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Figure 1. Reconstructing high-definition photo-realistic intensity images from pure events in end-to-end learning. Our events to super-

resolved intensity image reconstruction recovers more details with less artifacts in comparison to recent methods of EG [24] and EV [17].

Abstract

An event camera detects per-pixel intensity difference

and produces asynchronous event stream with low latency,

high dynamic range, and low power consumption. As a

trade-off, the event camera has low spatial resolution. We

propose an end-to-end network to reconstruct high resolu-

tion, high dynamic range (HDR) images directly from the

event stream. We evaluate our algorithm on both simulated

and real-world sequences and verify that it captures fine

details of a scene and outperforms the combination of the

state-of-the-art event to image algorithms with the state-of-

the-art super resolution schemes in many quantitative mea-

sures by large margins. We further extend our method by

using the active sensor pixel (APS) frames or reconstruct-

ing images iteratively.

1. Introduction

Event cameras, also known as neuromorphic cameras,

have successfully opened their path to the computer vi-

sion and robotics society for its low cost and high dynamic

sensing range with low latency and low power consump-

tion. It represents the changes of intensity for a pixel lo-

cation (x, y) as a plus or minus sign (σ) asynchronously

by checking the amount of intensity changes with a prede-

fined threshold. This stream-like representation, depending

on the scene and camera movement, can achieve µs order

of latency through accurate timestamps (t) and is expressed

per fired event in the form of (x, y, t, σ). This device has

garnered a lot of attention due to the high applicability in

systems requiring high dynamic range outputs with low la-

tency, and low power and low memory consumption con-

straints [15, 24, 17, 27, 5]. New applications for the event

cameras have emerged such as intensity image reconstruc-

tion or recovering geometric features such as optical flow or

depth from the event stream [1, 18, 10, 3, 22, 23].

Unfortunately, most commercially available event cam-

eras produce relatively low resolution event streams for

their efficiency. While there are number of proposals on

many applicationsestimating super-resolved intensity im-

ages from the events has been barely explored in the lit-

erature. To generate the high resolution images from the

event, one can combine a method to transfer events to inten-
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sity images with a super resolution algorithm for intensity

images [4, 21, 7, 14]. But these pipelined approaches are

sub-optimal in generating the high resolution images from

the events and may fail to reconstruct details of scenes. For

producing high fidelity high resolution images, we aim to

directly learn to estimate pixel-wise super-resolved inten-

sity from events in an end-to-end manner and demonstrate

that our method is able to super resolve images with rich

details and less artifacts, better than pipelined state of the

arts in both qualitative and quantitative analyses.

To the best of our knowledge, we are the first to model

super-resolving event data to higher-resolution intensity im-

ages in an end-to-end learning framework. We further ex-

tend our method to reconstruct more details by considering

APS frames as inputs or learning the network iteratively to

add details to an initial image.

2. Related Work

Event to intensity images. Early attempts in the applica-

tions of event cameras, consider relatively short periods of

the event stream data and direct accumulation of the plus

or minus events in two colors as a gradient interpreted out-

put [2]. Synthesising intensity images instead of the gra-

dient representation is originated from the task of simul-

taneously estimating the camera movement and mosaicing

them as a panoramic gradient image [10]. In their approach

the scene is static and the camera only has rotational move-

ments. By the Poisson integration they transfer a gradient

image to an intensity image. In [3], a bio-inspired network

structure of recurrently interconnected maps is proposed to

predict different visual aspects of a scene such as intensity

image, optical flow, and angular velocity from small rota-

tion movements. In [1], a joint estimation of optical flow

and intensity simultaneously in a variational energy mini-

mization scheme in a challenging dynamic movement set-

ting is proposed. However, their method propagates errors

as shadow-like artifacts in the generated intensity images.

A variational framework based on a denoising scheme

that filters incoming events iteratively is introduced in [18].

They utilized manifold regularization on the relative times-

tamp of events to reconstruct the image with more grayscale

variations in untextured areas. In [22], an asynchronous

high-pass filter is proposed to reconstruct videos in a com-

putationally efficient manner. This framework is originally

designed for complementing intensity frames with the event

information but is also capable of reconstructing images

from events without the help of APS frames.

Recent approaches use deep convolutional networks to

create photo-realistic images directly from the event stream

[24, 17]. Both approaches employ a U -net [19] as their

base architecture with modifications such as using condi-

tional generative adversarial neural networks [24] or using

a deep recurrent structure (up to 40 steps) together with

stacked ConvLSTM gates [17]. They further investigated

the possibility of reaching very high frame rates and using

the output intensity images for downstream applications.

Image super resolution (SR). Intensity image SR algo-

rithms can be largely categorized into single image SR

(SISR) [4, 14] or multiple image SR (MISR) also known as

video SR [21, 7]. SISR methods add details inferred from

the context of the given single low resolution (LR) image

while MISR further uses a sequence of images over time.

Since MISR uses more LR images to reconstruct the high

resolution image, it is generally more successful in recover-

ing missing details and higher frequency information. Since

we have a sequence of stacks, MISR is more similar to our

approach, although we aim to reconstruct one single image

each time. The learning based SR methods outperform pre-

vious methods by using deeper and wider networks while

utilizing the power of residual connections to prevent van-

ishing gradients [14, 7]. Many MISR methods use optical

flow representations among the input images as a supple-

mentary source of input to reach higher quality SR outputs

[21, 7]. Inspired by these methods, we design our SR sub-

network as described in Sec. 3.2.4.

3. Approach

We propose a fully convolutional network that takes a

sequence of events stacks near the timestamp of interest as

input, relates them in pairs with their optical flow obtained

by FNet and rectify the combination of the paired stacks

and the flow by EFR, then feeds them to the recurrent neu-

ral network based super-resolution network (SRNet) that

outputs hidden states and intermediate intensity outputs per

each stack. Finally, we mix the intermediate outputs from

multiple time stamps by Mix to construct a super resolved

intensity image. We briefly illustrate the structure in Fig. 2

and with the detailed data flow in Fig. 3 in Sec. 3.2.1. Be-

ginning with event stacking strategy, we describe the details

of our network architecture.

3.1. Event Stacking Method

The stream-like representation of events is sparse in spa-

tial domain and needs preparation to capture scene details

to be reconstructed by a convolutional neural network. De-

spite recent advances of the stacking methods [5, 23], our

network performs well with a simple stacking method such

as stacking based on the number of events (SBN) [24]. Em-

ploying the advanced stacking methods is straightforward

by minor modifications to the input blocks of our network.

With the SBN, starting from any timestamp in the event

stream, we count the number of events until we reach a pre-

defined number (Ne) and accumulate the events to form one

channel in the stack. We repeat this process c times for one

stack. Thus, each stack contains M = c × Ne events in
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Figure 2. Overview of our end-to-end event to super-resolved in-

tensity image framework. The input stacks SBNn+m and the cen-

tral stack SBNn are given to the FNet to create the optical flow

(Fn+m). The flow and stacks are concatenated and given to the

EFR to rectify the event features. Its output REn+m is given to

SRNet together with the previous state (Staten) to create interme-

diate intensity outputs In+m and the next state (Staten+m). All

intermediate intensity outputs are concatenated and given to the

mixer (Mix) network which creates the final output (On). Finally,

the output is compared to the training groundtruth (GT) using the

similarity loss (Sim) including Learned Perceptual Image Patch

Similarity (LPIPS) term and ℓ1 term to compute error (Err).

total and has the dimension of h×w×c, where h and w are

the width and height of the APS images, respectively. This

c-channel stack is fed into the network as an input. The cor-

responding APS frame is sampled at the timestamp of the

last event in the stack for the ground truth (GT). At each

channel, all pixel values are initially set to 128. If an event

is triggered at location (x, y), we replace the pixel value at

(x, y) in the same channel with 256 (positive event) or 0
(positive event). Since newly coming events can override

older events, the M needs to be carefully chosen to better

preserve spatio-temporal visual information. The frame rate

can be determined by both the Ne and the number of over-

lapping events between each stack over time.

We empirically choose to use 3, 000 events per stack in

which each stack has 3 channels. This number can be mod-

ified for the experiments with larger resolution event inputs

to ensure that the average number of events in stacks show

visually plausible outputs with fine details. However, since

the network is trained on diverse scenes which contain dif-

ferent numbers of local events, the network is not very sen-

sitive to the chosen number of events per stack at inference.

3.2. Network Architecture

We design the network architecture by three principles.

First, we take into account the characteristics of the input

and target (Sec. 3.2.1). Second, we have a sufficiently large

hypothesis space for the super-resolution network (SRNet)

to address various level of complexity of movements in a

scene (Sec. 3.2.4). Finally, we propose a novel objective

function that can add structural details while being away

from blur and artifacts (Sec. 3.2.6). We describe the details

of each component of our proposed network.

3.2.1 Overview

We consider a stream of events stacked for the input to our

network. In particular, for the input sequence of three stacks

(3S), the stacks are the one containing the nth APS times-

tamp (SBNn), the stack before it SBNn−m and the stack

after it (SBNn+m). We illustrate the network with these

inputs in Fig. 3 with detailed data flow through the sub-

networks. Note that the network can be used with the input

of any number of stacks in a sequence (e.g., 3 or 7).

Each stack has M (e.g., 3, 000) events and its end lo-

cation m will vary on the timeline of events based on the

amount of time it is required to fire M events. SBNn is the

central stack among the three sequences. It is fed to the net-

work after SBNn−m and the predicted intensity output is

corresponding to this stack. The SBNn+m and SBNn−m

stacks are M events away from the beginning or end of the

central stack respectively if there is no overlap (L = 0)

among the stacks (‘Non-overlapped’ input in Fig. 3). We

can also have overlapping stacks for creating higher frame-

rates; the end of the next stack will be M events after the

center minus the amount of overlap (M−L) (‘overlapped’

input in Fig. 3). More details on the overlapped stacking is

provided in the supplement.

SBNn+m and SBNn−m are fed separately with the

central stack to the optical flow estimation network (FNet)

to predict the optical flow (Fn+m or Fn−m) between the

stacks. These stacks of events are concatenated with the op-

tical flow obtained by the FNet and then rectified by an

event feature rectification network (EFR). The rectified

event stack (REn+m) is then given to the super-resolution

network (SRNet). The SRNet takes the previous state

(Staten) with the rectified events stack (REn+m) and cre-

ates the next state (Staten+m) of the sequential model and

a super-resolved intensity like output (In+m).

Since the stacks quantize continuous event stream into

separate inputs, each stack may not contain all necessary

details for reconstructing images. Thus, the intermediate in-

tensity outputs from all the stacks are then mixed by a Mixer

network (Mix) to reconstruct intensity image On with rich

details. For the initial stack, only the first stack is fed to the

EFR sub-network to create an initial Staten. The output

of Mix is given to the similarity network (Sim) to optimize

the parameters based on the error (Err).

3.2.2 Flow Network (FNet)

An unwanted downside of stacking the event stream is los-

ing temporal relation between the stacks. The lost temporal

relation between stacks can be partially recovered by using

a sequence of the stacks and the optical flow between each

pair of stacks as the optical flow reports how the triggered

events in the scene have moved and in which location the

changes have happened. The SBN stacking includes suf-

ficient edge information and can be used as an image-like

input to well-known learning-based optical flow estimation

algorithms. Thus, we do not finetune it but use a pretrained
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Figure 3. Detailed data flow in the proposed method. This example is based on third stack (SBNn+m), therefore the previous inputs,

optical flow, and intermediate intensity outputs are faded. The APS frame is resized to the size of output (On) for comparison

FNet for computational efficiency1. We use [9] as our flow

estimation network and call it as FNet.

3.2.3 Event Feature Rectification Network (EFR)

Another downside of stacking events is overwriting previ-

ous event information in fast triggering locations. The over-

written events result in a blurry stack of events and eventu-

ally lower quality reconstructions. To prevent overwriting

events, we concatenate two stack of events with the optical

flow and provide it to two convolutional layers called the

event feature rectification (EFR) network. By the EFR,

we progressively fuse the stacks over the event stream to

preserve details from each event.

The EFR helps to reconstruction images when two

stacks have events in a location visible to only one stack

which the optical flow cannot relate, the events will more

likely be maintained for the intensity reconstruction since

we use all three inputs by the EFR. Note that the cen-

tral stack is provided to this network without estimated flow

since there is no flow for it.

3.2.4 Super Resolution Network (SRNet)

The rectified events are now super resolved by our main net-

work called SRNet. We use a recurrent neural network for

the SRNet because each part of the event stream which we

stack captures details of the output image and they are orig-

inally continuous but quantized by the stacking method. To

alleviate the discontinuity, we utilize the internal memory

state of recurrent neural network to reconstruct different re-

gions with rich details in a continuous manner as the state

is updated internally by each incoming stack. Specifically,

a single event stack might partially miss important details

from previously fired events which are not in its stacking

range but have been captured by the previous stacks.

It has been shown that stacked events are capable of syn-

thesizing intensity images by deep neural networks [24, 17]

such as U -net [19]. Architecturally, we further extend the

1Finetuning FNet may further improve the output quality as the

stacked image has different visual signature from natural images.

idea by using ResNet [8] with 15 blocks in depth with

more filters and larger kernel size. In particular, follow-

ing the well-designed networks in MISR [14, 21, 6, 4], we

utilize the power of residual learning for super-resolving in-

tensity. We use large field of views inspired from the SISR

network [6] to transfer the rectified event features to SR in-

tensity generator (RNet-C). Its main task is to create an

initial SR intensity image state by the combination of trans-

posed convolutional operations.

The SRNet is designed to upscale the input RE while

adding intensity information. The overall structure of the

SRNet is illustrated in Fig. 4. We use the combination of

three residual networks (RNet−{A,B,D}) that are com-

posed of five ResNet blocks containing two convolutional

layers. These networks are shallower than RNet-C be-

cause they encode feature-like representations from previ-

ous states and not directly from the rectified events. The

output of RNet-A which performs as an upsampling en-

coder is subtracted from the output of RNet-C to create an

internal error (en), which measures how much the current

rectified event stack REn+m contributes in comparison to

the previous state Staten as

en = RNet-C(REn+m)−RNet-A(Staten). (1)

This error is given as an input to RNet-B which per-

forms as a general encoder. We define the the next

state (Staten+m) by the output of RNet-B summed with

RNet-C thus the current input (REn+m) is emphasized as

Staten+m = RNet-B(en) +RNet-C(REn+m). (2)

The Staten+m is given to a final decoder (RNet-D) to

make the intermediate intensity output (In+m) as

In+m = RNet-D(Staten+m). (3)

In general, the RNet-C adds new information from the cur-

rent stack to the previous state by adding details of the scene

missed by the previous stack. Even when there is no events

in some regions captured by the current stack but there are
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Figure 4. Detailed architecture of the proposed super resolving net-

work (SRNet) (Green-block in Fig. 2). Four main residual net-

works are designed to perform as a large encoder-decoder scheme.

RNet-A is used to update the hidden state while RNet-B and

RNet-D act as an encoder and decoder respectively to map the

hidden state as a super resolved intensity output (In+m).

scene details in the regions captured by the previous stack,

the previous state (Staten) holds that information through

RNet-A as its hidden state to reconstruct the scene details

in the regions rather missing. We detail other design param-

eters such as layer type, number of filters in the supplement.

3.2.5 Mixer Network (Mix)

The Mixer network is designed to augment the out-

puts (Ii) of the SRNet at different time locations

(i={n−m,n, n+m}) to reconstruct detail-rich intensity im-

age (On) at the central stack’s timestamp (n). This net-

work employs convolutional layers to reconstruct the inten-

sity image with fine details.

3.2.6 Similarity Loss (Sim)

Given a reconstructed image (O) and its GT (G), we define

a loss function with two terms. First, we use an unstructured

loss such as the ℓ1 norm to reconstruct overall sharper im-

ages as Lℓ1(O,G) = ‖O−G‖1 rather than ℓ2 which results

in smoothed edges with low frequency texture in output im-

ages. As the ℓ1 may lose the structural information of a

scene, we further leverage a criterion capable of compen-

sating the lack of structure by the Learned Perceptual Im-

age Patch Similarity (LPIPS) or perceptual similarity [26]

as the second term of our objective function. Specifically,

given a pair of images (O,G) encoded by a pretrained net-

work (e.g., AlexNet [11]), the near end features (Ĝl
hw) of

the lth layer are extracted while its activations are normal-

ized by the channel dimension (Hl,Wl). Then, each chan-

nel is scaled by a vector wl [26], and the ℓ2 distance is com-

puted. Finally, a spatial mean is computed over the image

axes (h,w) through all layers (l) for the LPIPS loss as

LLPIPS(O,G) =
∑

l
1

HlWl

∑
h,w ‖wl ⊙ (Ôl

hw − Ĝl
hw)‖

2
2. (4)

The final objective function, Lsim, is the combination of the

both terms with a balancing parameter λ as

Lsim(O,G) = Lℓ1(O,G) + λLLPIPS(O,G), (5)

which we minimize to learn the parameters.

4. Experiments and Analyses

For the empirical validation, we use generated sequences

using the event camera simulator (ESIM) [16] and four

challenging and diverse real-world public datasets.[1, 15,

22, 27]. We describe the details of our dataset in the sup-

plement. For the quantitative analyses, we use PSNR in dB

(logarithmic scale), the structural similarity [25] (SSIM) as

a fraction between zero (less similar) to one (fully similar),

the mean squared error (MSE), and the perceptual similar-

ity (LPIPS) as a metric to evaluate the similarity of the high

level features in two images (lower the value, more the simi-

larity). For each experiment, we train our network on a clus-

ter of 8 Titan-Xp GPUs. Batch size is 8 and initial learning

rate is 0.01 which is decayed by a factor of 10 at every half

of the remaining epochs of the given maximum number of

epochs (e.g., 50 in our experiments). We use λ = 0.01 for

all our experiments, otherwise mentioned.

4.1. Comparison with State of the Arts

We are the first to propose the task of direct reconstruc-

tion SR intensity image from events thus there are no di-

rectly comparable methods. So, we first down-sample our

outputs and compare to same-size intensity reconstruction

methods to evaluate the quality of our reconstruction. Then

we compare our method to the state-of-the-art intensity

reconstruction methods combined with the state-of-the-art

super-resolution (SR) methods.

Image reconstruction without super-resolution. We

compare down-sampled outputs of our method to the

state-of-the-art event to intensity image methods on seven

challenging real-world sequences from the Event Camera

dataset [15]. For notation brevity, we abbreviate the high

pass filter method [22] as HF, manifold regularization [18]

as MR, event to video generation [17] as EV and event

to intensity by conditional GANs as EG [24]. Following

the evaluation protocols in many real-world event datasets

[15, 22, 27], we consider APS frame as GT. We follow

the sequence split of [17] and use the reported performance

measures of HF, MR and EV. For EG, we used the authors’

reconstructed images to evaluate the performance.

As shown in Table 1, our proposed method outperforms

all other methods in LPIPS. It implies that the reconstructed

intensity image is perceptually better than the previous

methods. Our method also exhibits higher SSIM scores

on multiple sequences and comparable MSE errors to EG.

Similar to EV, we train the model only with the synthetic se-

quences and apply to real world sequences. In this challeng-

ing zero-shot data transfer setting without fine-tuning, our

method outperforms other methods on real-world events.

Note that the two runner up methods in LPIPS (EV and EG)

also use learning based framework.
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Table 1. Comparison to state-of-the-art intensity synthesis methods on real-world sequences [15]. Our method outperforms the previous

methods in all sequences in LPIPS, and on average in SSIM. The runner up method is underlined. We used the reported numbers in [17]

for HF [22], MR [18] and EV [17] while evaluated the authors’ reconstructed images for EG [24].

SSIM (↑) MSE (↓) LPIPS (↓)

Sequence HF [22] MR[18] EV[17] EG[24] Ours HF [22] MR[18] EV[17] EG[24] Ours HF [22] MR[18] EV[17] EG[24] Ours

dynamic 6dof 0.39 0.52 0.46 0.48 0.44 0.10 0.05 0.14 0.03 0.05 0.54 0.50 0.46 0.45 0.42

boxes 6dof 0.49 0.45 0.62 0.45 0.61 0.08 0.10 0.04 0.03 0.02 0.50 0.53 0.38 0.48 0.32

poster 6dof 0.49 0.54 0.62 0.61 0.63 0.07 0.05 0.06 0.01 0.02 0.45 0.52 0.35 0.42 0.29

shapes 6dof 0.50 0.51 0.80 0.56 0.79 0.09 0.19 0.04 0.03 0.01 0.61 0.64 0.47 0.51 0.38

office zigzag 0.38 0.45 0.54 0.67 0.68 0.09 0.09 0.03 0.01 0.01 0.54 0.50 0.41 0.36 0.29

slider depth 0.50 0.50 0.58 0.54 0.59 0.06 0.07 0.05 0.02 0.02 0.50 0.55 0.44 0.42 0.34

calibration 0.48 0.54 0.70 0.67 0.71 0.09 0.07 0.02 0.01 0.01 0.48 0.47 0.36 0.42 0.24

Average 0.46 0.50 0.62 0.57 0.64 0.08 0.09 0.05 0.02 0.02 0.52 0.53 0.41 0.43 0.33

Table 2. Quantitative comparison of super-resolved intensity

images from events directly (Ours) to events to intensity image

synthesis (EV) combined with SISR [4] and MISR[7] methods.

Method PSNR (↑) SSIM (↑) MSE (↓) LPIPS (↓)

EV + SISR 2× 11.292 0.384 0.348 0.394

EV + MISR 2× 11.309 0.385 0.347 0.392

Ours 2× 16.420 0.600 0.108 0.172

EV + SISR 4× 11.168 0.396 0.089 0.543

EV + MISR 4× 11.293 0.384 0.087 0.396

Ours 4× 16.068 0.560 0.028 0.253

Super-resolved image reconstruction. We now combine

state-of-the-art event to intensity reconstruction algorithms

with state-of the-art SR methods and compare our method

to them. For the state-of-the-art event to intensity algo-

rithm, we use EV2 since it is the runner up method that

outperforms EG in SSIM and LPIPS in most of the se-

quences and on average (Table 1). For super resolution

algorithms, we use two recent super-resolution algorithms;

one for SISR [4] and another for MISR [7]. As shown in Ta-

ble 2, our method outperforms the state-of-the-art intensity

reconstruction algorithms combined with the state-of-the-

art SR algorithms in all metrics by large margins. We use

30 sequences from our generated dataset by ESIM.

For qualitative analyses, we demonstrate intensity re-

construction by EV, the combination of EV+MISR and our

method on real-world and simulated sequences in the Fig.

5 and Fig. 1. Note that our method reconstructs fine de-

tails from events. In Fig. 1, EG does not always reconstruct

scene details from the events and sometimes hallucinates

jittery artifacts. While EV reconstructs scene details from

the events relatively better than EG, it creates a shadow-like

artifact and darkens some areas of the scene. Furthermore,

in the presence of hot pixels in the data, EV does not fil-

ter them; white or black dots appear in the results by EV

while our method mostly filters them out without explicit

operations to remove. We present more results in the sup-

plementary material.

We further conduct experiments on the sequences from

another popular dataset [1] and qualitatively compare our

method to EG and EV in Fig. 6. Our method can reveal de-

2Publicly available at https://github.com/uzh-rpg/rpg_e2vid.

Events EV EV+SR 2× Ours 2× APS

EV EV+SR 2× Ours 2× APS

Events EV EV+SR 2× Ours 2× APS

EV EV+SR 2× Ours 2× APS

Events EV EV+SR 2× Ours 2× APS

EV EV+SR 2× Ours 2× APS

Figure 5. Qualitative comparison among synthesizing SR intensity

images directly (ours) and super-resolving as a downstream ap-

plication to intensity image estimation (EV+MISR). Highlighted

boxes are zoomed for better comparison.

tails that is not visible in constructing the same sized images

such as fingertips or texture.

4.2. Analysis on Loss Terms (Lsim)

We ablate the loss function to investigate the effect of

each terms on image reconstruction quantitatively in Ta-
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Events EG EV Ours Events EG EV Ours

Figure 6. Qualitative comparison of our downscaled outputs to EV ands EG on sequences from [1] (without APS). Our method is able to

reconstruct structural details from inputs as small as 128×128 pixels. More results are provided in the supplementary material.

Table 3. Ablation study of the loss function.

Loss PSNR (↑) SSIM (↑) MSE (↓) LPIPS (↓)

Lℓ1 15.33 0.517 0.034 0.485

LLPIPS 10.06 0.388 0.454 0.232

Lsim (Full) 15.03 0.528 0.032 0.258

ℓ1 LPIPS ℓ1+LPIPS ℓ1 LPIPS ℓ1+LPIPS

Figure 7. Effect of loss function on reconstruction quality. ℓ1 norm

smooths edges, perceptual similarity (LPIPS) adds structural de-

tails but also creates artifacts. The combination of ℓ1+LPIPS

(Lsim) shows less artifacts while adding structural details.

Figure 8. Effect of number of stacks and scale factor.

Scale # Stacks PSNR (↑) SSIM (↑) MSE (↓) LPIPS (↓)

2×
3S 15.46 0.554 0.323 0.191

7S 16.42 0.600 0.108 0.172

4×
3S 15.03 0.528 0.032 0.258

7S 16.06 0.560 0.028 0.253

ble 3 and qualitatively in Fig. 7. All analyses and ab-

lation studies were performed with the simulated data for

reliable quantitative analyses with high quality GT. Using

only Lℓ1 term, we observe better performance in PSNR but

leads to visually less sharp images thus low performance

in all other metrics. Using only LLPIPS term, we observe

that images look visually acceptable but with the downside

of lower PSNR with dot-like artifacts on regions with less

events and on the edges. The final proposed loss function

Lsim performs the best in SSIM and MSE with a slight de-

crease in PSNR and LPIPS but creates visually the most

plausible images.

4.3. Analysis on Super Resolution Parameters

We evaluate the effect of two SR parameters; the upscale

factor (2×, 4×) and size of the sequence of stacks (3S, 7S)

on the output quality. We summarize the results in Table 8.

Comparing 3S and 7S, we observe that 7S results in better

performance in all metrics. It implies that a longer recur-

sion on the sequences may produce more reliable hidden

Events EV Ours 2× APS

Figure 9. Image reconstruction comparison in extreme HDR sce-

narios [15, 22]. Our method synthesizes more details while pro-

ducing less artifacts compared to EV and the APS. Please zoom in

and compare the suggested red boxes.

states and results in better quality output. Also, when us-

ing longer sequences, it is more likely to capture events that

happen only for a short period of time since unrolling on a

larger recursion helps to keep information of short events. It

is more challenging to super resolve events to larger images

as it is not trivial for an algorithm to handle large spatial

locations where no events exist. Although the MSE has de-

creased, compared to 2×, it is because the number in the

denominator is larger due to the size of the image and not

much related to the output quality.

4.4. Qualitative Analysis on HDR Sequences

One challenging scenario using the event camera is to

capture events under extreme dynamic range. We qualita-

tively analyze outputs under such extreme conditions and

compare them to EV in Fig. 9. Normal cameras including

the APS frame have much lower dynamic range and either

create black regions (when the camera misses to sense in-

tensity details under its sensing range as shown in the top

row) or white regions (when light floods in the camera and

the camera cannot sense higher than its sensing range as

shown in the bottom row). We observe that our method

can address a higher range and reveal more structural de-

tails that EV and the APS frame fail to capture.

4.5. Analysis on the Failure Modes

Failure cases are mostly related to missing background

details over long trajectories when the foreground objects
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Table 4. Temporal stability error evaluation (Eq. 6). Plus sign in-

dicates blind post-processing [13]. Our method (3S, 7S) does not

directly consider temporal consistency however longer sequences

of stacks (7S) are more consistent. EV[17] uses up to L=40 in-

put stacks and is initially more consistent. However, we get lower

errors even on our smallest sequence after post-processing.

Ewarp(↓) APS 3S 7S EV [17] 3S+ 7S+ EV [17]+

dynamic 6dof 0.61 20.35 16.54 8.78 3.42 3.71 5.56

boxes 6dof 1.81 16.69 17.51 15.69 3.58 3.95 9.36

poster 6dof 1.10 18.80 22.66 17.74 4.41 5.91 5.56

shapes 6dof 0.44 24.00 21.23 16.66 2.80 2.63 8.33

office zigzag 0.08 3.62 2.19 0.72 0.36 0.34 0.44

slider depth 0.02 0.57 0.34 0.19 0.06 0.04 0.12

calibration 0.36 15.46 9.72 2.99 1.31 1.24 1.62

Average 0.63 14.21 12.89 8.97 2.28 2.55 5.20

have rapid movements. In such sequences, our method only

recovers parts of the scene that are in a limited temporal dis-

tance to our central stack. We showcase and further analyze

a number of failure modes in the supplementary material.

5. Extensions

Video reconstruction. We aim to reconstruct a single im-

age not a video. So, the temporal consistency between

frames are out of our interest thus not always held. To

extend our method to video reconstruction, we utilize a

blind post-processing method [12] to encode temporal con-

sistency among the intensity images and demonstrate the

qualitative results in a supplementary video. To quantita-

tively evaluate the temporal consistency, we follow the tem-

poral stability metric from [13], which is based on the flow

warping error between two consecutive synthesized frames

(Ft, Ft+1):

Ewarp(Ft, Ft+1) =
1

∑
N

i=1 M
(i)
t

∑N

i=1 M
(i)
t ||F

(i)
t − F̂

(i)
t+1||

2
2, (6)

where F̂t+1 is the warped frame of Ft+1 and Mt ∈ {0, 1} is

the non-occlusion mask based on [20] to ensure that the cal-

culations are applied only in the non-occluded regions. We

compute the optical flow used for warping the frame and

the non-occlusion map based on the APS frames for evalu-

ating the warping errors of all methods compared and APS

as they are the GT. We summarize the results with different

size of sequences (3S and 7S) in comparison to EV in Table

4. While our methods (3S and 7S) are worse than EV due

to lack of temporal consistency, a simple post-processing

(3S+ and 7S+) significantly improves the performance,

outperforming both the EV [17] and its post-processed ver-

sion (EV+) by large margins.

Complementary and Duo-Pass. To evaluate our method

in a challenging set-up, we do not use APS frame to super

resolve images. Using APS frame, we can further improve

quality of output. We name the extension by using APS

frame as Complementary [22] or Comp. We train the initial

state of network with the low resolution (LR) APS frame as

Ours (main) Ours (Duo-Pass) APS Ours (Comp.)

Figure 10. Extensions. Duo-Pass that iterates the SR twice and

Complementary (Comp.) that uses events with APS frames.

a central stack (Sec. 3.2.1) and provide events as its nearby

stacks. We observe that the network learns to add higher

resolution details from the LR input.

However, the Complementary method is sensitive to the

quality of central stack, specifically if it is blurry or noisy,

its artifacts are propagated to the final reconstruction. To

avoid such shortcoming, we propose another extension that

does not use APS frames but use two iterations or passes

from events only, called Duo-Pass. In the first pass, we

use the main scheme to create intensity images from events

only. In the second pass, we use the synthesized intensity

image from the first pass as the central stack similar to that

we use the APS frame in the Complementary method. By

the Duo-Pass, we are able to further recover HR details that

the first pass misses without the help of the APS frame. We

qualitatively compare the results by our method (main), by

the Duo-Pass and by the Comp. in Fig. 10. We provide

more results in the supplementary material.

6. Conclusion

We propose to directly reconstruct higher resolution in-

tensity images from events by an end-to-end neural net-

work. We demonstrate that our method reconstructs high

quality images with fine details in comparison to the state

of the arts in both the same size image reconstruction and

super-resolution. We further extend our method to the Duo-

Pass which performs an extra pass to add missing details

and the Complementary that utilizes APS frames in addition

to events. We also reconstruct videos by our method with a

simple post-processing to ensure temporal consistency.
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