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Abstract

We address the problem of efficient end-to-end learning a
multi-label Convolutional Neural Network (CNN) on train-
ing images with partial labels. Training a CNN with partial
labels, hence a small number of images for every label, us-
ing the standard cross-entropy loss is prone to overfitting
and performance drop. We introduce a new loss function
that regularizes the cross-entropy loss with a cost function
that measures the smoothness of labels and features of im-
ages on the data manifold. Given that optimizing the new
loss function over the CNN parameters requires learning
similarities among labels and images, which itself depends
on knowing the parameters of the CNN, we develop an effi-
cient interactive learning framework in which the two steps
of similarity learning and CNN training interact and im-
prove the performance of each another. Our method learns
the CNN parameters without requiring keeping all training
data in the memory, allows to learn few informative sim-
ilarities only for images in each mini-batch and handles
changing feature representations. By extensive experiments
on Open Images, CUB and MS-COCO datasets, we demon-
strate the effectiveness of our method. In particular, on the
large-scale Open Images dataset, we improve the state of
the art by 1.02% in mAP score over 5,000 classes.

1. Introduction

Finding all labels in an image, referred to as multi-label
recognition [ 1, 2, 3], is a fundamental learning problem with
a wide range of applications, including self-driving cars,
surveillance systems and assistive robots. While deep Con-
volutional Neural Networks (CNNs) have shown great per-
formance for single-label image classification, their adap-
tion to the multi-label recognition faces major challenges,
especially in real problems with a large number of labels.

First, training multi-label CNNs requires collecting
multi-label annotations for a large number of images, which
is significantly more difficult than single-label annotations
[4]. In fact, many existing multi-label datasets, such as MS-
COCO [5], YahooFlickr [6] and Open Images [7], contain
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only small partial labels of images. As a result, multi-label
learning methods that assume access to full labels of images
[8, 9, 10] are not applicable. Moreover, training CNNs by
treating missing labels as negatives [2, | 1, 12, 13, 14, 15] re-
sults in significant performance drop as many ground-truth
positive labels are falsely labeled [16, 17]. On the other
hand, adapting CNNs to the multi-label classification by
simply transforming it into multiple single-label classifica-
tion problems and training via the ranking [18] or cross-
entropy [19] loss fails to model the dependencies among
labels, which is particularly important for handling partial
labels. Finally, multi-label learning methods that handle
partial labels using low-rank learning [20, 21, 22, 23] or
semi-supervised learning [24, 25] generally do not allow
end-to-end training as they require knowing and fixing the
feature representation of images to learn classifier parame-
ters, or require solving a costly optimization problem with
all training data in memory.

In this paper, we develop an efficient framework for end-
to-end training of multi-label CNNs with partial labels by
learning and leveraging dependencies among labels and im-
ages in an interactive scheme. We introduce a new loss
function that regularizes the standard binary cross-entropy
loss with a cost function that measures the smoothness of
labels and features of images on the data manifold. Given
that optimizing the new loss function over the CNN pa-
rameters requires learning similarities among labels and im-
ages, which itself depends on knowing the parameters of the
CNN, we develop an efficient interactive learning scheme in
which the two steps of similarity learning and CNN training
interact and improve the performance of each another, see
Figure 1. More specifically, fixing the CNN, we learn la-
bel and image dependencies by minimizing the smoothness
loss. Fixing dependencies, we optimize the total loss over
CNN parameters and repeat the two steps until convergence.

Our method allows to learn the CNN in an end-to-end
fashion without requiring keeping all training data in the
memory. Unlike expensive graph-based learning algorithms
that require building and operating on the entire graph ad-
jacency or laplacian [22, 25, 23], our method allows to
learn few informative similarities only for images in each
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Figure 1: Left: Our proposed semi-supervised multilabel recognition framework consists of a CNN classifier and an adaptive similarity learner that
interact and improve the performance of each other during training. Right: Visualization of the learned image and label similarity graphs via interaction with
the CNN during training on the Open Images dataset. We show the image and label similarities learned by the initial CNN (¢ = 0) and the final similarities

learned at the last interactive learning step (t = T'y).

mini-batch and to handle changing feature representations.
Our method borrows ideas from semi-supervised learning,
however, unlike semi-supervised multi-label learning, it al-
lows to update feature representation of images and handles
training data with partial labels. By extensive experiments,
we show that our framework outperforms the state of the
art, in particular, improving the mAP score on the large-
scale Open Images dataset by 1.02% over 5,000 labels.

2. Related Work

The first line of work on multi-label learning treats
each label prediction as an independent binary classification
problem [26]. However, it is not scalable when the number
of labels is large, treats missing labels as negatives which
leads to performance drop and ignores dependencies among
labels which is important for recognition. To overcome the
last challenge, the majority of existing work on multi-label
learning try to incorporate dependencies among labels. In
particular, several methods use graphical models [8, 9, 10],
by learning label occurrence and co-occurrence potential
functions using Markov Random Fields. However, they re-
quire knowing the full labels of training data and have diffi-
culty dealing with large number of labels as the number of
parameters to learn will become prohibitively large. To deal
with partial labels, several works treat missing labels as neg-
ative labels [2, 11, 12, 13, 14, 15, 27]. However, this could
result in significant performance drop since many ground-
truth positive labels are falsely annotated [16].

Semi-supervised multi-label learning, on the other hand,
assumes access to a subset of images with full labels and a
large number of images without labels or with partial noisy
labels [28, 24]. When image and label dependencies are
incorporated via label-label and image-image graphs [29],
such methods require a known and fixed feature represen-
tation of data, which does not allow for feature learning or
fine-tuning of CNNs. While [30] learns an adaptive graph
for label propagation, it cannot generalize to novel images
due to its transductive nature and cannot scale to large
datasets. Moreover, the assumption of having a subset of
images with full labels could be limiting, which is also dif-

ferent than the partial label setting considered in this paper,
where all training images contain only a subset of ground-
truth labels. Curriculum learning, self-training, also called
bootstrapping [31, 32, 33, 34] tries to increase the number
of labels by alternating between learning a binary classi-
fier for each label using available annotations and adding
unannotated images about whose label the classifier is most
certain to training data. [3] further combines graph neural
network and curriculum learning to capture label correla-
tion while exploiting unlabeled data. However, curriculum
learning, and self-training in general, suffer from seman-
tic drift, since unannotated images that receive incorrect la-
bels are permanently added to training data. To mitigate
this issue, constrained bootstrapping [32] incorporates pos-
itive and negative dependencies among labels. However,
it requires building complete graphs among images and at-
tribute classifiers, which are hard to obtain and train when
dealing with a large number of labels and images.

To effectively handle partial labels, [22] encodes a net-
work of label dependencies via a mixed graph, while [4, 14]
learns correlation between labels to predict some missing
labels. On the other hand, [23] generalizes the linear corre-
lation assumption to structured semantic correlations. Sev-
eral methods treat missing labels as hidden variables via
probabilistic models and predict missing labels by posterior
inference [35, 36, 37]. The work in [38] models missing
labels as negatives and corrects the induced error by learn-
ing a transformation on the output of the multi-label clas-
sifier that models the labeling bias. Orthogonal to these
directions, [39, 40, 41] exploit correlations among labels
and among images with sparse/low-rank regularization to
complete the image-label matrix, while [20] formulates the
problem as a low-rank empirical risk minimization. How-
ever, the majority of these work cannot be used to learn a
deep CNN as they require knowing and fixing the features
of images, require keeping all training data in memory, or
require solving a costly optimization which is not scalable
to large datasets. In this paper, we develop a framework that
allows efficient end-to-end CNN training with partial labels
and is scalable to large number of labels and images.

9424



Remark 1 Notice that the work on partial multi-label
learning in [42, 43], which assume that all missing labels
are negative and a subset of positive labels are true, is dif-
ferent than the partial label setting studied in this paper,
where the missing labels could be positive or negative.

3. Interactive Multi-Label CNN Learning

We consider the multi-label recognition problem via
CNN, whose goal is to find all labels of an image. As-
sume we have N training images I1,..., Iy, for each we
observe a few positive and negative labels with the values
of many labels missing. Let C be the set of all labels. For
an image i, we denote the set of its observed labels by
Q; C C and the values of observed labels by {y¢,};eq;,
where y¢,; € {—1,+1} indicates the presence (+1) or ab-
sence (—1) of the label j in the image ¢. Our goal is to find
the complete label vector y; € {—1,+1}/°l of each image
1 and effectively train a multilabel CNN, given the small
number of positive and negative images for every label.

Let w denote the parameters of the CNN up to the feature
extraction layer (layer before the last) and {6; }'lel denote
parameters of the |C| logistic regression models in the last
layer of the CNN. We denote by f: 2 f,(I;) the feature
vector of image 7.

3.1. Proposed Framework

We propose an efficient framework for multi-label CNN
learning with partial labels that consists of two compo-
nents: a multi-label CNN classifier and an adaptive simi-
larity learner. The similarity learning discovers the depen-
dencies among labels and among images using the current
knowledge of CNN. We use the learned similarities to de-
fine a prediction smoothness loss that regularizes training
the CNN via the standard binary cross-entropy loss using
available labels. More specifically, to learn the parameters
of the network, (w, {6; }‘jczll), we propose to minimize the
following loss function

min Z LW (w, {6, }lj(L) + L0 (w, {6; }|J(11>7

w,Ol,...,6|c‘
(1

where ££i> is the cross-entropy classification loss for im-
age ¢, which is defined by observed image labels {y]ol7 1=
1,...,N, j€Q;}as

g

£H & — Z y;ilog(pji) + (1 —y5,;) log(1 —pji), (2)
JEQ;

where p; ; is the output of the classifier j for the image 7. On

the other hand, L’gi) is a smoothness loss that enforces the
predicted labels and learned feature of image ¢ to be smooth
on the data manifold according to learnable label and image
similarities, which we discuss next.

3.1.1 Label and Image Dependency Smoothness Loss

Given partial labels and the small amount of annotations for
each label, training the multi-label CNN is prone to over-
fitting. Thus, we regularize training by considering a loss
function L,(-) that constrains predictions to be smooth ac-
cording to dependencies and similarities among labels and
among images.

Label Dependency Smoothness. We start by using a la-
bel graph whose structure is known, capturing dependencies
among labels, yet its connections weights will be learned.
To do so, we measure the co-occurrence rate of each pair of
labels in the training set. For each label, we choose the k,
most co-occurred labels to connect to. We exploit the struc-
ture of the graph to constrain training pairs of classifiers
that are connected by edges, while learning the connection
weights through our framework. To be specific, let

Yji = Y50 J € Qs Yji=2pj0— 1, J ¢ X, 3)

where we convert p, ; € [0,1], which is the probability of
image ¢ having label j, to y; ; € [—1,+1]. In other words,
we impute the missing labels using CNN. The label-label
matrix A £ [a;: ;] € RICXICI] whose non-zero support is
known but its weights {a; ;}; jsec are unknown, denotes
dependency strengths. Let Q; denote the set of neighbors of
the label j on the graph, i.e., the set of labels related to label
7. We propose a model in which each label of an image can
be determined by the related labels of semantically similar
images. More specifically, we consider the model

Yji = tanh (Zcilﬂ' Z aj/,jyj’,i’)a (4)
i/

J'€Q;

in which the label j of image ¢ is determined by a lin-
ear combination of neighboring labels j' (with coefficients
a;s,;) over semantically related images i’ (with coefficients
cir ;). Here ¢ ; denotes the degree of the semantic similar-
ity of ¢’ to 4. The tangent hyperbolic function, tanh, maps
the result to [—1,41]. As an example, if an image ¢’ con-
taining the label ‘slam dunk’ is similar to an image ¢, we ex-
pect ‘slam dunk’ and its related labels such as ‘basketball’
to also apear in 7. Thus, we define the label smoothness loss

as
Y, — tanh (Z Ci’,iAyi/) ‘

to measure the error associated with (4), which is rewritten
in the vector form.

o0 & 2

Y

®)

)
2

Image Dependency Smoothness. Complement to the label
smoothness loss, we also define a feature smoothness loss to
enforce smoothness on the image manifold. We assume that
similar images, which contain many shared/similar labels,
have similar visual features. More specifically, we model
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that the feature vector of each image can also approximately
be written as a linear combination of feature vectors of se-
mantically similar images, and define

28 - it (©6)

The coefficients {¢; ;} denote the similarities between im-
age features. While the similarity coefficients ¢, ; and ¢; ;
take different values, they both must give rise to selecting
the same images as being semantically similar to an image
i, i.e., they must have the same nonzero support.

We define the smoothness loss function by combining
the losses in (5) and (6),

Lo (w, {ej}‘j&) = (en .r?.i,n}eﬁ

7

{aj’,j}

A0+ 200 ()

which requires optimizing over, hence learning, the image
{cir i, ;} and label {a; ;} similarities. Here, A\,, Ay > 0
are the regularization parameters (since we add the smooth-
ness loss to the cross entropy loss in (1), we use two reg-
ularization parameters). The minimization must take into
account that the similar images to each image ¢ must be the
same. Thus, we define the constraint set R as

RE {Cj,ivéjﬂl > O,ZI(H [cﬁ7 Ej’i} H) <k, Vi,j}, 8)
J

where I(-) is an indicator function that is one when its argu-
ment is nonzero and is zero otherwise. Given that c;;, ¢; ;
are similarities, we enforce them to be nonnegative. The
second constraint enforces that each image selects at most
k other images as similar. Here, k is a hyperparameter.

Learning Similarities. To find label similarities, we per-
form gradient descent on the objective function of (7) with
respect to {a, ; }. To find image similarities, given the con-
straints in R, we develop a novel framework by generaliz-
ing the Orthogonal Matching Pursuit (OMP) algorithm [44],
proposed for sparse recovery of a single vector, to Joint
Nonnegative OMP to find both {c¢;s;} and {¢;}. Algo-
rithm 2 shows the steps (see the supplementary materials
for the derivations of the algorithm). For each point ¢, the
algorithm starts by initializing an active set S = & and two
residual vectors 7, = y, and ry = f, (step 2), picking
the point ¢’ in the dataset that is best correlated to these two
vector jointly (step 4) and adding it to S. We then solve for
the similarity values by minimizing £, and £ over the co-
efficients in S with thresholding them at zero (steps 9 and
10) and update the residuals accordingly (steps 11 and 12).
Notice that we use a first-order approximation of the hy-
perbolic tangent function in Egi), which is tanh(z) ~ =,
to efficiently solve for image and label similarities (see the
supplementary material for more details).

Algorithm 1 : Interactive Multi-Label CNN Learning

Input: Training set {(Ii7 {y}),i}jeﬂi)}i:l N
lc

1: Initialize CNN parameters w, {6, } j:‘1

2: repeat

3: Adaptive Similarity Learning:

4: Fix parameters of CNN

5: Solve for similarities {c;s ;, ¢; ; } in (7) via Algorithm 2
6: Solve for label weights {a; ;} in (7) via gradient descent
7 Constrained CNN Learning:

8: Fix image and label similarities

9: Train CNN via backpropagation on the loss function (1).
10: until convergence

Output: Optimal CNN parameters (w, {0;}
age similarities {o;s ; }, {¢ir i, Cir i }

cl

j=1) label and im-

3.2. Interactive Learning Algorithm

Learning the parameters of CNN via minimization of (1)
is not straightforward since computing each cé” requires
solving for the label and image similarity coefficients that
in turn requires knowing all labels {y;}~, and features
{f;}, of images, which are unknown.

To tackle the problem, we propose to minimize the
loss function in (1) via an alternating optimization scheme,
which leads to interactively learn the CNN parameters and
improve the similarities over time, see Algorithm 1. More
specifically, in the adaptive similarity learning step, given
current CNN parameters, we compute the missing labels
and solve (7) to find similarities. Given learned label and
image similarities, in the constrained CNN training step, we
train the parameters of the CNN via backpropagation on our
new loss function in (1). We alternate between the two steps
until either the cost function converges or the validation er-
ror does not decrease. Notice that we solve (1) over each
minibatch via the interactive algorithm. Thus, the similarity
graph is learned only for images in the current minibatch
and we do not need to process the entire graph.

In our experiments, we initialize the classifier parameters
{0, }‘jczl1 by running logistic regression on available image
annotations and initialize w using state-of-the-art convolu-
tional networks, in our case, ResNet-101 [45] for Open Im-
ages and CUB experiments and VGG-16 [46] for MSCOCO
experiments (see the experiments section for details).

Remark 2 Our interactive learning framework allows
some connections in the label graph to be removed, by
setting their weights to zero, and some connections be
less/more emphasized, by setting different weights to them
during training. Also, it is worth noting that we do not
necessarily require to have connections for every label; we
could set the label graph to identity when labels are inde-
pendent (as in the experiments on CUB).
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Algorithm 2 : Similarity Learning via Joint Nonnegative
OoOMP
Input: {f,}X,, {y,}X,, label similarities {a;/ ;}, number of
nonzero entries k, regularization parameters Ay, Ay.

1: fori=1,...,N do

2: Initialize residuals ry =y,, vy = f,, similarity set S = &

3: fort=1,...,kdo

4: s = argmax; Ay <"“1ﬁ‘:ih’2>2 + s <7|.‘7;1)f1”'2>2

5: if (ry,y.)or (rs, f,) <0 then

6: Break

7: end if

8: S+ Su{s}

9: {cir,i} =max (0, argmin [|ly; =3, s cir,i Ay |13)
10: {€ir,;} = max (0,argmin || f;, — >, s ¢ fo3)
11: Ty Y~ Dyes Cini(Ayy)

12: i fi—2uesCiifi
13: end for
14: end for

Output: Similarities {¢;/ ;, i ; }

Remark 3 Unlike conventional  graph-based — semi-
supervised methods that fix the graph and then regularize
the training, in our framework, the two components interact
and improve the performance of each other over time. Un-
like curriculum labeling and self-training, our framework
does not fix the label of selected unlabeled data, which
can propagate prediction error, instead it regularizes the
prediction to be globally consistent across training images.

4. Experiments

We evaluate the performance of our proposed multi-label
recognition framework on multiple datasets, including the
large-scale Open Images [7], CUB-200-2011 [47] and MS-
COCO [5] datasets.

4.1. Datasets

Open Images. The Open Images dataset (version 3) con-
sists of 9 million training images as well as 41,620 and
125,436 images for validation and testing, respectively. The
dataset has 5,000 trainable classes, where each class has
at least 100 samples. Given the large number of images,
classes and the fact that each image has only a few labels,
we use this dataset to demonstrate the effectiveness of our
framework on dealing with large datasets. We use the pro-
vided training, validation and testing splits in the dataset for
training, hyperparameter tuning and testing of all methods.

CUB-200-2011. To systematically evaluate the perfor-
mance of our method as a function of the fraction of missing
labels, we use the CUB dataset, which is a fine-grained im-
age dataset of 200 different bird species. Each image in the
dataset has an 312-dimensional attribute vector, indicating
the presence (1) or absence (-1) of an attribute in the image.
We follow [48] for training, validation and testing split.

MS-COCO. We follow the experimental setup in [38],
where we use approximately 80K images for training and
20k images for testing. 1000 most frequent words in cap-
tions are considered as training labels. For each image, we
generate a 1000-dimensional vector indicating whether a la-
bel is present (+1) or absent (-1) in the image caption.

4.2. Baselines and Model Variants

We choose the Logistic regression model, which corre-
sponds to minimizing our loss function in (1) with A, =
Ay = 0, using available labels in images. We fine-tune the
networks end-to-end on available labels in images. We use
this baseline to initialize all methods in our experiments.
We compare with Wsabie [49], which models label corre-
lation by measuring the inner product between class seman-
tics and image features, as well as CNN-RNN [2], which
uses Recurrent Neural Network to model high order label
correlation and predicts next labels conditioned on all cur-
rent present labels. We also compare with Fast0Tag [50],
which learns a nonlinear transformation from image fea-
tures to a semantic space. Following the recent advances
in training CNNs with partial labels, we use Curriculum
Labeling' with score thresholding strategy [3] as a strong
baseline, which alternates between labeling unlabeled data
with high prediction confidence and retraining classifiers on
the updated training set. We include Latent Noise [38] that
learns to correct the bias associated with missing labels by
simultaneously training a relevance classifier, modeling the
human labeling bias, and an unbiased visual classifier. Fi-
nally, we use LSEP [51], which uses a differentiable log-
sum-exp pairwise loss, being easier to optimize than the
traditional ranking loss for multi-label learning.

Our method. For our Interactive Multi-label CNN Learn-
ing (IMCL) method, we use the validation set of each
dataset for tuning the hyperparameters, which are A\, Ay in
(7) and k in (8). This leads to setting Ay, = 1, A\ = 0.5,k =
5 for the Open Images and A = 2,A\y = 0.5,k = 5 for
CUB and Ay = Ay = 0.5,k = 3 for MS-COCO. For Open
Images and MS-COCO, we set k, = 50 to build the label
graph, i.e, we connect each label to its top 50 co-occurred
labels in the training set (results did not change by using
similar values, as our method can set the weights to zero if
needed), while for CUB, we set the label graph to the iden-
tity, given the independency of the attributes (labels).

4.3. Implementation Details

To have a fair comparison, for each dataset, we use the
same CNN architecture as the feature extractor for all meth-
ods. On Open Images and CUB, we use ResNet-101 pre-
trained on OpenImage and ImageNet, respectively. On MS-
COCO, we follow [38] and use the pre-trained VGG-16 on

'We measure the performance on all 5000 labels which is different from
[3] that only uses 600 labels.
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Model Group 1 Group 2 Group 3 Group 4 Group 5 All classes
Logistic 69.47 70.29 74.79 79.23 85.49 75.85

Latent Noise (relevance) 69.14 (69.25) 69.93 (69.75) 74.60 (74.57) 78.89 (78.85) 85.37(85.29) 75.59 (75.54)
Latent Noise (visual) 69.37 (69.50) 70.41(70.32) 74.79 (74.78)  79.20(79.22) 85.51 (85.47) 75.86 (75.86)
CNN-RNN 68.76 (68.85)  69.70 (69.56) 74.18 (74.02)  78.52(78.55) 84.61(84.47) 75.16 (75.09)
LSEP 69.49 (69.49) 70.23 (70.23)  74.80 (74.81)  79.18 (79.19) 85.47 (85.47) 75.83 (75.84)
FastOTag 69.74 (69.58)  70.65(70.41) 7542 (75.01) 79.81(79.41) 86.06 (85.73) 76.34 (76.03)
Wsabie 69.77 (69.23)  70.87 (70.10)  76.03 (75.06)  80.25 (79.42)  86.04 (85.50)  76.59 (75.86)
Curriculum Labeling 70.37 (69.77)  71.32(70.86) 76.23 (75.45) 80.54 (79.62) 86.81(85.91) 77.05 (76.32)
IMCL (Ours) 70.95 (69.91) 72.59 (71.36) 77.64 (75.94) 81.83 (80.15) 87.34 (86.32) 78.07 (76.72)

Table 1: mAP scores (%) of all methods with end-to-end training and fixed feature representation (in parenthesis) on the test

set of the Open Images dataset.

ImageNet. We implement all methods in Tensorflow and
optimize with RMSProp [52] with learning rate 0.001 on
Openlmage and 0.01 on CUB and MS-COCO. We use ex-
ponential learning rate decay of 0.8 whenever the validation
performance degrades. On MS-COCO, we reduce the learn-
ing rate to 0.001 after two epochs. We initialize all methods
with the logistic model weights and refine them with 1, 3,4
epochs with batch size of 32,32, 1, respectively, on Open
Images and CUB and MS-COCO. We also renormalize the
value of y from the range of [—1, +1] to [—0.5, +1] so that
similarity learning would focus more on positive labels in-
stead of the majority negative labels in each image.

4.4. Evaluation metric

To evaluate the performance of different methods for
multi-label learning, we measure the average precision (AP)
for each class and mean AP over the dataset, similar to [28].
For each class, AP is computed as

N
1

AP. = — Precision(k, c) - rel(k, ¢), ®
D (k) - xel(k,

where N, is the number of images containing class c,
Precision(k, c) is the precision for class ¢ when retrieving
k best predictions and rel(k, c) is the relevance indicator
function that is 1 iff the class c is in the ground-truth of the
image at rank k. We also compute the performance across
all classes using mean average precision (mAP) defined as
mAP = 1/|C| )", AP,, where |C| is the number of classes.

4.5. Results on Open Images Dataset

We setup two experiments. In the first experiment, we
fix the feature extractor fy,(-) for all methods such that data
representation does not change during training as in clas-
sical setting. In the second experiment, we train all mod-
els end-to-end. Through interactive learning, our model ex-
ploits the change in the data representation manifold, which
significantly improves the performance as we show.

Effect of the Number of Training Images. To better an-
alyze the effect of the number of available images for each

label, we rank all classes in the ascending order with respect
to the number of available annotations per class in the train-
ing set and divide them into 5 groups of equal size, where
Group 1 corresponds to 1000 labels with the least number
of available annotations and Group 5 corresponds to 1000
labels with the most number of annotations.

Table 1 shows the mAP scores of different methods on
the test set of Open Images for each group and for all labels.
The number before the parenthesis shows the mAP when
training end-to-end and the number inside the parenthesis
shows the performance when only classifier parameters are
learned. As expected, the performance of all methods im-
proves from Groups 1 to 5, since the number of training
images for each label increases. While Logistic, LSEP and
visual classifier of Latent Noise perform similarly on the
entire dataset, as they only exploit labeled data, Wsabie and
FastOTag slightly perform better as they exploit label cor-
relation. Curriculum Labeling performs better than other
baselines, as it takes advantage of unlabeled data for better
recognition. On the other hand, our method without repre-
sentation learning improves the mAP score on the dataset
by 0.4%, thanks to both using unlabeled data and its ability
to adaptively learn appropriate image and label similarity
graphs for learning better visual models of different classes.
When training all models end-to-end, our method obtains
the most improvement compared with baselines, which in-
dicates the effectiveness of our interactive learning. Notice
that CNN-RNN, which treats missing labels as absent, ob-
tains lower performance than other baselines. Overall, our
method obtains 1.02% improvement with respect to the sec-
ond best method, Curriculum Labeling.

Effect of Regularization Parameters. Table 2 shows the
effect of the hyperparameters Ay, A¢, k on the mAP score
for the validation set, which we use to select the best val-
ues. Notice that for a fixed Ay (and similarly A.), the mAP
score improves as we increase the regularization parameter
and it decreases for large values of the regularization. In
fact, the best score is obtained for (A, = 1,A; = 0.5),
demonstrating the effectiveness of both terms in (7) that use
label and feature vectors for similarity learning. Also, the
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Figure 2: Qualitative results for multilabel recognition by different algorithms on several images from the Open Images test set. A ground-truth label is
considered as recognized if it is in the top 50 highest prediction for an images. We rank the labels according to how many methods are able to recognize
them where the top label denotes the least recognizable among all methods. Our method manages to recognize small objects which are often ignored by
others such as Arm or Mircophone in the first image and Surfboard in the second image. Our method also consistently improves label recalls across images

by leveraging unlabeled data to better regularize prediction of rare labels.

Table 2: mAP score (%) of our method (without end-to-end train-
ing) as a function of Ay, Ay (with £ = 5) and function of k on the
Open Images validation set.

table shows the robustness of our method with respect to k
in the Joint Nonnegative OMP algorithm.

Effect of External Knowledge. While we use the label co-
occurrence information for building the structure of the la-
bel dependency graph, it is important to investigate whether
we could achieve improvement by using external knowl-
edge, such as data on the web or WordNet, when available.
Thus, we study two alternative approaches.

First, we use Wikipedia to build the structure of the la-
bel graph (we still learn its weights using our method). We
build the label graph by picking the 50 most frequent con-
cepts in the intro section of the wikipedia article of each
label. Since we extract the labels from the web without su-
pervision, our label graph often contain noisy connections.
However, our method can learn to remove bad connections
by changing the weights of the graph.

Second, we combine Wikipedia and WordNet [53],
which is a lexical database for the English language, con-
taining 155,327 words organized in 175,979 synsets. If a
label is in the WordNet, we compute the similarities be-
tween the word and others using WUP similarity [54] and
pick the top 50 similar words as neighbors (the results did
not change for similar values). When a label is not in the
WordNet, we use the Wikipedia as before.

Table 3 shows the results on the test set of Open Im-
ages without representation learning. Notice that the per-
formances of all approaches are similar, only differing by
less than 0.02% on, when using all labels. However, wiki

Ny 0 05 1 2 Groups 1 2 3 g 5 | Al
mAP (A\y = 0.5) | 78.12 78.37 78.44 | 78.40 wiki 69.79 | 71.35 | 76.03 | 80.22 | 86.32 | 76.74
Y 0 05 1 2 wiki+wordnet | 69.81 | 71.17 | 76.02 | 80.27 | 86.24 | 76.72
mAP (A, = 1) 78.40 78.44 78.38 7817 co-occurrence | 69.91 | 71.36 | 75.94 | 80.15 | 86.23 | 76.72
k 3 5 7 Table 3: mAP score (%) of our proposed method (without end to
mAP (Ay =1, Ay = 0.5) 78.34 78.44 | 78.17 end training) on the Open Images test set, for using wikipedia vs

using wikipedia+wordnet vs estimating co-occurrence from data
itself for building the label graph.

performs slightly better than wiki+wordnet. This comes
from the fact that similarities in WordNet do not reflect co-
occurrences of labels in real images. For example, ‘dog’
and ‘cat’, which less frequently co-occur in images, have
higher similarity according to the WordNet than ‘dog’ and
‘human’, which co-occur in many images. For our co-
occurrence label graph, we observe high performance in
classes with least annotations, since extracting information
from image labels is less noisy than from the web for these
classes. Overall, the results show that our co-occurrence
method for building the graph is as effective as using ex-
ternal noisy knowledge on the web. On the other hand, as
Table 4 showed, not using co-occurrence label graph and
fixing its weights does not do as well as using it.

Ablation Study. Table 4 shows the ablation study results
of our method by fixing or removing different components.
Since labels that have few annotated images also have
few testing images, which makes the mAP improvement
less statistically meaningful, we report the performance on
group 5 that has the most annotated images. Notice that
with fixed or without similarity graph, our method per-
forms on par with Curriculum Labeling (85.91%) [3], which
shows the importance of our interactive learning scheme.
Using a fixed noisy label graph without refinement gives
low performance due to the noisy nature of connections
learned from limited labeled data. Finally, interactively
learning on both image and label graphs (with both similar-
ities being learned) obtains the best performance across dif-
ferent graph construction strategies. As the last row shows,
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Figure 3: mAP improvement (%) as a function of the percentage of
missing attributes in the CUB dataset.

Image Similarity Label Similarity mAP
Not used Not used 85.49
Fixed Learned 85.83
Learned Fixed 85.99
Learned Learned (co-occurrence) 86.26
Learned Learned (wiki) 86.32

Table 4: Ablation study on the Open Images dataset.

label graph can embed external knowledge into the learning
phase, which performs slightly better than co-occurrence.

Qualitative Results. Figure 2 shows qualitative results on
the test set. Our method can capture small objects in images
such as Mircrophone, Surfboard or even Hair, thanks to us-
ing related labels of semantically similar images. However,
our method could face difficulty finding abstract concepts
such as Grandparent or Musician. We conjecture such la-
bels depended on the context of an image itself and are hard
to transfer based on image similarity alone.

4.6. Results on CUB Dataset

To systematically evaluate the performance of our frame-
work as a function of the percentage of missing labels in all
images, we consider the problem of attribute prediction. We
experiment on the CUB dataset, which is a fine-grained im-
age dataset of 200 different bird species. Each image in the
dataset has an 312-dimensional binary attribute vector.

We select p fraction of attributes in each image uniformly
at random and drop their values to generate missing at-
tributes. We use our proposed framework to learn attribute
classifiers to predict missing attributes in images. To in-
vestigate the effect of using images from the same class,
we take each partially observed attribute vector and con-
catenate it with a one-hot encoding vector of the associated
class label, whose magnitude of its nonzero element is a.
This will only be used on our smoothness loss ¢,,, defined
in (5). A larger a favors selecting similar images from the
same class via the similarity learner. This is an advantage of
our method that easily incorporates side information, which
is not straightforward in other methods. We set the label
similarity to identity since attributes are often independent.

Figure 3 shows the mAP scores improvement of differ-
ent methods over the Logistic method for attribute predic-
tion as a function of different percentage of missing anno-
tations (for clarity, we do not show Latent Noise and Ws-

mAP improvement (%)
o
o

01/4/% (O b
Z

Figure 4: Improvement of mAP score (%) of different methods with
respect to the logistic regression on the MS-COCO dataset.

abie, which performed worse than other baselines). Notice
that with 90% missing attributes, our method achieves about
two percent higher mAP score compared to other meth-
ods. CNN-RNN treats missing annotations as absent la-
bels which results in poor performance for large fraction
of missing attributes. As the percentage of observed at-
tributes increases, the gap in the performance of methods
decreases. In general, we observe that our framework does
well with large number of missing attributes, thanks to the
manifold regularization which is crucial to prevent overfit-
ting (see supplementary material for more detailed results).
Finally, our framework with ¢ = 10 performs better than
a = 1, which shows that using images from the same class
for attribute learning leads to more accurate results.

4.7. Results on MS-COCO Dataset

Figure 4 shows the improvement of the mAP score of dif-
ferent methods with respect to the logistic regression base-
line. We observe that all methods that can deal with par-
tial labels have significant gain over the logistic baseline
while methods that require clean labels have no significant
improvement. Moreover, CNN-RNN has low performance
even compared to logistic as it treats missing labels as nega-
tives. This demonstrates that limited and noisy annotations
are not sufficient to learn good classifiers. Notice that our
method outperforms Curriculum Labeling and Latent Noise
by 0.38% and 0.88% respectively.

5. Conclusion

We addressed the problem of efficient end-to-end multi-
label CNN learning with partial labels on large-scale data.
We developed an interactive learning framework that con-
sists of a multi-label CNN classifier and an adaptive simi-
larity learning component that interact and improve the per-
formance of each other. By extensive experiments on the
large-scale Open Images dataset as well as CUB and MS-
COCO dataset, we showed that our framework improves the
state of the art in multi-label learning with partial labels.
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