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Figure 1. Non-Line-of-Sight (NLOS) Physics-Based 3D Human Pose Estimation. A pulsed laser and a transient sensor record the time

light takes to travel from a point on a wall to the person hidden from sight (left). Given a sequence of 3D transient measurements from an

optical NLOS system (top right), our method estimates a 3D pose sequence using a physics-based policy (bottom right).

Abstract

We describe a method for 3D human pose estimation

from transient images (i.e., a 3D spatio-temporal histogram

of photons) acquired by an optical non-line-of-sight (NLOS)

imaging system. Our method can perceive 3D human pose

by ‘looking around corners’ through the use of light in-

directly reflected by the environment. We bring together

a diverse set of technologies from NLOS imaging, human

pose estimation and deep reinforcement learning to con-

struct an end-to-end data processing pipeline that converts

a raw stream of photon measurements into a full 3D human

pose sequence estimate. Our contributions are the design of

data representation process which includes (1) a learnable

inverse point spread function (PSF) to convert raw transient

images into a deep feature vector; (2) a neural humanoid

control policy conditioned on the transient image feature

and learned from interactions with a physics simulator; and

(3) a data synthesis and augmentation strategy based on

depth data that can be transferred to a real-world NLOS

imaging system. Our preliminary experiments suggest that

our method is able to generalize to real-world NLOS mea-

surement to estimate physically-valid 3D human poses.1

1. Introduction

Our goal is to develop a vision-based human pose esti-

mation technique capable of inferring the 3D pose sequence

1Project page: https://marikoisogawa.github.io/project/nlos pose

of a person without direct line of sight from the sensing de-

vice (see Fig. 1). To this end, this work brings together, for

the first time, state-of-the-art techniques in computational

imaging, human pose estimation, humanoid control, and

deep reinforcement learning – all under one system archi-

tecture. From computational imaging, we use volumetric

reconstruction algorithms that efficiently process transient

measurements (a 3D spatio-temporal histogram of photons)

captured from a non-line-of-sight (NLOS) imaging system.

From vision-based pose estimation and humanoid control,

we make use of deep reinforcement learning in a physics

simulator to learn an image feature-conditioned 3D human

pose policy that abides by the laws of physics. All compo-

nents are integrated into a single end-to-end learnable archi-

tecture which takes the raw transient images, converts them

to a deep feature representation using a learnable inverted

point spread function (PSF), and uses a neural humanoid

control policy conditioned on the deep feature to estimate

physically valid 3D human poses. In short, our proposed

end-to-end system models the complete flow of information

from the photon-level all the way to the high-level cognitive

task of 3D human pose estimation.

In order to capture the actions of a person around a cor-

ner, we employ a NLOS imaging technique using a pulsed

laser and a time-of-flight sensor [30]. The imaging process

involves sending light pulses towards a visible surface, and

measuring the travel time of light reflected back in response;

this represents a “transient image” [31, 4, 16]. The tran-

sient image used here is a 3D volume that encodes the ar-

17013



rival of individual photons over a spatial region (first two di-

mensions) and over time (third dimension); see Fig. 1 for a

sequence of transient images. Optical NLOS imaging at vis-

ible or near-IR wavelengths offers several advantages, such

as the ability to image at long-ranges [3], reconstruct sur-

faces at micron-scales [32], and robustly perform imaging

for multiple objects with different BRDFs [13].

While NLOS imaging gives us the ability to look around

corners, the raw transient measurements acquired by a

NLOS system have several unique properties that make 3D

human pose estimation difficult. In order to attain fast im-

age acquisition necessary for 3D human pose understand-

ing, existing NLOS solutions limit the resolution of the tran-

sient image in both space and time [13]. This makes it dif-

ficult to capture small shape details and fast motion, both of

which are important for estimating a human pose sequence.

Furthermore, due to the light lost after multiple scattering

events, very few photons reach the sensor and the acquired

transient image can therefore be very noisy. All of these

characteristics make it very challenging to estimate 3D hu-

man pose directly from the transient image.

Due to the noisy nature of transient images, it is impor-

tant to make use of prior information about the body and its

dynamics to help solve the 3D human pose estimation prob-

lem. In particular, we have prior knowledge about the struc-

ture of the human body (e.g., arms, head, and legs are con-

nected to the torso) and we also know that human pose must

abide by the laws of physics. Based on this prior knowl-

edge, we make use of a parametrized humanoid model and a

physics-based deep reinforcement learning approach to es-

timate 3D human pose from a sequence of transient images.

Inspired by [35], we first define a Markov Decision pro-

cess (MDP) where the state is defined as the current pose of

a humanoid model and a sequence of transient images, the

action is defined as the target joint angles of a humanoid, the

environment is a physics simulator (i.e., MuJoCo [28]) and

the reward function is an imitation-based objective function

[18]. By solving the MDP via reinforcement learning, we

are able to learn an optimal policy that maps states to ac-

tions. In our scenario, the policy function encodes how the

humanoid should move such that it best explains the 3D

pose information captured in the transient image sequence.

The deep neural network design used to implement the

policy of the MDP is a critical representational element of

the system, as it must have the computational components

necessary to map a 3D transient image to a vector of hu-

manoid joint angles. Inspired by recent NLOS imaging

techniques, we model our network based on existing recon-

struction algorithms used to process transient images, and

introduce P2PSF Net: a neural network that learns “cor-

rections” that improve the NLOS image reconstruction pro-

cess. A deep feature computed by the P2PSF Net is then

passed to a bi-directional recurrent neural architecture to

ensure that the output of the policy (the next joint position)

follows the laws of motion and matches demonstrated hu-

man pose dynamics. The ambitious goals of the policy is

to estimate fine-scale 3D human pose from transient images

and overcome the resolution limits and noisy characteristics

of NLOS imaging.

As mentioned above, the MDP formulation for human

pose estimation makes use of an imitation-based reward

function which requires a large amount of annotated data

in the form of transient images and a corresponding 3D hu-

man pose sequence. As a practical matter, current NLOS

imaging systems are quite costly to build and non-trivial to

calibrate. As such, the need for a large amount of annotated

data and the cost of collecting such data are at odds with

each other. While we do believe that these practical hurdles

will be resolved through new innovations over time, for this

work, we address them by synthesizing pseudo-transient

images using the 3D body volume recovered with a depth

camera. To learn our MDP policy, we rely solely on this

synthetic data synchronized with ground truth 3D human

pose acquired by a motion capture system.

Synthesizing transient images from depth maps for train-

ing can create a large domain gap between the training and

test data distributions. To ensure that we minimize the size

of this domain gap, it is critical to implement principled

data augmentation techniques based on the physics of the

imaging process, e.g., reproducing the noise characteristics

associated with real transient images. We introduce several

augmentation techniques to make the 3D human pose esti-

mation policy able to handle real-world NLOS data.

To summarize, our contributions are as follows:

(1) We are the first to propose an end-to-end data processing

pipeline that models information flow from optical NLOS

transient measurements to 3D human pose estimation.

(2) We present a novel policy network architecture that in-

tegrates a inverse point spread function (PSF), transient im-

ages, and human pose as one deep neural network.

(3) We describe a method for generating pseudo (i.e., syn-

thetic) transient images from depth images. We propose

several critical processes for augmenting pseudo-transient

images to help the learned 3D human pose policy to gener-

alize better to real-world data.

(4) We provide extensive experimentation with both syn-

thetic and real transient images and show that our model

outperforms other baseline methods.

2. Related Work

NLOS Imaging and Its Applications. NLOS imaging has

received significant attention recently [1, 2, 3, 6, 8, 9, 10,

12, 13, 17, 30, 14, 21, 27, 29, 32, 36]. This includes a

wide variety of solutions, in terms of hardware systems

and reconstruction algorithms, that operate in different parts

of the electromagnetic spectrum. Most NLOS solutions
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work with visible (380-740 nm) or near-IR (740-1500 nm)

light [3, 13, 32]; we refer to these as optical NLOS sys-

tems. Others choose to operate at longer wavelengths, in-

cluding long-wave IR (8-15 um) [14], terahertz (millime-

ter scale) [21], WiFi and radio frequency (RF) (centimeter

scale) [10], or even sound waves [12].

Operating in a specific part of the spectrum affects the

nature of the NLOS signal that can be used for pose esti-

mation. For example, RF or WiFi signals enable through-

the-wall pose estimation [1, 10, 36], since longer electro-

magnetic waves tend to pass through objects; however, as

highlighted in Fig. 2, this also comes at a number of fun-

damental limitations when estimating pose dynamics: the

spatial and angular resolution must be limited, making it

hard to distinguish small objects or motions; objects tend to

behave specularly at long wavelengths, presenting a chal-

lenge when attempting to form images; RF signals can be

highly attenuated when passing through thick objects; and

RF signals are blocked entirely when passing through other

surfaces, like metal or water. As a result, they cannot always

be applied to scenes shown in Fig. 2 (a), (c) and (d).

Rather than using RF signals to attempt imaging through

walls, most NLOS works choose to operate in the optical

domain and image around corners. This is done by re-

flecting light off of walls to indirectly illuminate a hidden

scene, and measuring the time light takes to return to the

wall with transient sensors, e.g., single photon avalanche

diodes (SPADs). Amongst these works, many attempt to

reconstruct 3D volumes [6, 13, 17, 30] where each voxel

represents the scene’s reflectivity at a 3D location; or com-

pute a surface representation [29, 32], offering the potential

for more accurate reconstructions. Even regular cameras

can be used to track a person walking around in a room un-

der either passive [2] or active [8, 9, 27] illumination.

Data-driven methods for optical NLOS imaging have

also received some attention, e.g., to discretely classify the

pose of a human from raw transient measurements [24] or

form NLOS images with a regular camera [27]. Network ar-

chitectures have also been proposed for denoising transient

measurements from SPADs, in the context of line-of-sight

imaging [11]. However, there has been no prior work ad-

dressing the task of learning full physics-based 3D human

pose estimation in a NLOS context.

Physics Based 3D Human Pose Estimation. Enforc-

ing physics-based on constraints on human pose dynam-

ics is used commonly for simulated humanoid control

[18, 19, 20, 34, 35]. These methods use deep reinforcement

learning (DeepRL) to learn control policies that can repro-

duce humanoid motion inside a physics simulator. Among

these methods, [34, 35] use the optical flow of egocentric

videos as additional inputs to the motion policy to estimate

physically-valid human poses. We use a similar RL-based

pose estimation framework proposed in [35] for its ability to

Sensor

Wall
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/Water Wall
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Through-the-wall
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Visible/near-IR
Around-the-corner

✔ ✔       ✔

Figure 2. Overview of WiFi/RF (i.e., through-the-wall) and

visible/near-IR (i.e., around-the-corner) NLOS human pose esti-

mation. (a) The person is hidden from view in a nearby corridor,

but seen indirectly by reflecting light off of a visible surface. (b)

The person is hidden in an enclosed room, which can only be ac-

cessed with WiFi/RF that pass through walls. (c) The person is

within a partially-enclosed space that can be accessed through ei-

ther method. (d) The walls are either too thick or made from a

material that prevents WiFi and RF signals from passing through.

estimate physically-accurate human poses with only limited

amounts of visually information. However, the transient im-

ages that we use as input present many new challenges when

learning the policy, which we address in this paper.

3. Methodology

There are three key ideas behind our method. First, to

model physically-valid human pose, we use a humanoid

model inside a physics simulator and model hidden 3D hu-

man pose as the result of a humanoid control policy condi-

tioned on the input transient images (Sec. 3.1). Second, to

make our model applicable to real captured data, we synthe-

size “pseudo-transient” images as training data which repli-

cates the visual characteristics of real transient measure-

ments (Sec. 3.2). Third, to enhance our pose estimation,

we further introduce P2PSF Net that improves the NLOS

imaging process (Sec. 3.3).

3.1. Physicsbased 3D Pose Estimation Framework

Given a sequence of transient images τ1:T , the goal of

our physics-based pose estimation pipeline is to predict a

physically-valid pose sequence p1:T . As shown in Fig. 3,

the pipeline contains two main parts: (1) We use a fea-

ture extractor consisting of the NLOS imaging pipeline

and P2PSF Net to extract transient features ψ1:T from the

transient images τ1:T ; (2) We use a humanoid policy con-

ditioned on the transient features ψ1:T to control the hu-

manoid inside a physics simulator and generate the pose se-

quence p1:T underlying the transient images. In this section,

we will focus on part 2, i.e., humanoid control, and leave de-

tails on how to extract transient features (part 1) to Sec. 3.2

and 3.3.

Following [35], we formalize the task of estimating a
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Figure 3. Our DeepRL based photons to 3D human pose estimation framework under the laws of physics.

pose sequence p1:T from a transient image sequence τ1:T
with a Markov Decision process (MDP). The MDP is de-

fined by a tuple M = (S,A, P,R, γ) of states, actions,

transition dynamics, a reward function, and a discount fac-

tor. As Fig. 3 shows, at each time step, the humanoid agent

samples an action at from a policy π(at|st) whose input

state st contains both the visual context φt (defined later)

and the humanoid state zt (i.e., position and velocity of the

human model joints). Next, the environment generates the

next state st+1 through physics simulation and gives the

agent a reward rt based on how well the humanoid’s 3D

pose aligns with the ground-truth. To solve this MDP, we

apply the PPO policy gradient method [25] to obtain the

optimal policy π∗ that maximizes the expected discounted

return E[
∑T

t=1
γt−1rt]. At test time, starting from some

initial state s1, we roll out the policy π∗ to generate state

sequence s1:T , from which we extract the output pose se-

quence p1:T . In the following, we will discuss the details of

each component.

State st consists of the state of the humanoid zt and the

visual context φt. zt consists of the pose pt (root posi-

tion/orientation and joint angles) and velocity vt (root lin-

ear/angular velocities and joint velocities). The visual con-

text φt is extracted from the transient feature ψ1:T with a

bi-directional LSTM (BiLSTM) as shown in Fig. 3. During

training, we set the starting state z1 to the ground-truth ẑ1.

Since we have no access to the ground truth at test time, we

learn a regressor F that maps the visual context φt to its

corresponding state zt.

Action at specifies the target joint angles of the

Proportional-Derivative (PD) controller for each degree of

freedom (DoF) of the humanoid joints except for the root.

The joint torques are computed based on the stable PD con-

trollers in [26] using the specified target joint angles at.

Policy πθ(at|st) is represented by a Gaussian distribution

N (µ; Σ) with a fixed diagonal covariance matrix treated as

hyperparameters. We use a θ-parametrized multilayer per-

ceptron (MLP) with two hidden layers (300, 200) and ReLU

activations to model the mapping from st to the mean µt.

Reward function. To encourage the policy to output a pose

sequence p1:T that matches the ground-truth p̂1:T , we use

the reward function proposed in [35]. The specific design of

the reward function is given in the supplementary materials.

3.2. PseudoTransient Image

Before introducing our transient data synthesis from

depth maps (Sec. 3.2.2), we provide background on the

NLOS imaging procedure used in this work in Sec. 3.2.1.

3.2.1 Background: Confocal NLOS Imaging

Confocal NLOS imaging refers to a specialized raster-

scanning procedure for capturing transient measure-

ments [17]. Measurements are the result of illuminating and

imaging a common point (x′, y′) on a visible surface. Af-

ter illuminating this point with a pulse laser, light scatters

to hidden regions of an environment and returns back to the

wall at a later instant of time. A SPAD measures the tran-

sient response at this same point, represented as a histogram

of photon arrival times [16]. This procedure is repeated for

a uniform and planar 2D grid of points across the surface;

the collection of transients is stored as a 3D transient image

τ(x, y, t).
The objective of NLOS imaging is to convert this 3D

transient τ(x′, y′, t) into a discretized reconstruction vol-

ume ρ(x, y, z), which represents the reflectivity at every

point (x, y, z) in space. The presence of an object in voxel

(x, y, z) produces a non-zero reflectance value ρ(x, y, z),
where the wall is located at z = 0.

After resampling the transient measurements τ along the

time dimension (τ̃ = Rt{τ}) and resampling the recon-

struction volume ρ along the depth dimension (ρ̃ = Rz{ρ}),

the forward image formation model for confocal NLOS im-

ages becomes a simple 3D convolution operation [17]:

τ̃ = h ∗ ρ̃, (1)
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where the hidden volume ρ̃ is convolved with a known 3D

point spread function (PSF) represented by h. This PSF h

describes the transient response of a single scatterer.

Equivalently, we can rewrite this convolution in matrix-

vector form as follows:

τ = R−1
t F−1ĤFRzρ, (2)

where we vectorize volumes τ and ρ. The matrix F repre-

sents a 3D discrete Fourier transform and Ĥ is a diagonal

matrix representing the Fourier transform of the PSF h.

The NLOS imaging process reconstructs a 3D volume

ρ∗ from a transient image τ by inverting Eq. 2 and solving a

3D deconvolution procedure (e.g., using the Wiener filter):

ρ∗ = R−1
z F−1

[

Ĥ∗

|Ĥ|2 + 1

α

]

︸ ︷︷ ︸

the inverse PSF

FRtτ , (3)

where a user-defined parameter α controls how sensitive the

inverse PSF is to noise.

3.2.2 Pseudo-Transient Image Synthesis

We propose a procedure for synthesizing pseudo-transient

images to generate annotated training data for our pose es-

timator. This involves using a motion capture (MoCap) sys-

tem to obtain 3D ground truth human pose, which is syn-

chronized with a depth camera to capture depth images used

for synthesizing pseudo-transient images.

Given a depth map d(x, y), we compute a corresponding

synthesized reflectance volume for our scene: ρs(x, y, z) =
a when z = d(x, y), and zero otherwise. The scalar

a = 100 is a constant value representing the amount of light

reflected by voxels in the volume.2 We then convert the syn-

thesized volume ρs into transient measurements τ by using

the image formation model described in Eq. 2.

Note, however, that the image formation model is cur-

rently incomplete, since it does not model all character-

istics of real-world transient measurements. For dynamic

scenes (e.g., a person walking around in a room), acquisi-

tion times must be short. Raster scanning transient mea-

surements, therefore, is affected by motion, and the number

of sampled points on the wall may be limited. The sensors

used for NLOS imaging (e.g., SPADs) are also affected by

different types of sensor noise.

To close the domain gap that exists between the synthe-

sized data and the real transient measurements, we intro-

duce Poisson noise, temporal blur, temporal shifts, and tem-

poral re-sampling into the image formation model.

Poisson noise. At low light levels, the number of photons

detected by a SPAD approximately follow Poisson noise

2Though we assume uniform reflectance in this paper, an intensity im-

age could be used to encode non-uniform reflectance information.

characteristics [16]. We therefore apply Poisson noise to

our synthetic transient measurements, as a post-process op-

eration on Eq. 2.

Temporal blur. The temporal profile of a transient mea-

surement is affected by jitter and the shape of the laser

pulse. The result is that the transient measurements become

blurred in the time domain. Before the Poisson noise step,

we introduce temporal blur by convolving the transients

measurements with a Gaussian [16]. The standard devia-

tion of the Gaussian is characterized by its full width at half

maximum (FWHM), which is reported to be 70 picoseconds

for the real-world NLOS data used in this work [13].

Temporal shift. The arrival times of photons are corre-

lated with the distance of the hidden person from the wall.

We augment our data by biasing the depth values by a con-

stant amount d prior to synthesizing pseudo-transient im-

ages, which temporally shifts the transient images. In our

experiments, we make use of five levels of shifts, augment-

ing the training data up to a factor of five.

Temporal re-sampling. Confocal NLOS imaging requires

raster scanning a visible surface point by point. The me-

chanics of current systems impose limits on the speed of

this raster scanning procedure. For example, we make use

of NLOS data sampled at 32×32 locations at a frame rate of

only 4 Hz [13]. Since points and corresponding transients

are scanned sequentially, performance of pose estimation

can be affected by fast moving body parts.

We propose a procedure to temporally re-sample tran-

sient data. First, to simulate the raster scanning procedure,

we capture depth maps at 30 Hz, convert them to pseudo-

transient measurements, and simulate raster-scanned mea-

surements by down-sampling the result to 4 Hz. Second,

we up-sample the pseudo-transient data from 4 Hz back to

30 Hz. Each transient image is a collection of transients

scanned from time tk to tk + 1

4
, where tk = k

4
represents

the start time of the kth frame (in seconds). To generate a 30
Hz transient sequence, we simply assemble transients cap-

tured within the same time range, but set the start time of

the kth frame to tk = k
30

. For real transient images used

at test time, we also perform above procedure to up-sample

them to 30 Hz to be compatible with the humanoid policy.

3.3. P2PSF Net: Photon to Inverse PSF Network

To predict 3D human pose from transient images, as dis-

cussed in Sec. 3.1, Our DeepRL based framework needs a

feature extractor to obtain transient feature ψt from tran-

sient image τt. We model the feature extractor by incorpo-

rating aspects of the confocal NLOS imaging process (de-

scribed in Sec. 3.2.1) into our feature extractor network.

Note that learning to estimate 3D human pose from tran-

sient images is challenging for two key reasons: (1) the tran-

sient images are noisy, have low spatial resolution, and are

recorded at slow frame rates; (2) the inverse PSF, labeled
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in Eq. 3, makes several simplifying assumptions about the

NLOS imaging process.

To overcome these challenges, we propose P2PSF Net:

the photon-to-inverse-PSF network. Its objective is to adjust

the inverse PSF volume used in the confocal NLOS recon-

struction process (e.g., to help handle realistic sensor noise,

calibration errors, motion during the acquisition period).

P2PSF Net is a 3D volume-to-volume network with nine 3D

convolution layers (see Fig. 3). It also has two residual con-

nections, which are inspired by past works [5, 22]. Given

a transient image of resolution (x, y, t) = 32 × 32 × 64,

the network outputs a volume (x, y, d) = 128 × 64 × 64,

matching the size of the inverse PSF volume used in confo-

cal NLOS imaging.

To extract transient features ψt , we first reconstruct the

reflectance volume ρ∗ following the procedure used in con-

focal NLOS imaging (Eq. 3) with the modification that we

add the output of P2PSF Net as a corrective volume to the

inverted PSF volume. Given the reconstructed reflectance

volume ρ∗, we then generate a 2D heat map by applying a

single max pooling layer across the depth axis of the vol-

ume. The 2D heat map is then passed to a ResNet-18 [5]

pretrained on ImageNet [23] to extract ψt.

4. Experimental Settings

4.1. Datasets

Pseudo-Transient Image Dataset. We generated a large

set of synthetic pseudo-transient images from MoCap data.

The dataset is 1 hour long and has 103200 frames with 30

FPS. It consists of five subjects performing various com-

plex motions: walking, jumping, turning, bending back-

ward/forward, rotating, and transitioning between all of

these motions. Our method does not require segmenting

the pose sequences or labeling the actions.

Real Captured Transient Image Dataset. To further

showcase our methods applicability, we also test our

method on actual transient images [13]. This is a challeng-

ing dataset since it contains a different subject and the data

acquisition conditions are different compared to the training

data. This test data also contains significant noise, sam-

ples a sparse grid (32 × 32), and records measurements

at a low frame-rate (i.e., 4 Hz). The person is wearing a

retroreflective tracksuit to increase the light signal used in

NLOS imaging. Through our temporal re-sampling proce-

dure (Sec. 3.2.2), we up-sampled this data to 30 FPS and

1000 frames. Since this dataset has no pose ground truth,

we extract 2D keypoint ground truth with AlphaPose [33]

using a third-person RGB camera.

4.2. Baseline Methods

1. V2V-PoseNet [15]: Since there is no existing work

on optical NLOS human pose estimation from tran-

sient images, we compare against the state-of-the-art

method, V2V-PoseNet, for depth volume-based pose es-

timation [15]. We train V2V-PoseNet using the recon-

structed depth volume ρ∗ computed from our synthetic

pseudo-transient images using the regular NLOS imag-

ing process (without P2PSF Net) defined in Eq. 3.

2. PoseReg: To investigate the effect of physics inside our

physics-based pose estimation framework, we compare

our method a regression-based method, which directly

maps the visual context φt to the humanoid state zt with-

out using any physics. We integrate root linear/angular

velocities to generate global positions and orientations

of the pose sequence.

3. PoseReg w/o P2PSF: a variant of PoseReg that does not

use proposed P2PSF Net in the NLOS imaging process.

4. Ours w/o P2PSF: a variant of our method that does not

use proposed P2PSF Net.

4.3. Evaluation Metrics

We use the following metrics to evaluate both the accu-

racy and physical correctness of each method:

1. Mean Per-Joint Position Error (MPJPE): a pose-

based metric that measures the Euclidean distance (mea-

sured in millimeters) between the ground truth and

prediction for a joint defined as 1

TJ
ΣT

t=1Σ
J
j=1||(x

j
t −

xroott ) − (x̂jt − x̂roott )||2, where x
j
t is the jth joint po-

sition of estimated pose and x̂
j
t is the ground truth. xroott

and x̂roott represent root joint positions of the estimate

and the ground truth.

2. 2D Keypoint Error (Ekey): A pose-based met-

ric used for real captured dataset, calculated as
1

TJ
ΣT

t=1Σ
J
j=1||y

j
t − ŷ

j
t ||2. Here, y

j
t is the jth 2D key-

point of estimated pose and ŷ
j
t is the ground truth. For

both estimated and ground-truth, we set the hip keypoint

as the origin and scale the coordinates to make the height

between shoulder and hip equal to 0.5.

3. Velocity Error (Evel): A physics-based metric that mea-

sures the Euclidean distance between the generated ve-

locity sequence v1:T and the ground-truth v̂1:T , calcu-

lated as 1

T
ΣT

t=1||vt − v̂t||2.

4. Average Acceleration (Aaccl): A physics-based metric

that uses the average magnitude of joint accelerations to

measure the smoothness of the pose sequence, calculated

as 1

TN
ΣT

t=1||v̇
t||1 where v̇t denotes joint accelerations

and N is the number of actuated DoFs.

4.4. Implementation Details

Simulation Environment. We use MuJoCo [28] as the

physics simulator for a humanoid that consists of 58 DoFs

and 21 rigid bodies. We use stable PD controllers [26] to

compute joint torques. The gains kp ranges from 50 to 500,
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Figure 4. Qualitative results for (a) single-subject and (b) cross-subject pose estimation.

where joints such as legs and spine have larger gains while

arms and head have smaller gains; kd is set to 0.1kp.

Networks and Training. We set the reward weights

(wq, we, wp, wv) to (0.5, 0.3, 0.1, 0.1). We use PPO [25]

with a clipping epsilon of 0.2 for policy optimization. The

discount factor γ is 0.95. We use Adam [7] to optimize

the policy and value function with learning rate 5e-5. The

policy typically converges after 3k iterations, which takes

about a day on a GeForce RTX 2080 Ti.

5. Experiments and Results

We evaluate our method against the baselines in three

different experiment settings and one ablation study: (1)

single subject with pseudo-transient data, using the same

subject in both training and testing; (2) cross-subject with

pseudo-transient data, using different subjects for training

and testing; (3) cross-subject with real captured data, where

we use real transient images even though our model is

trained solely on synthetic data. We further conduct an ab-

lation study to show the importance of each augmentation in

our proposed pseudo-transient image synthesis procedure.

Single-Subject Evaluation. We train our model for each

subject. We use a 80-20 train-test data split. As shown in the

quantitative results (Table 1 (left)), we can see our approach

outperforms other baselines in terms of both pose-based

metric (MPJPE) and physics-based metrics (Evel, Aaccel).

We also present qualitative results in Fig. 4 (a). As the white

dotted rectangles show, V2V-PoseNet and our method with-

out P2PSF Net are not able to reproduce finer motion like

walking. Also, non-physics-based methods (i.e., all base-

lines except Ours w/o P2PSF) often cause the humanoid’s

foot to sink into the ground (highlighted by the yellow cir-

cles). In contrast, our method produces 3D human pose

closer to the ground-truth than any other baseline.

Cross-Subject Evaluation. To further evaluate the robust-

ness and generalization of our method, we perform cross-

subject experiments where we train our models on four

subjects and test on the other subject. This is challeng-

ing since different people have unique action characteris-

tics. As shown in Table 1(middle), our method once again

outperforms other baselines in terms of MPJPE and Evel.

For the smoothness metric Aaccel, V2V-PoseNet is quantita-

tively the best but this is because it mainly outputs a single

pose only (indicated by the high MPJPE) and cannot esti-

mate finer movement such as walking or raising hands, as

shown in Fig. 4 (b). As the qualitative results in Fig. 4 (b)

shows, our method with P2PSF Net produces poses clos-

est to the ground truth, although it still fails during difficult

sequences. Green arrows in Fig. 4 (b) highlight large differ-

ences in the estimated pose compared to the ground truth.
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Table 1. Results on single (left), cross-subject (middle), and real captured data (right).

Single Subject Cross Subject Real Data

Method MPJPE ↓ Evel ↓ Aaccl ↓ MPJPE ↓ Evel ↓ Aaccl ↓ Ekey ↓

V2V-PoseNet [15] 123.9 5.12 4.61 137.7 4.85 3.67 0.185

PoseReg w/o P2PSF 109.0 5.96 9.92 114.8 5.53 8.93 0.178

PoseReg w/ P2PSF 100.8 5.99 9.98 108.7 5.54 8.74 0.175

Ours w/o P2PSF 98.0 4.96 4.61 110.8 4.83 4.39 0.176

Ours 96.1 4.92 4.33 108.6 4.77 4.16 0.173

Table 2. Ablation study results.

Method Ekey ↓

(a) w/o Poisson 0.174

(b) w/o temp. blur 0.179

(c) w/o temp. shift 0.197

(d) w/o temp. resampling 0.185

(e) All noise types 0.173

Ground

Truth

Ours

V2V-

PoseNet

Ours

w/o P2PSF

PoseReg

w/ P2PSF

PoseReg

w/o P2PSF

Figure 5. Qualitative results for real captured transient.

Real Captured Cross-Subject Evaluation. To show our

approach’s ability to work with real-world data, we further

test our method on the real captured transient image dataset

described in Sec. 4.1, with our model trained with the same

dataset with single subject experiment. As shown in Table 1

(Right), our approach produces more accurate poses than

the baselines. We also present qualitative results in Fig. 5.

As the figure shows, our method with P2PSF Net is bet-

ter than the baselines in estimating human poses, including

jumping (second from the left) and hand raising (sixth from

the left, first from the right). Again, non-physics-based

methods cause the humanoid’s foot to sink into the ground

(highlighted by the yellow circle). The green arrows once

again identify large discrepancies with the ground truth.

Ablative Analysis. As described in Sec. 3.2, our pseudo-

transient images model the characteristics of real captured

transient measurements. This ablation test investigates the

effect of the four operations used to minimize the domain

gap between the pseudo and real transient images: (a) Pois-

son noise, (b) temporal blur, (c) temporal shift, and (d) tem-

poral re-sampling. To investigate the importance of each

of them, we train our model four times under the real cap-

tured cross-subject setting, and each time exclude one of

the four operations. As indicated in Table 2, the temporal

shifts are of critical importance for performance. Tempo-

ral re-sampling also improves accuracy. Removing Poisson

noise and temporal blur independently does not severely af-

fect performance. The combination of all four operations

result in the best pose accuracy.

6. Conclusion

This work brings together a diverse set of sub-areas of

computer vision, including state-of-the-art in computational

imaging, physics-based vision, human pose estimation and

physics-based deep reinforcement learning. As a result of

this integration, we have shown for the first time that it

is possible to take noisy real-world photon-level measure-

ments of human motion and transform that information into

a high-level understanding of human body dynamics aided

by the power of data-driven machine learning.

While the primary technical focus of this work is to

better understand how visual information should be repre-

sented and processed to enable 3D pose estimation from

NLOS imaging, the technology described in this work also

has some practical applications for next generation au-

tonomous systems. In the context of autonomous driving,

the ability to detect and track people outside of the line of

sight of its sensors can be instrumental in informing plan-

ning algorithms and preventing accidents. In the context of

domestic robots, the ability to see around walls could help

robots make more informed decisions when entering a room

or avoiding collisions. Though more research is necessary

to lower the financial cost and computational complexity of

the NLOS imaging system described in this work, we be-

lieve that this preliminary work shows the remarkable po-

tential for higher-level reasoning using NLOS imaging in

the real-world.
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