based attention feature from

a given image. Recall that {va}
A
a=1

is the set of attribute

semantic vectors and {fr
i }

R
r=1

denotes the region features

of the image i. For the a-th attribute, we define its attention

weights of focusing on different regions of image i as

α(fr
i ,va) ,

exp(vT
aW αf

r
i )

∑

r′ exp(v
T
aW αf

r′

i )
, (2)

where W α denotes a learnable matrix to measure the com-

patibility between each attribute semantic vector and the

visual feature of each region. Using the set of attention

weights {α(fr
i ,va)}

R
r=1

, we compute the attribute-based

attention feature for the a-th attribute as

ha
i ,

R
∑

r=1

α(fr
i ,va)f

r
i . (3)

Thus, ha
i represents the visual feature of the image i that

is relevant to the a-th attribute according to the semantic

vector va. Notice that when an attribute is absent in the

image, ha
i captures the visual evidence used to reject the

attribute in the image. For instance, the model could focus

on ‘back belly’, and later assigns a negative score to it, to

indicate the absence of ‘white belly’, as shown in Figure 5.

4.2.2 Attribute Embedding with Attribute Attention

Given the set of attribute-based attention features {ha
i }

A
a=1

for each training image i, our goal is to compute the class

score sci of the image i belonging to a class c. During train-

ing, the class score would be optimized to be large for the

ground-truth class c = yi and small for other classes c 6= yi.

To do so, we define A attribute scores, where each score

measures the strength of having each attribute in the image

(recall A is the number of attributes). We fuse these scores

using each class semantic vector to find the class score.

More specifically, we define the attribute score eai , as the

confidence of having the a-th attribute in the image i, by

matching the attribute attention feature ha
i with the attribute

semantic vector va,

eai , vT
aW eh

a
i , (4)

where W e is an embedding matrix that embeds the attribute

feature ha
i to the a-th attribute semantic space. In fact, when

the attribute is visually present in an image, the associated

image feature would be projected near its attribute semantic

vector. One way to compute the class score sci is to use

the sum of products between each attribute score eai and the

strength of having the attribute a in class c, i.e, zca, as

sci =

A
∑

a=1

eai × zca. (5)

As a result, when a class c has attribute a, i.e., zac > 0, we

would maximize the attribute score eai .

However, one possible limitation of (5) is that all at-

tributes contribute to the class score. In the fine-grained

recognition, different classes often have many similar at-

tributes and only a few of the attributes are different be-

tween them, see Figure 3. Hence, to focus on impor-

tant attributes, we propose an attention mechanism over at-

tributes to give the model the ability of selecting attributes

that would be most informative for classification and dis-

tinguishing between similar classes. More specifically, we

compute the utility of each attribute a based on its attention

feature ha
i as

β(ha
i ,va) ,

exp(vT
aW βh

a
i )

exp(vT
aW βh

a
i ) + 1

, (6)

where W β is a learnable matrix. Having the attribute atten-

tion weights {βa(h
a
i ,va)}

A
a=1

, we propose to compute the

class score by

sci ,

A
∑

a=1

eai × zca × β(ha
i ,va), (7)

where the model adjusts the influence of each attribute on

the final prediction by setting the attribute attention score.

More specifically, it sets β(ha
i ,va) ≈ 0 when the attribute

a encoded by ha
i cannot be aligned with the semantic vector

va and should not be used for prediction.

Notice that unlike spatial attention in (2), where we use a

softmax function, hence, ideally focus on one image region,

in (7), we use a sigmoid function for each attribute individu-

ally, which allows to select multiple attributes with weights
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close to one, and set the weight for the remaining attributes

to be close to zero. It is worth noting that eai in (4) and

βa(h
a
i ,va) in (6) have complementary roles: eia captures

the presence or absence of the attribute in an image, while

βa(h
a
i ,va) acts as a gating mechanism, which determines

how much eia should influence the final prediction.

Remark 1 Notice that instead of computing the class com-

patibility score between a class semantic vector and a

global image feature, we first compute A compatibility

scores between each attribute-based attention feature and

each attribute semantic vector and automatically select a

subset of these scores to form the class compatibility score.

This gives our model the ability to use a rich set of features,

based on localization of each attribute in an image, and in-

corporate the most discriminative ones for classification.

4.2.3 Loss Function with Self-Calibration Component

In order to find the parameters of our model, we need to op-

timize the cross-entropy loss between the model prediction

and the ground-truth label over training images, i.e.,

Lce

(

{sci}c∈C

)

= −
∑

i

log p(syi

i ). (8)

Here, p(sci ) is the probability that image i belongs to class c

and is computed by applying softmax to class scores {sci},

p(sci ) ,
exp(sci )

∑

c′∈C exp(s
c′

i )
. (9)

However, optimizing the cross-entropy loss on training im-

ages that consist of only seen classes is prone to bias to-

wards seen classes, as also observed in [57, 45]. In other

words, given the fact that the model learns to suppress prob-

abilities of unseen classes, during testing on images from

unseen classes, the model will still predict high probabili-

ties for seen classes, impeding the method to work well on

unseen classes.

To overcome this challenge, we start by considering a

calibration loss that allows to shift some of the prediction

probabilities from seen to unseen classes during training.

More specifically, we define

Lcal

(

{sci}
)

, −
∑

i

log

(

∑

u∈Cu

p(sui )

)

, (10)

where for brevity of notation, we have dropped the sub-

scripts in {sci}c∈C , which can be inferred from the context.

Thus, minimization of Lcal in conjunction with the cross-

entropy loss, promotes to put nonzero probability on the

unseen classes during training. Hence, at testing time, for

an image from an unseen class, the model can produce a

(large) non-zero probability for the true unseen class. How-

ever, the drawback of using (10), as it is, is that it reduces

the scores of seen classes and increases the scores of unseen

classes during training on images from seen classes, which

is not desired. Thus, to allow for nonzero prediction proba-

bility mass in unseen classes during training while keeping

the scores of unseen classes low, we propose to augment

the unseen scores and decrease seen scores using a margin

(here, set to one), and use

Lcal

(

{sci + 1Cu
(c)}

)

. (11)

where 1Cu
(·) is an indicator function taking the value of 1

when c ∈ Cu and −1 otherwise. Notice that we pose the

calibration process as an optimization problem. Thus, the

whole model, including attention components and attribute

embedding, get trained to avoid bias towards seen classes

without introducing additional parameters.

Final Loss Function. Combining the cross-entropy and the

self-calibration loss functions, we propose to minimize

min
Wα,W e,W β ,{va}A

a=1

Lce

(

{sci}
)

+ λLcal

(

{sci + 1Cu
(c)}

)

,

(12)

over the parameters of the two attention models (attributed-

based spatial attention and attribute attention), attribute-

image embedding and the attribute semantic vectors.

Remark 2 Notice that in our method, we are optimizing

over attribute semantic vectors {va}
A
a=1

, which results in

visual grounding of each attribute meaning to the visual fea-

ture of training images. Also, by sharing {va}
A
a=1

among

all classes, we effectively allow transfering fine-grained

knowledge from seen to unseen classes. In the experiments,

through ablation studies, we show that fine-tuning the at-

tribute semantic vectors results in significant improvement

of the performance.

Finally, at inference time, we predict the class of a test

image as the class that has the maximum augmented score,

c∗ = argmaxc∈C s
c
i + 1Cu

(c), (13)

Thus, we make prediction based on the augmented seen and

unseen scores, which we have explicitly calibrated to be

sensitive toward unseen classes.

5. Experiments

We evaluate our proposed method, referred to as Dense-

Attention Zero-shot LEarning (DAZLE), on three popular

datasets of CUB [60], AWA2 [61] and SUN [62]. Moreover,

to demonstrate the effectiveness of different components of

our method, we perform experiments on DeepFashion [2],

which is a dataset for fine-grained clothes recognition. Hav-

ing almost 8 times more number of samples than the largest

dataset among CUB, AWA2 and SUN, while having a thou-

sand attributes, DeepFashion is a suitable dataset for study-

ing the effectiveness of our method for fine-grained gener-

alized zero-shot learning.

4487



Dataset # attributes # seen (val) / unseen classes # training / testing samples

CUB 312 100 (50) / 50 7,057 / 4,731

SUN 102 580 (65) / 72 10,320 / 4,020

AWA2 85 27 (13) / 10 23,527 / 13,795

DeepFashion 1,000 30 (6) / 10 204,885 / 84,337

Table 1: Statistics of the datasets used in our experiments.

Below, we discuss the datasets, evaluation metrics and

baseline methods. We then present and analyze the results

on all datasets. We first report the traditional zero-shot per-

formance on the well studied fine-grained CUB dataset and

then show the effectiveness of our method for generalized

zero-shot learning on CUB, AWA2 and SUN. Finally, we

perform ablation studies on the DeepFashion dataset.

5.1. Experimental Setup

Datasets. Following [57], we conduct experiments on

the three popular datasets of CUB, SUN and AWA2 and

perform ablation studies on the larger-scale DeepFashion

dataset, which allows us to study the effect of different com-

ponents of our method. Table 1 shows the statistics of the

four datasets.

CUB [60] contains images from fine-grained bird-

species with 150 seen and 50 unseen classes. Since small

discriminative regions are the key for distinguishing be-

tween fine-grained classes, the dataset also contains at-

tribute location annotation to enable learning models for

part detection. Notice that our method works in the weakly

supervised setting, i.e., it uses the class label of each train-

ing image and does not require annotations of attribute lo-

cations. SUN [62] is a dataset of visual scenes having 645

seen and 72 unseen classes and has the largest number of

classes among the datasets. However, it only contains 16

training images per class due to its small overall training

set. AWA2 [61] has been proposed for animal classifica-

tion with 40 seen and 10 unseen classes and has a medium

size of 37,322 samples in total. For CUB, SUN, AWA2, we

follow the proposed training, validation and testing splits

in [57]. Finally, DeepFashion [2] contains 289,222 sam-

ples from 46 cloth categories. We partition the categories

into 36 seen and 10 unseen classes, in order to have a suf-

ficient number of unseen classes. We use the original train-

ing/testing split of the dataset to further divide seen classes

into training and testing sets.

Evaluation Metrics. Following [57], we measure the top-1

accuracy on two settings: i) traditional zero-shot learning,

where test images are only from unseen classes, thus all pre-

dictions are constrained to be from unseen classes; ii) gen-

eralized zero-shot learning, where test images are from seen

and unseen classes. In the latter case, we report the accuracy

on testing images from seen classes, accs, and from unseen

classes, accu. Also, to capture the trade-off between seen

and unseen performance, we compute the harmonic mean,

H , between seen and unseen accuracy, which is

H , 2×
accs × accu

accs + accu
. (14)

Baselines. We group all the baselines into 3 main cate-

gories, based on the type of features used for training. EZSL

[59], SYNC [18], DeViSE [19], RNet [63], DCN [44] and

TCN [43] work with holistic image features without local-

ization and relate seen to unseen classes through attribute

description during inference time. On the other hand, f-

CLSWGAN [25], cycle-(U)WGAN [22], f-VAEGAN-D2

[23] and CADA-VAE [24] learn generative models to ap-

proximate the distribution of class images as a function of

class semantic descriptions. Thus, given semantic descrip-

tions of unseen classes, these models augments features of

seen classes with generated features from the unseen ones

and learn a discriminative classifier in the fully supervised

setting. Finally, we report the results of S2GA [26], which

is designed for fine-grained classification, however, requires

annotations of part locations to detect discriminative parts.

Implementation Details. Following the canonical setting

in [57], We use a pretrained ResNet-101 with the input size

of 224 × 224 for feature extraction in all methods without

fine-tuning. We extract a feature map at the last convolu-

tional layer whose size is 7 × 7 × 2048 and treat it as a

set of features from 7 × 7 regions.2 We extract the seman-

tic vectors {va}a∈A using the GloVe model [64] trained

on Wikipedia articles. We implement all methods in Py-

Torch and optimize with the default setting of RMSprop

[65] with the learning rate 0.0001 and batch size of 50. We

train all models on an NVIDIA V100 GPU for at most 20

epochs on CUB, AWA2, SUN and 2 epochs on DeepFash-

ion. In our method, we fix λ = 0.1 on all datasets, which

also shows that our self-calibration loss works on different

datasets without the need for heavy hyper-parameter tun-

ing. We consider two variants of our method: Lce (seen

classes) that optimizes only cross entropy on seen class and

Lce + Lcal (all classes) that optimizes cross-entropy and

self-calibration losses over both seen and unseen classes.

5.2. Experimental Results

Fine-Grained Zero-Shot Learning. We measure the fine-

grained zero-shot performance on the CUB dataset that con-

tains different bird species with small visual differences,

hence, demands the ability to focus on discriminative re-

gions for classification. Following [12, 26], we report the

traditional zero-shot performance given unseen attribute de-

scription.3 Due to differences in the experiment settings

among previous works, we conduct experiments on both the

2This is different from the setting of [27], which uses 448×448 images.
3This is different than [12, 8] where zero-shot learning is performed on

noisy text features.
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Model Approach
CUB SUN AWA2

accs accu H accs accu H accs accu H

EZSL [59]

Holistic Feature

63.8 12.6 21.0 27.9 11.0 12.1 77.8 5.9 11.0

SYNC [18] 70.9 11.5 19.8 43.3 7.9 13.4 90.5 10.0 18.0

DeViSE [19] 53.0 23.8 32.8 27.4 16.9 20.9 74.7 17.1 27.8

RNet [63] 61.1 38.1 47.0 – – – 93.4 30.0 45.3

DCN [44] 60.7 28.4 38.7 37.0 25.5 30.2 – – –

TCN [43] 52.0 52.6 52.3 37.3 31.2 34.0 65.8 61.2 63.4

f-CLSWGAN [25]

Holistic Feature

Generation

57.7 43.7 49.7 36.6 42.6 39.4 68.9 52.1 59.4

cycle-(U)WGAN [22] 59.3 47.9 53.0 33.8 47.2 39.4 – – –

f-VAEGAN-D2 [23] 60.1 48.4 53.6 38.0 45.1 41.3 70.6 57.6 63.5

CADA-VAE [24] 53.5 51.6 52.4 35.7 47.2 40.6 75.0 55.8 63.9

DAZLE Lce (seen classes)
Dense Attention

65.3 42.0 51.1 31.9 21.7 25.8 82.5 25.7 39.2

DAZLE Lce + Lcal (all classes) 59.6 56.7 58.1 24.3 52.3 33.2 75.7 60.3 67.1

Table 2: Generalized zero-shot classification performance on CUB, SUN and AWA2. We report accuracy per seen class,

accs, and accuracy per unseen class, accu, as well as their harmonic mean, H .

Method
Bounding Box

Annotations

Accuracy

SS PS

RNet [63]

Not Required

62.0 55.6

DCN [44] 55.6 56.2

TCN [43] - 59.5

f-CLSWGAN [25] - 57.3

cycle-(U)WGAN [22] - 58.6

f-VAEGAN-D2 [23] - 61.0

S2GA (one-attention-layer) [26]
Required

67.1 -

S2GA (two-attention-layer) [26] 68.9 -

DAZLE Lce (seen classes)
Not Required

64.1 62.3

DAZLE Lce + Lcal (all classes) 67.8 65.9

Table 3: Zero-shot classification performance on CUB dataset.

standard split (SS) and on the proposed split (PS) in [57] for

comparison with the state-of-the-art methods. Notice that

some unseen classes in SS appear in the ImageNet training

set for the feature extractor, thus performances on SS are

often higher than on PS.

Table 3 shows the accuracies of different methods on the

two splits of the CUB. Notice that on SS, we achieve at least

5.8% improvement over methods trained on holistic image

features, while we have comparable performance (within

1% difference) to methods that use ground-truth bounding

box annotations of the discriminative parts during training

(we do not use this information). In fact, this shows the

effectiveness of our dense attribute-based attention on cap-

turing fine-grained details, achieving similar performance

to S2GA without the need for the costly annotations of the

discriminative parts locations. On the other hand, on PS, we

outperform other methods with at least 4.9% improvement,

in particular, with respect to the state-of-the-art generative

methods, which lack the ability to synthesize local discrim-

inative regions of images. Also, notice that having the self-

calibration loss facilitates knowledge transfer from seen to

unseen classes, boosting the accuracy on PS by 3.6% com-

pared to not using it.

Fine-Grained Generalized Zero-Shot Learning. Table 2

shows the performance of different methods for generalized

zero-shot learning, where both seen and unseen classes ap-

pear at the test time. As the results show, and expected, the

unseen accuracy, accu, of all methods is much lower than

the seen accuracy, accs.

Notice that compared to SYNC [18], which achieves the

best seen accuracy, our method (Lce) generalizes better to

unseen classes with high seen accuracy. This shows the ef-

fectiveness of our dense attention mechanism in general-

ization to unseen classes by only focusing on transferable

attribute features instead of holistic visual appearance fea-

tures, which often contain irrelevant background informa-

tion. However, without the self-calibration loss, our method

has lower unseen accuracy especially compared to feature

generation techniques, which simulate the inference dis-

tribution by augmenting training samples with synthesized

features from unseen classes.

On the other hand, using the calibration loss, Lce+Lcal,

our method significantly outperforms other algorithms on

unseen accuracy, in particular, improves over the state-of-

the-art generative model CADA-VAE [24] on unseen accu-

racy by 5.1%, 5.1% and 4.5% on CUB, SUN and AWA2, re-

spectively. In addition, our method improves the harmonic

mean score by 5.7% and 3.2%, respectively, on CUB and

AWA2. However, it does not achieve the best harmonic

mean on SUN. We believe this is due to having only 16

training samples for all seen classes, which does not allow

to effectively train our dense attention model and results in

even low seen performance compared to SYNC [18]. Please

see the supplementary materials for more detailed analysis

of different components of our method.

Ablation Study. We evaluate the effectiveness of different

components of our method by performing fine-grained gen-

eralized zero-shot classification for clothes recognition on

the DeepFashion dataset, with 1,000 attributes.

As the results in Table 4 show, without self-calibration,

while different variants of our method do well for clas-

sifying seen classes, they do not generalize to unseen

classes. Using our dense attention instead of no atten-

tion improves the seen accuracy by 1.4% (without self-
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Dense Attention
Self

Calibration

Attention

on Attribute
accs accu H

No
No

Lce (seen classes)

No 45.3 4.8 8.7
Yes No 46.7 6.1 10.8
Yes Yes 38.7 8.2 13.5
No

Yes

Lce + Lcal (all classes)

No 36.2 18.9 24.8

Yes No 37.1 20.3 26.2
Yes (fixed va) Yes 31.6 21.5 25.6

Yes Yes 38.1 21.5 27.5

Table 4: Ablation study for generalized zero-shot learning on the

DeepFashion dataset.

calibration) and improves the harmonic mean by 1.4%

(with self-calibration), which demonstrates the importance

of attending to fine-grained attributes. When using self-

calibration, attention on attributes further boosts the har-

monic mean by 1.3%. Notice that without refining the at-

tribute semantic vectors, i.e., when va’s are fixed, the har-

monic mean drops by 1.9% (compared to when refining

them), showing that semantic representations learned from

GloVe is not initially compatible with visual features and

learning of the attribute semantics is necessary.

Effect of Hyperparameters and Attribute Selection.

Given that our framework produces one attention per at-

tribute, we investigate the effect of the number of used at-

tributes, hence the number of attentions, by learning from

different subsets of attributes on the DeepFashion dataset.

To do so, we rank attributes by their discriminative power

measured via the entropy on the probability of each attribute

appearing in all classes. If an attribute appears in all classes,

then it is non-discriminative and will have high entropy and

if an attribute is only present in one class, then it will have

zero-entropy, indicating its discriminative power.

As the results in Figure 4 (left) shows by learning an

attention for each of the top 300 discriminative attributes,

our method achieves high harmonic mean accuracy, which

shows the importance of attribute selection. Notice that

by dynamically weighting the importance of each attribute

through attention over attributes, our method further im-

proves the performance by 1.3%. As the results show, when

we only use attention on attributes (without attribute-based

features, by using mean of features from all image regions)

the performance drops by more than 3% compared to using

dense attention and attention over attributes. This shows

the importance of our dense attention mechanism, which

provides inputs for the attribute attention module.

Figure 4 (right) shows the performance of our method as

a function of λ on DeepFashion. Notice that for very small

values of λ, we obtain high seen accuracy and nearly zero

unseen accuracy and as λ increases, the seen accuracy de-

creases and unseen accuracy increases and finally saturates.

As a result, the Harmonic mean, which captures a trade-off

between seen and unseen accuracies, achieves the optimal

score when seen and unseen accuracies are similar, which

corresponds to when λ ∈ [0.1, 0.3].

Qualitative Results. Figure 5 visualizes the dense-

Figure 4: Left: Effect of the number of used attributes for learn-

ing dense attention and effect of attention over attributes on Har-

monic mean. Right: Effect of λ on seen, unseen and the harmonic

mean accuracy. Both experiments are performed on DeepFashion.

Figure 5: Visualization of attention maps of attributes with posi-

tive attribute scores (left) and with negative attribute scores (right).

attention maps on the CUB dataset. Notice that our model

is able to localize fine-grained information given weak su-

pervision, i.e., only image labels. Moreover, our model

correctly assigns positive scores to present attributes and

negative scores to absent attributes by focusing on regions

that support or reject the existence of each attribute. This

demonstrates the capability of learning different levels of

abstraction/granularity through the hierarchical structure of

W α and W e, where the input of (4) depends on the output

of (3). We observe that W α well localizes different parts of

a bird for W e to determine the presence (e.g., ‘belly color

black’ in first image) or absence (e.g., ‘belly color white’ in

first image) of different patterns and colors of these parts.

6. Conclusion

We proposed a dense attribute-based attention mecha-

nism with attention over attributes that focuses on the most

relevant image regions of each attribute and grounds visual

attribute descriptions to discriminative regions in a weakly

supervised setting. To transfer knowledge from seen to un-

seen classes, we proposed a self-calibration loss that adjusts

the prediction distribution in advance to better adapt to un-

seen classes at the inference time. By extensive experiments

on three well-studied datasets and the DeepFashion dataset,

we showed the effectiveness of our proposed method.
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