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Abstract

Building a large image dataset with high-quality object

masks for semantic segmentation is costly and time con-

suming. In this paper, we introduce a principled semi-

supervised framework that only uses a small set of fully su-

pervised images (having semantic segmentation labels and

box labels) and a set of images with only object bound-

ing box labels (we call it the weak set). Our framework

trains the primary segmentation model with the aid of an

ancillary model that generates initial segmentation labels

for the weak set and a self-correction module that improves

the generated labels during training using the increasingly

accurate primary model. We introduce two variants of

the self-correction module using either linear or convolu-

tional functions. Experiments on the PASCAL VOC 2012

and Cityscape datasets show that our models trained with

a small fully supervised set perform similar to, or better

than, models trained with a large fully supervised set while

requiring ∼7x less annotation effort.

1. Introduction

Deep convolutional neural networks (CNNs) have been

successful in many computer vision tasks including image

classification [28, 19, 76], object detection [45, 34, 43], se-

mantic segmentation [4, 71, 9], action recognition [14, 25,

49, 55], and facial landmark localization [53, 69, 75]. How-

ever, the common prerequisite for all these successes is the

availability of large training corpora of labeled images. Of

these tasks, semantic image segmentation is one of the most

costly tasks in terms of data annotation. For example, draw-

ing a segmentation annotation on an object is on average

∼8x slower than drawing a bounding box and ∼78x slower

than labeling the presence of objects in images [5]. As a

result, most image segmentation datasets are orders of mag-

nitude smaller than image-classification datasets.

In this paper, we mitigate the data demands of semantic

segmentation with a semi-supervised method that leverages

cheap object bounding box labels in training. This approach
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reduces the data annotation requirements at the cost of re-

quiring inference of the mask label for an object within a

bounding box.

Current state-of-the-art semi-supervised methods typi-

cally rely on hand-crafted heuristics to infer an object mask

inside a bounding box [41, 12, 26]. In contrast, we pro-

pose a principled framework that trains semantic segmen-

tation models in a semi-supervised setting using a small

set of fully supervised images (with semantic object masks

and bounding boxes) and a weak set of images (with only

bounding box annotations). The fully supervised set is first

used to train an ancillary segmentation model that predicts

object masks on the weak set. Using this augmented data a

primary segmentation model is trained. This primary seg-

mentation model is probabilistic to accommodate the uncer-

tainty of the mask labels generated by the ancillary model.

Training is formulated so that the labels supplied to the pri-

mary model are refined during training from the initial an-

cillary mask labels to more accurate labels obtained from

the primary model itself as it improves. Hence, we call

our framework a self-correcting segmentation model as it

improves the weakly supervised labels based on its current

probabilistic model of object masks.

We propose two approaches to the self-correction mech-

anism. Firstly, inspired by Vahdat [56], we use a func-

tion that linearly combines the ancillary and model pre-

dictions. We show that this simple and effective approach

is the natural result of minimizing a weighted Kullback-

Leibler (KL) divergence from a distribution over segmenta-

tion labels to both the ancillary and primary models. How-

ever, this approach requires defining a weight whose opti-

mal value should change during training. With this motiva-

tion, we develop a second adaptive self-correction mecha-

nism. We use CNNs to learn how to combine the ancillary

and primary models to predict a segmentation on a weak set

of images. This approach eliminates the need for a weight-

ing schedule.

Experiments on the PASCAL VOC and Cityscapes

datasets show that our models trained with a small portion

of fully supervised set achieve a performance comparable

to (and in some cases better than) the models trained with
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all the fully supervised images.

2. Related Work

Semantic Segmentation: Fully convolutional networks

(FCNs) [37] have become indispensable models for seman-

tic image segmentation. Many successful applications of

FCNs rely on atrous convolutions [65] (to increase the re-

ceptive field of the network without down-scaling the im-

age) and dense conditional random fields (CRFs) [27] (ei-

ther as post-processing [6] or as an integral part of the seg-

mentation model [73, 33, 48, 36]). Recent efforts have fo-

cused on encoder-decoder based models that extract long-

range information using encoder networks whose output is

passed to decoder networks that generate a high-resolution

segmentation prediction. SegNet [4], U-Net [46] and Re-

fineNet [32] are examples of such models that use dif-

ferent mechanisms for passing information from the en-

coder to the decoder.1 Another approach for capturing

long-range contextual information is spatial pyramid pool-

ing [29]. ParseNet [35] adds global context features to the

spatial features, DeepLabv2 [7] uses atrous spatial pyramid

pooling (ASPP), and PSPNet [71] introduces spatial pyra-

mid pooling on several scales for the segmentation problem.

While other segmentation models may be used, we em-

ploy DeepLabv3+ [9] as our segmentation model because

it outperforms previous CRF-based DeepLab models using

simple factorial output. DeepLabv3+ replaces Deeplabv3’s

[8] backbone with the Xception network [10] and stacks it

with a simple two-level decoder that uses lower-resolution

feature maps of the encoder.

Robust Training: Training a segmentation model from

bounding box information can be formulated as a prob-

lem of robust learning from noisy labeled instances. Pre-

vious work on robust learning has focused on classifica-

tion problems with a small number of output variables.

In this setting, a common simplifying assumption mod-

els the noise on output labels as independent of the in-

put [40, 39, 42, 52, 70]. However, recent work has lifted this

constraint to model noise based on each instance’s content

(i.e., input-dependent noise). Xiao et al. [63] use a simple

binary indicator function to represent whether each instance

does or does not have a noisy label. Misra et al. [38] rep-

resent label noise for each class independently. Vahdat [56]

proposes CRFs to represent the joint distribution of noisy

and clean labels extending structural models [57, 58] to

deep networks. Ren et al. [44] gain robustness against noisy

labels by reweighting each instance during training whereas

Dehghani et al. [13] reweight gradients based on a confi-

dence score on labels. Among methods proposed for label

1SegNet [4] transfers max-pooling indices from encoder to decoder,

U-Net [46] introduces skip-connections between encoder-decoder net-

works and RefineNet [32] proposes multipath refinement in the decoder

through long-range residual blocks.

correction, Veit et al. [59] use a neural regression model to

predict clean labels given noisy labels and image features,

Jiang et al. [24] learn curriculum, and Tanaka et al. [54] use

the current model to predict labels. All these models have

been restricted to image-classification problems and have

not yet been applied to image segmentation.

Semi-Supervised Semantic Segmentation: The focus of

this paper is to train deep segmentation CNNs using bound-

ing box annotations. Papandreou et al. [41] propose an

Expectation-Maximization-based (EM) algorithm on top of

DeepLabv1 [6] to estimate segmentation labels for the weak

set of images (only with box information). In each training

step, segmentation labels are estimated based on the net-

work output in an EM fashion. Dai et al. [12] propose an

iterative training approach that alternates between generat-

ing region proposals (from a pool of fixed proposals) and

fine-tuning the network. Similarly, Khoreva et al. [26] use

an iterative algorithm but rely on GrabCut [47] and hand-

crafted rules to extract the segmentation mask in each itera-

tion. Our work differs from these previous methods in two

significant aspects: i) We replace hand-crafted rules with an

ancillary CNN for extracting probabilistic segmentation la-

bels for an object within a box for the weak set. ii) We use

a self-correcting model to correct for the mismatch between

the output of the ancillary CNN and the primary segmenta-

tion model during training.

In addition to box annotations, segmentation models

may use other forms of weak annotations such as im-

age pixel-level [60, 62, 22, 3, 17, 61, 15], image label-

level [68], scribbles [64, 31], point annotation [5], or web

videos [20]. Recently, adversarial learning-based meth-

ods [23, 51] have been also proposed for this problem. Our

framework is complimentary to other forms of supervision

or adversarial training and can be used alongside them.

3. Methods

Our goal is to train a semantic segmentation network

in a semi-supervised setting using two training sets: i) a

small fully supervised set (containing images, segmentation

ground-truth and object bounding boxes) and ii) a weak set

(containing images and object bounding boxes only). An

overview of our framework is shown in Fig. 1. There are

three models: i) The Primary segmentation model gener-

ates a semantic segmentation of objects given an image. ii)

The Ancillary segmentation model outputs a segmentation

given an image and bounding box. The model generates

an initial segmentation for the weak set, which aids train-

ing of the primary model. iii) The Self-correction mod-

ule refines the segmentations generated by the ancillary and

current primary model for the weak set. Both the ancil-

lary and the primary models are based on DeepLabv3+ [9].

However, our framework is general and can use any existing

segmentation model.
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Figure 1: An overview of our segmentation framework consisting of three models: i) Primary segmentation model generates a

semantic segmentation of objects given an image. This is the main model that is subject to the training and is used at test time.

ii) Ancillary segmentation model outputs a segmentation given an image and bounding box. This model generates an initial

segmentation for the weak set, which will aid training the primary model. iii) Self-correction module refines segmentations

generated by the ancillary model and the current primary model for the weak set. The primary model is trained using the

cross-entropy loss that matches its output to either ground-truth segmentation labels for the fully supervised examples or soft

refined labels generated by the self-correction module for the weak set.

In Sec. 3.1, we present the ancillary model, and in

Sec. 3.2, we show a simple way to use this model to train

the primary model. In Sec. 3.3 and Sec. 3.4, we present two

variants of self-correcting model.

Notation: xxx represents an image, bbb represents object

bounding boxes in an image, and yyy = [yyy1, yyy2, . . . , yyyM ]
represents a segmentation label where yyym ∈ [0, 1]C+1

for m ∈ {1, 2, . . . ,M} is a one-hot label for the mth

pixel, C is the number of foreground labels augmented with

the background class, and M is the total number of pix-

els. Each bounding box is associated with an object and

has one of the foreground labels. The fully supervised

dataset is indicated as F = {(xxx(f), yyy(f), bbb(f))}Ff=1 where

F is the total number of instances in F . Similarly, the

weak set is noted by W = {(xxx(w), bbb(w))}Ww=1. We use

p(yyy|xxx;φφφ) to represent the primary segmentation model and

panc(yyy|xxx,bbb;θθθ) to represent the ancillary model. φφφ and θθθ are

the respective parameters of each model. We occasionally

drop the denotation of parameters for readability. We as-

sume that both ancillary and primary models define a distri-

bution of segmentation labels using a factorial distribution,

i.e., p(yyy|xxx;φφφ) =
∏M

m=1 pm(yyym|xxx;φφφ) and panc(yyy|xxx,bbb;θθθ) =
∏M

m=1 panc,m(yyym|xxx,bbb;θθθ) where each factor (pm(yyym|xxx;φφφ)
or panc,m(yyym|xxx,bbb;θθθ)) is a categorical distribution (over

C + 1 categories).

3.1. Ancillary Segmentation Model

The key challenge in semi-supervised training of seg-

mentation models with bounding box annotations is to infer

the segmentation of the object inside a box. Existing ap-

proaches to this problem mainly rely on hand-crafted rule-

based procedures such as GrabCut [47] or an iterative label

refinement [41, 12, 26] mechanism. This latter procedure

typically iterates between segmentation extraction from the

image and label refinement using the bounding box infor-

mation (for example, by zeroing-out the mask outside of

boxes). The main issues with such procedures are i) bound-

ing box information is not directly used to extract the seg-

mentation mask, ii) the procedure may be suboptimal as it is

hand-designed, and iii) the segmentation becomes ambigu-

ous when multiple boxes overlap.

In this paper, we take a different approach by design-

ing an ancillary segmentation model that forms a per-pixel

label distribution given an image and bounding box annota-

tion. This model is easily trained using the fully supervised

set (F ) and can be used as a training signal for images in

W . At inference time, both the image and its bounding

box are fed to the network to obtain panc(yyy|xxx
(w), bbb(w)), the

segmentation labels distribution.

Our key observation in designing the ancillary model

is that encoder-decoder-based segmentation networks typ-

ically rely on encoders initialized from an image-

classification model (e.g., ImageNet pretrained models).

This usually improves the segmentation performance by

transferring knowledge from large image-classification

datasets. To maintain the same advantage, we augment an

encoder-decoder-based segmentation model with a parallel

bounding box encoder network that embeds bounding box

information at different scales (See Fig. 2).

The input to the bounding box encoder is a 3D tensor

representing a binarized mask of the bounding boxes and a

3D shape representing the target dimensions for the encoder

output. The input mask tensor is resized to the target shape

then passed through a 3×3 convolution layer with sigmoid
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Figure 2: An overview of the ancillary segmentation

model. We modify an existing encoder-decoder segmen-

tation model by introducing a bounding box encoder that

embeds the box information. The output of the bounding

box encoder after passing through a sigmoid activation acts

as an attention map. Feature maps at different scales from

the encoder are fused (using element-wise-multiplication)

with attention maps, then passed to the decoder.

activations. The resulting tensor can be interpreted as an at-

tention map which is element-wise multiplied to the feature

maps generated by the segmentation encoder. Fig. 2 shows

two paths of such feature maps at two different scales, as in

the DeepLabv3+ architecture. For each scale, an attention

map is generated, fused with the corresponding feature map

using element-wise multiplication, and fed to the decoder.

For an image of size W × H × 3, we represent its object

bounding boxes using a binary mask of size W×H×(C+1)
that encodes the C + 1 binary masks. The cth binary mask

at a pixel has the value 1 if it is inside one of the bounding

boxes of the cth class. A pixel in the background mask has

value 1 if it is not covered by any bounding box.

The ancillary model is trained using the cross-entropy

loss on the full dataset F :

max
θθθ

∑

f∈F

log panc(yyy
(f)|xxx(f), bbb(f);θθθ), (1)

which can be expressed analytically under the factorial dis-

tribution assumption. This model is held fixed for the sub-

sequent experiments.

3.2. No Self­Correction

We empirically observe that the performance of our an-

cillary model is superior to segmentation models that do not

have box information. This is mainly because the bounding

box information guides the ancillary model to look for the

object inside the box at inference time.

The simplest approach to training the primary model is

to train it to predict using ground-truth labels on the fully

supervised set F and the labels generated by the ancillary

model on the weak set W . For this “no-self-correction”

model the Self-correction module in Fig. 1 merely copies

the predictions made by the ancillary segmentation model.

Training is guided by optimizing:

max
φφφ

∑

f∈F

log p(yyy(f)|xxx(f);φφφ) + (2)

∑

w∈W

∑

yyy

panc(yyy|xxx
(w), bbb(w);θθθ) log p(yyy|xxx(w);φφφ),

where the first term is the cross-entropy loss with one-hot

ground-truth labels as target and the second term is the

cross-entropy with soft probabilistic labels generated by

panc as target. Note that the ancillary model parameterized

by θθθ is fixed. We call this approach the no self-correction

model as it relies directly on the ancillary model for training

the primary model for examples in W .

3.3. Linear Self­Correction

Eq. 2 relies on the ancillary model to predict label distri-

bution on the weak set. However, this model is trained using

only instances of F without benefit of the data in W . Sev-

eral recent works [41, 12, 26, 54, 56] have incorporated the

information in W by using the primary model itself (as it is

being trained on both F and W) to extract more accurate

label distributions on W .

Vahdat [56] introduced a regularized Expectation-

Maximization algorithm that uses a linear combination of

KL divergences to infer a distribution over missing labels

for general classification problems. The main insight is

that the inferred distribution q(yyy|xxx,bbb) over labels should be

close to both the distributions generated by the ancillary

model panc(yyy|xxx,bbb) and the primary model p(yyy|xxx). How-

ever, since the primary model is not capable of predicting

the segmentation mask accurately early in training, these

two terms are reweighted using a positive scaling factor α:

min
q

KL(q(yyy|xxx,bbb)||p(yyy|xxx))+αKL(q(yyy|xxx,bbb)||panc(yyy|xxx,bbb)). (3)

The global minimizer of Eq. 3 is obtained as the weighted

geometric mean of the two distributions:

q(yyy|xxx,bbb) ∝
(

p(yyy|xxx)pαanc(yyy|xxx,bbb)
)

1
α+1 . (4)

Since both panc(yyy|xxx,bbb) and p(yyy|xxx) decompose into a prod-

uct of probabilities over the components of yyy, and since

the distribution over each component is categorical, then

q(yyy|xxx,bbb) =
∏M

m=1 qm(yyym|xxx,bbb) is also factorial where the

parameters of the categorical distribution over each com-

ponent are computed by applying softmax activation to the
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linear combination of logits coming from primary and an-

cillary models using σ
(

(

lllm+α lllancm

)

/
(

α+1
)

)

. Here, σ(.)

is the softmax function and, lllm and lllancm are logits generated

by primary and ancillary models for the mth pixel.

Having fixed q(yyy|xxx(w), bbb(w)) on the weak set in each it-

eration of training the primary model, we can train the pri-

mary model using:

max
φφφ

∑

F

log p(yyy(f)|xxx(f);φφφ) + (5)

∑

W

∑

yyy

q(yyy|xxx(w), bbb(w)) log p(yyy|xxx(w);φφφ).

Note that α in Eq. 3 controls the closeness of q to p(yyy|xxx)
and panc(yyy|xxx,bbb). With α = ∞, we have q = panc(yyy|xxx,bbb)
and the linear self-correction in Eq. 5 collapses to Eq. 2,

whereas α = 0 recovers q = p(yyy|xxx). A finite α maintains q
close to both p(yyy|xxx) and panc(yyy|xxx,bbb). At the beginning of

training, panc(yyy|xxx,bbb) cannot predict the segmentation label

distribution accurately. Therefore, we define a schedule for

α where α is decreased from a large value to a small value

during training of the primary model.

This corrective model is called the linear self-correction

model as it uses the solution to a linear combination of

KL divergences (Eq. 3) to infer a distribution over latent

segmentation labels.2 As the primary model’s parameters

are optimized during training, α biases the self-correction

mechanism towards the primary model.

3.4. Convolutional Self­Correction

One disadvantage of linear self-correction is the hyper-

parameter search required for tuning the α schedule during

training. In this section, we present an approach that over-

comes this difficulty by replacing the linear function with a

convolutional network that learns the self-correction mech-

anism. As a result, the network automatically tunes the

mechanism dynamically as the primary model is trained. If

the primary model predicts labels accurately, this network

can shift its predictions towards the primary model.

Fig. 3 shows the architecture of the convolutional self-

correcting model. This small network accepts the logits

generated by panc(yyy|xxx,bbb) and p(yyy|xxx) models and generates

the factorial distribution qconv(yyy|xxx,bbb;λλλ) over segmentation

labels whereλλλ represents the parameters of the subnetwork.

The convolutional self-correction subnetwork consists of

two convolution layers. Both layers use a 3×3 kernel and

ReLU activations. The first layer has 128 output feature

maps and the second has feature maps based on the number

of classes in the dataset.

2In principal, logits of qm(yyym|xxx,bbb) can be obtained by a 1×1 convo-

lutional layer applied to the depth-wise concatenation of lll and lllanc with a

fixed averaging kernel. This originally motivated us to develop the convo-

lutional self-correction model in Sec. 3.4 using trainable kernels.

The challenge here is to train this subnetwork such that

it predicts the segmentation labels more accurately than ei-

ther panc(yyy|xxx,bbb) or p(yyy|xxx). To this end, we introduce an

additional term in the objective function, which trains the

subnetwork using training examples in F while the primary

model is being trained on the whole dataset:

max
φφφ,λλλ

∑

F

log p(yyy(f)|xxx(f);φφφ) + (6)

∑

W

∑

yyy

qconv(yyy|xxx
(w), bbb(w);λλλ) log p(yyy|xxx(w);φφφ) +

∑

F

log qconv(yyy
(f)|xxx(f), bbb(f);λλλ),

where the first and second terms train the primary model

on F and W (we do not backpropagate through q in the

second term) and the last term trains the convolutional self-

correcting network.

Because the qconv subnetwork is initialized randomly, it

is not able to accurately predict segmentation labels on W

early on during training. To overcome this issue, we pro-

pose the following pretraining procedure:

1. Initial training of ancillary model: As with the previ-

ous self-correction models, we need to train the ancil-

lary model. Here, half of the fully supervised set (F )

is used for this purpose.

2. Initial training of conv. self-correction network: The

fully supervised data (F ) is used to train the primary

model and the convolutional self-correcting network.

This is done using the first and last terms in Eq. 6.

3. The main training: The whole data (F and W) are

used to fine-tune the previous model using the objec-

tive function in Eq. 6.

The rationale behind using half of F in stage 1 is that if

we used all F for training the panc(yyy|xxx,bbb) model, it would

train to predict the segmentation mask almost perfectly on

this set, therefore, the subsequent training of the convolu-

tional self-correcting network would just learn to rely on

panc(yyy|xxx,bbb) . To overcome this training issue, the second

half of F is held out to help the self-correcting network to

learn how to combine panc(yyy|xxx,bbb) and p(yyy|xxx).

4. Experiments

In this section, we evaluate our models on the PASCAL

VOC 2012 and Cityscapes datasets. Both datasets contain

object segmentation and bounding box annotations. We

split the full dataset annotations into two parts to simulate

a fully and semi-supervised setting. Similar to [9, 41],

performance is measured using the mean intersection-over-

union (mIOU) across the available classes.
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Figure 3: Convolutional self-correction model learns refin-

ing the input label distributions. The subnetwork receives

logits from the primary and ancillary models, then concate-

nates and feeds the output to a two-layer CNN.

Training: We use the public Tensorflow [1] imple-

mentation of DeepLabv3+ [9] as the primary model. We

use an initial learning rate of 0.007 and train the models

for 30,000 steps from the ImageNet-pretrained Xception-65

model [9].3 For all other parameters we use standard set-

tings suggested by other authors. At evaluation time, we

apply flipping and multi-scale processing for images as in

[9]. We use 4 GPUs, each with a batch of 4 images.

We define the following baselines in all our experiments:

1. Ancillary Model: This is the ancillary model, intro-

duced in Sec. 3.1, predicts semantic segmentation la-

bels given an image and its object bounding boxes.

This model is expected to perform better than other

models as it uses bounding box information.

2. No Self-correction: This is the primary model trained

using the model introduced in Sec. 3.2.

3. Lin. Self-correction: This is the primary model

trained with linear self-correction as in Sec. 3.3.

4. Conv. Self-correction: The primary model trained

with the convolutional self-correction as in Sec. 3.4.

5. EM-fixed Baseline: Since our linear self-correction

model is derived from a regularized EM model [56],

we compare our model with Papandreou et al. [41]

which is also an EM-based model. We implemented

their EM-fixed baseline with DeepLabv3+ for fair

comparison. This baseline achieved the best results in

[41] for semi-supervised learning.

For linear self-correction, α controls the weighting in

the KL-divergence bias with large α favoring the ancillary

model and small α favoring the primary model. We ex-

plored different starting and ending values for α with an

exponential decay in-between. We find that a starting value

of α = 30 and the final value of α = 0.5 performs well for

both datasets. This parameter setting is robust as moderate

changes of these values have little effect.

3Note that, we do not initialize the parameters from a MS-COCO pre-

trained model.

4.1. PASCAL VOC Dataset

In this section, we evaluate all models on the PASCAL

VOC 2012 segmentation benchmark [16]. This dataset con-

sists of 1464 training, 1449 validation, and 1456 test images

covering 20 foreground object classes and one background

class for segmentation. An auxiliary dataset of 9118 train-

ing images is provided by [18]. We suspect, however, that

the segmentation labels of [18] contain a small amount of

noise. In this section, we refer to the union of the original

PASCAL VOC training dataset and the auxiliary set as the

training set. We evaluate the models mainly on the valida-

tion set and the best model is evaluated only once on the test

set using the online evaluation server.

In Table 1, we show the performance of different variants

of our model for different sizes of the fully supervised set

F . The remaining examples in the training set are used as

W . We make several observations from Table 1: i) The an-

cillary model that predicts segmentation labels given an im-

age and its object bounding boxes performs well even when

it is trained with a training set as small as 200 images. This

shows that this model can also provide a good training sig-

nal for the weak set that lacks segmentation labels. ii) The

linear self-correction model typically performs better than

no self-correction model supporting our idea that combin-

ing the primary and ancillary model for inferring segmen-

tation labels results in better training of the primary model.

iii) The convolutional self-correction model performs com-

parably or better than the linear self-correction while elimi-

nating the need for defining an α schedule. Fig. 4 shows the

output of these models.

# images in F 200 400 800 1464

Ancillary Model 81.57 83.56 85.36 86.71

No Self-correction 78.75 79.19 80.39 80.34

Lin. Self-correction 79.43 79.59 80.69 81.35

Conv. Self-correction 78.29 79.63 80.12 82.33

Table 1: Ablation study of models on the PASCAL VOC

2012 validation set using mIOU for different sizes of F .

For the last three rows, the remaining images in the training

set is used as W , i.e. W + F = 10582.

Table 2 compares the performance of our models against

different baselines and published results. In this experi-

ment, we use 1464 images as F and 9118 images originally

from the auxiliary dataset as W . Both self-correction mod-

els achieve similar results and outperform other models.

Surprisingly, our semi-supervised models outperform

the fully supervised model. We hypothesize two possi-

ble explanations for this observation. Firstly, this may be

due to label noise in the 9k auxiliary set [18] that nega-

tively affects performance of Vanilla DeepLapv3+. As ev-
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idence, Fig. 5 compares the output of the ancillary model

with ground-truth annotations and highlights some of im-

properly labeled instances. Secondly, the performance

gain may also be due to explicit modeling of label uncer-

tainty and self-correction. To test this hypothesis, we train

vanilla DeepLabv3+ on only 1.4K instances in the origi-

nal PASCAL VOC 2012 training set4 and obtain 68.8%

mAP on the validation set. However, if we train the con-

volutional self-correction model on the same training set

and allow the model to refine the ground truth labels using

self-correction5, we get mAP as high as 76.88% (the con-

volutional self correction on top of bounding boxes yields

75.97% mAP). This indicates that modeling noise with ro-

bust loss functions and allowing for self-correction may sig-

nificantly improve the performance of segmentation mod-

els. This is consonant with self-correction approaches that

have been shown to be effective for edge detection [66, 2],

and is in contrast to common segmentation objectives which

train models using cross-entropy with one-hot annotation

masks. Very similar to our approach and reasoning, [67]

uses logits to train a lightweight pose estimation model us-

ing knowledge distillation technique.

Unfortunately, the state-of-the-art models are still us-

ing the older versions of DeepLab. It was infeasible for

us to either re-implement most of these approaches us-

ing DeepLabv3+ or re-implement our work using old ver-

sions. The only exception is EM-fixed baseline [41]. Our

re-implementation using DeepLabv3+ achieves 79.25% on

the validation set while the original paper has reported

64.6% using DeepLabv1. In the lower half of Table 2, we

record previously published results (using older versions

of DeepLab). A careful examination of the results show

that our work is superior to previous work as our semi-

supervised models outperform the fully supervised model

while previous work normally do not.

Finally, comparing Table 1 and 2, we see that with

F = 200 and W = 10382, our linear self-correction model

performs similarly to DeepLabv3+ trained with the whole

dataset. Using the labeling cost reported in [5], this theoret-

ically translates to a ∼7x reduction in annotation cost.

4.2. Cityscapes Dataset

In this section we evaluate performance on the

Cityscapes dataset [11] which contains images collected

from cars driving in cities during different seasons. This

dataset has good quality annotations, however some in-

stances are over/under segmented. It consists of 2975 train-

ing, 500 validation, and 1525 test images covering 19 fore-

ground object classes (stuff and object) for the segmentation

4The auxiliary set is excluded to avoid potentially noisy labels.
5For this experiment 1.1K images are used as F and 364 images as

W . For W , we let self-correction model to refine the original ground-

truth labels.

Data Split
Method Val Test

F W
1464 9118 No Self-Corr. 80.34 81.61

1464 9118 Lin. Self-Corr. 81.35 81.97

1464 9118 Conv. Self-Corr. 82.33 82.72

1464 9118 EM-fixed Ours [41] 79.25 -

10582 - Vanilla DeepLabv3+ [9] 81.21 -

1464 9118 BoxSup-MCG [12] 63.5 -

1464 9118 EM-fixed [41] 65.1 -

1464 9118 M ∩ G+ [26] 65.8 -

1464 9118 FickleNet [30] 65.8 -

1464 9118 Song et al. [50] 67.5 -

10582 - Vanilla DeepLabv1 [6] 69.8 -

Table 2: Results on PASCAL VOC 2012 validation and

test sets. The last three rows report the performance of pre-

vious semi-supervised models with the same annotation.

# images in F 200 450 914

Ancillary Model 79.4 81.19 81.89

No Self-correction 73.69 75.10 75.44

Lin. Self-correction 73.56 75.24 76.22

Conv. Self-correction 69.38 77.16 79.46

Table 3: Ablation study of our models on Cityscapes vali-

dation set using mIOU for different sizes of F . For the last

three rows, the remaining images in the training set are used

as W , i.e., W + F = 2975.

Data Split
Method mIOU

F W
914 2061 No Self-Corr. 75.44

914 2061 Lin. Self-Correction 76.22

914 2061 Conv. Self-Correction 79.46

914 2061 EM-fixed [41] 74.97

2975 - Vanilla DeepLabv3+ours 77.49

Table 4: Results on Cityscapes validation set. 30% of the

training examples is used as F , and the remaining as W .

task. However, 8 of these classes are flat or construction la-

bels (e.g., road, sidewalk, building, and etc.), and a very few

bounding boxes of such classes cover the whole scene. To

create an object segmentation task similar to the PASCAL

VOC dataset, we use only 11 classes (pole, traffic light, traf-

fic sign, person, rider, car, truck, bus, train, motorcycle, and

bicycle) as foreground classes and all other classes are as-

signed as background. Due to this modification of labels,

we report the results only on the validation set, as the test

set on server evaluates on all classes. We do not use the

coarse annotated training data in the dataset.
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Input Image ground-truth Ancillary Model No Self-correction Lin. Self-correction Conv. Self-correction

Figure 4: Qualitative results on the PASCAL VOC 2012 validation set. The last four columns represent the models in

column 1464 of Table 1. The Conv. Self-correction model typically segments objects better than other models.

Input Image Ground-truth Ancillary Heatmap Input Image Ground-truth Ancillary Heatmap

Figure 5: Qualitative results on the PASCAL VOC 2012 auxiliary (the weak set). The heatmap of a single class for the

ancillary model is shown for several examples. The ancillary model can successfully correct the labels for missing or over-

segmented objects in these images (marked by ellipses).

Table 3 reports the performance of our model for an in-

creasing number of images as F , and Table 4 compares

our models with several baselines similar to the previous

dataset. The same conclusion and insights observed on the

PASCAL dataset hold for the Cityscapes dataset indicating

the efficacy of our self-corrective framework.

5. Conclusion

In this paper, we have proposed a semi-supervised

framework for training deep CNN segmentation models us-

ing a small set of fully labeled and a set of weakly labeled

images (boxes annotations only). We introduced two mech-

anisms that enable the underlying primary model to cor-

rect the weak labels provided by an ancillary model. The

proposed self-correction mechanisms combine the predic-

tions made by the primary and ancillary model either using

a linear function or trainable CNN. The experiments show

that our proposed framework outperforms previous semi-

supervised models on both the PASCAL VOC 2012 and

Cityscapes datasets. Our framework can also be applied to

the instance segmentation task [21, 74, 72], but we leave

further study of this to future work.
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