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Figure 1: Advantages of cross-modal UDA (xMUDA) in presence of domain gap (day-to-night). On this 3D semantic

segmentation example, the UDA Baseline [16] prediction from 2D camera image does not detect the car on the right due to

the day/night domain shift. With xMUDA, 2D learns the appearance of cars in the dark from information exchange with the

3D LiDAR point cloud, and 3D learns to reduce false predictions.

Abstract

Unsupervised Domain Adaptation (UDA) is crucial to

tackle the lack of annotations in a new domain. There are

many multi-modal datasets, but most UDA approaches are

uni-modal. In this work, we explore how to learn from

multi-modality and propose cross-modal UDA (xMUDA)

where we assume the presence of 2D images and 3D

point clouds for 3D semantic segmentation. This is chal-

lenging as the two input spaces are heterogeneous and

can be impacted differently by domain shift. In xMUDA,

modalities learn from each other through mutual mimick-

ing, disentangled from the segmentation objective, to pre-

vent the stronger modality from adopting false predictions

from the weaker one. We evaluate on new UDA scenar-

ios including day-to-night, country-to-country and dataset-

to-dataset, leveraging recent autonomous driving datasets.

xMUDA brings large improvements over uni-modal UDA

on all tested scenarios, and is complementary to state-of-

the-art UDA techniques. Code is available at https:

//github.com/valeoai/xmuda.

1. Introduction

Three-dimensional scene understanding is required in

numerous applications, in particular robotics, autonomous

driving and virtual reality. Among the different tasks un-

der concern, 3D semantic segmentation is gaining more and

more traction as new datasets are being released [1, 5, 6].

Like other perception tasks, 3D semantic segmentation can

encounter the problem of domain shift between supervised

training and test time, for example between day and night,

different countries or datasets. Domain adaptation aims at

addressing this gap, but existing work concerns mostly 2D

semantic segmentation [11, 16, 28, 34] and rarely 3D [32].

We also observe that previous domain adaptation work fo-

cuses on single modality, whereas 3D datasets are often

multi-modal, consisting of 3D point clouds and 2D images.

While the complementarity between these two modalities

is already exploited by both human annotators and learned

models to localize objects in 3D scenes [18, 21], we con-

sider it through a new angle, asking the question: If 3D and

2D data are available in the source and target domain, can

we capitalize on multi-modality to address Unsupervised

Domain Adaptation (UDA)?
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We coin our method cross-modal UDA, ‘xMUDA’ in

short, and consider 3 real-to-real adaptation scenarios with

different lighting conditions (day-to-night), environments

(country-to-country) and sensor setup (dataset-to-dataset).

It is a challenging task for various reasons. The heteroge-

neous input spaces (2D and 3D) make the pipeline complex

as it implies to work with heterogeneous network architec-

tures and 2D-3D projections. In fusion, if two sensors reg-

ister the same scene, there is shared information between

both, but each sensor also has private (or exclusive) infor-

mation. Thanks to the latter, one modality can be stronger

than the other in a certain case, but it can be the other way

around in another, depending on class, context, resolution,

etc. This makes selecting the “best” sensor based on prior

knowledge unfeasible. Additionally, each modality can be

affected differently by the domain shift. For example, cam-

era is deeply impacted by the day-to-night domain change,

while LiDAR is relatively robust to it, as shown in Fig. 1.

In order to address these challenges, we propose a cross-

modal UDA (‘xMUDA’) framework where information can

be exchanged between 2D and 3D in order to learn from

each other for UDA (see right side of Fig. 1). We use a dis-

entangled 2-stream architecture to address the domain gap

individually in each modality. Our learning scheme allows

robust balancing of the cross-modal and segmentation ob-

jective. In addition, xMUDA can be combined with exist-

ing uni-modal UDA techniques. In this work, we show-

case complementarity to self-training with pseudo-labels.

Finally, it is common practice in supervised learning to

use feature fusion (e.g., early or late fusion) when multiple

modalities are available [8, 18, 27]: our framework can be

extended to fusion while maintaining a disentangled cross-

modal objective.

Our contributions can be summarized as follows:

• We define new UDA scenarios and propose corre-

sponding splits on recently published 2D-3D datasets.

• We design an architecture that enables cross-modal

learning by disentangling private and shared informa-

tion in 2D and 3D.

• We propose a novel UDA learning scheme where

modalities can learn from each other in balance with

the main objective. It can be applied on top of state-of-

the-art self-training techniques to boost performance.

• We showcase how our framework can be extended to

late fusion and produce superior results.

On the different proposed benchmarks we outperform the

single-modality state-of-the-art UDA techniques by a sig-

nificant margin. Thereby, we show that the exploitation of

multi-modality for UDA is a powerful tool that can benefit

a wide range of multi-sensor applications.

2. Related Work

In this section, rather than thoroughly going through the

literature, we review representative works for each focus.

Unsupervised Domain Adaptation. The past few years

have seen an increasing interest in unsupervised domain

adaptation techniques for complex perception tasks like

object detection and semantic segmentation. Under the

hood of such methods lies the same spirit of learning

domain-invariant representations, i.e., features coming from

different domains should introduce insignificant discrep-

ancy. Some works promote adversarial training to mini-

mize source-target distribution shift, either on pixel- [11],

feature- [12] or output-space [26, 28]. Revisited from semi-

supervised learning [14], self-training with pseudo-labels

has also been recently proven effective for UDA [16, 34].

While most existing works consider UDA in the 2D

world, very few tackle the 3D counterpart. Wu et al. [32]

adopted activation correlation alignment [20] for UDA in

3D segmentation from LiDAR point clouds. In this work,

we investigate the same task, but differently: our system

operates on multi-modal input data, i.e., RGB + LiDAR.

To the best of our knowledge, there are no previous UDA

works in 2D/3D semantic segmentation for multi-modal

scenarios. Only some consider the extra modality, e.g.

depth, solely available at training time on source domain

and leverage such privileged information to boost adapta-

tion performance [15, 29]. Otherwise, we here assume all

modalities are available at train and test time on both source

and target domains.

Multi-Modality Learning. In a supervised setting, per-

formance can naturally be improved by fusing features from

multiple sources. The geometrically simplest case is RGB-

Depth fusion with dense pixel-to-pixel correspondence for

2D segmentation [8, 27]. It is harder to fuse a 3D point

cloud with a 2D image, because they live in different met-

ric spaces. One solution is to project 2D and 3D features

into a ‘bird eye view’ [17, 18] or ‘LiDAR front view’ [19]

for the task of object detection. Another possibility is to lift

2D features from multi-view images to the 3D point cloud

to enable joint 2D-3D processing for 3D semantic segmen-

tation [3, 13, 24]. We are closer to the last series of works:

we share the same goal of 3D semantic segmentation. How-

ever, we focus on how to exploit multi-modality for UDA

instead of supervised learning and only use single view im-

ages and their corresponding point clouds.

3D networks for semantic segmentation. While images

are dense tensors, 3D point clouds can be represented in

multiple ways which leads to competing network families

that evolve in parallel. Voxels are very similar to pixels,

but very memory intense as most of them are empty. Gra-

ham et al. [7] and similar implementation [4] address this
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Figure 2: Overview of our xMUDA framework for 3D semantic segmentation. The architecture comprises a 2D stream

which takes an image as input and uses a U-Net-style 2D ConvNet [23], and a 3D stream which takes the point cloud as input

and uses a U-Net-Style 3D SparseConvNet [7]. Feature outputs of both streams have same length N , equal to the number of

3D points. To achieve that, we project the 3D points into the image and sample the 2D features at the corresponding pixel

locations. The 4 segmentation outputs consist of the main predictions P2D, P3D and the mimicry predictions P2D→3D, P3D→2D.

We transfer knowledge across modalities using KL divergence, DKL(P3D||P2D→3D), where the objective of the 2D mimicry

head is to estimate the main 3D output and vice versa, DKL(P2D||P3D→2D).

problem by using hash tables to convolve only on active

voxels. This allows for very high resolution with typically

only one point per voxel. Point-based networks perform

computation in continuous 3D space and can thus directly

accept point clouds as input. PointNet++ [22] uses point-

wise convolution, max-pooling to compute global features

and local neighborhood aggregation for hierarchical learn-

ing akin to CNNs. Many improvements have been proposed

in this direction, such as continuous convolutions [30] and

deformable kernels [25]. Graph-based networks convolve

on the edges of a point point cloud [31]. In this work, we

select SparseConvNet [7] as 3D network which is the state-

of-the-art on the ScanNet benchmark [5].

3. xMUDA

The aim of cross-modal UDA (xMUDA) is to ex-

ploit multi-modality by enabling controlled information ex-

change between modalities so that they can learn from each

other. This is achieved through letting them mutually mimic

each other’s outputs, so that they can both benefit from their

counterpart’s strengths.

Specifically, we investigate xMUDA using point cloud

(3D modality) and image (2D modality) on the task of 3D

semantic segmentation. An overview is depicted in Fig. 2.

We first describe the architecture in Sec. 3.1, our learning

scheme in Sec. 3.2, and later showcase its extension to the

special case of fusion.

In the following, we consider a source dataset S , where

each sample consists of 2D image x2D
s , 3D point cloud x3D

s

and 3D segmentation labels y3D
s as well as a target dataset

T , lacking annotations, where each sample only consists of

image x2D
t and point cloud x3D

t . Images x2D are of spatial

size (H,W, 3) and point clouds x3D of spatial size (N, 3),
with N the number of 3D points in the camera field of view.

3.1. Architecture

To allow cross-modal learning, it is crucial to extract fea-

tures specific to each modality. Opposed to 2D-3D architec-

tures where 2D features are lifted to 3D [18], we use a 2-

stream architecture with independent 2D and 3D branches

that do not share features (see Fig. 2).

We use SparseConvNet [7] for 3D and a modified ver-

sion of U-Net [23] with ResNet34 [9] for 2D. Even though

each stream has a specific network architecture, it is impor-

tant that the outputs are of same size to allow cross-modal

learning. Implementation details are provided in Sec. 4.2.

Dual Segmentation Head. We call segmentation head

the last linear layer in the network that transforms the output

features into logits followed by a softmax function to pro-

duce the class probabilities. For xMUDA, we establish a

link between 2D and 3D with a ‘mimicry’ loss between the
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output probabilities, i.e., each modality should predict the

other modality’s output. This allows us to explicitly control

the cross-modal learning.

In a naive approach, each modality has a single segmen-

tation head and a cross-modal optimization objective aligns

the outputs of both modalities. Unfortunately, this leads

to only using information that is shared between the two

modalities, while discarding private information that is ex-

clusive to each sensor (more details in the ablation study

in Sec. 5.1). This is an important limitation, as we want

to leverage both private and shared information, in order to

obtain the best possible performance.

To preserve private information while benefiting from

shared knowledge, we introduce an additional segmentation

head to uncouple the mimicry objective from the main seg-

mentation objective. This means that the 2D and 3D streams

both have two segmentation heads: one main head for the

best possible prediction, and one mimicry head to estimate

the other modality’s output.

The outputs of the 4 segmentation heads (see Fig. 2) are

of size (N,C), where C is equal to the number of classes

such that we obtain a vector of class probabilities for each

3D point. The two main heads produce the best possible

predictions, P2D and P3D respectively for each branch. The

two mimicry heads estimate the other modality’s output: 2D

estimates 3D (P2D→3D) and 3D estimates 2D (P3D→2D).

3.2. Learning Scheme

The goal of our cross-modal learning scheme is to ex-

change information between the modalities in a controlled

manner to teach them to be aware of each other. This aux-

iliary objective can effectively improve the performance of

each modality and does not require any annotations which

enables its use for UDA on target dataset T . In the follow-

ing we define the basic supervised learning setup, our cross-

modal loss LxM, and the additional pseudo-label learning

method. The loss flows are depicted in Fig. 3a.

Supervised Learning. The main goal of 3D segmentation

is learned through cross-entropy in a classical supervised

fashion on the source data. We can write the segmentation

loss Lseg for each network stream (2D and 3D) as:

Lseg(xs,y
3D
s ) = −

1

N

N
∑

n=1

C
∑

c=1

y(n,c)
s logP (n,c)

xs
, (1)

where xs is either x2D
s or x3D

s .

Cross-Modal Learning. The objective of unsupervised

learning across modalities is twofold. Firstly, we want to

transfer knowledge from one modality to the other on the

target dataset. For example, let one modality be sensitive
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Figure 3: Details of proposed cross-modal training with

adaptation. (a) xMUDA learns from supervision on the

source domain (plain lines) and self-supervision on the tar-

get domain (dashed lines), while benefiting from the cross-

modal predictions of 2D/3D. (b) We consider four data sub-

sets: Source 2D, Target 2D, Source 3D and Target 3D. In

contrast to existing techniques, xMUDA introduces a cross-

modal self-training mechanism for UDA.

and the other more robust to the domain shift, then the ro-

bust modality should teach the sensitive modality the cor-

rect class in the target domain where no labels are avail-

able. Secondly, we want to design an auxiliary objective

on source and target, where the task is to estimate the other

modality’s prediction. By mimicking not only the class with

maximum probability, but the whole distribution, more in-

formation is exchanged, leading to softer labels.

We choose KL divergence for the cross-modal loss LxM

and define it as follows:

LxM(x) = DKL(P
(n,c)
x

||Q(n,c)
x

) (2)

= −
1

N

N
∑

n=1

C
∑

c=1

P (n,c)
x

log
P

(n,c)
x

Q
(n,c)
x

, (3)

with (P ,Q) ∈ {(P2D, P3D→2D), (P3D, P2D→3D)} where P

is the target distribution from the main prediction which is

to be estimated by the mimicking prediction Q. This loss

is applied on the source and the target domain as it does

not require ground truth labels and is the key to our pro-

posed domain adaptation framework. For source, LxM can

be seen as an auxiliary mimicry loss in addition to the main

segmentation loss Lseg.
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The complete objective for each network stream (2D and

3D) is the combination of the segmentation loss Lseg on

source and the cross-modal loss LxM on source and target:

min
θ

[ 1

|S|

∑

xs∈S

(

Lseg(xs,y
3D
s ) + λsLxM(xs)

)

+
1

|T |

∑

xt∈T

λtLxM(xt)
]

, (4)

where λs, λt are hyperparameters to weight LxM on source

and target respectively and θ are the network weights of ei-

ther the 2D or the 3D stream.

There are parallels between the cross-modal learning

and model distillation which also adopts KL divergence

as mimicry loss, but with the goal to transfer knowledge

from a large network to a smaller one in a supervised set-

ting [10]. Recently Zhang et al. introduced Deep Mutual

Learning [33] where an ensemble of uni-modal networks

are jointly trained to learn from each other in collaboration.

Though to some extent, our cross-modal learning is of sim-

ilar nature to those strategies, we tackle a different distil-

lation angle, i.e. across modalities (2D/3D) and not in the

supervised, but in the UDA setting.

Additional self-training with Pseudo-Labels. Cross-

modal learning is complementary to pseudo-labeling [14]

used originally in semi-supervised learning and recently

in UDA [16, 34]. In details, once having optimized a

model with Eq. 4, we extract pseudo-labels offline, selecting

highly confident labels based on the predicted class proba-

bility. Then, we train again from scratch using the produced

pseudo-labels for an additional segmentation loss on the tar-

get training set. The optimization problem writes:

min
θ

[ 1

|S|

∑

xs

(

Lseg(xs,y
3D
s ) + λsLxM(xs)

)

+
1

|T |

∑

xt

(

λPLLseg(xt, ŷ
3D) + λtLxM(xt)

)]

, (5)

where λPL is weighting the pseudo-label segmentation loss

and ŷ3D are the pseudo-labels. For clarity, we will refer to

the xMUDA variant that uses additional self-training with

pseudo-labels as xMUDAPL.

3.3. Discussion

A central contribution of our work is the formulation

of cross-modal learning via KL-divergence minimization in

multi-modal scenarios which helps us not only to benefit

from multiple sensors but also to mitigate domain shift. In-

deed, as computing KL-divergence between 2D and 3D pre-

dictions does not require ground-truth, our learning scheme

allows extra regularization on the target set – bringing adap-

tation effects. Fig. 3b visualizes the 4 data subsets consid-

ered in our task and shows which dimension different UDA

techniques operate on. Opposed to previous UDA methods

which only act on a single modality, xMUDA introduces a

new way of cross-modal self-training and is thus orthogonal

and complementary to existing adaptation techniques.

4. Experiments

4.1. Datasets

To evaluate xMUDA, we identified 3 real-to-real adap-

tation scenarios. In the day-to-night case, LiDAR has a

small domain gap, as it is an active sensor sending out laser

beams which are mostly invariant to lighting conditions.

In contrast, camera has a large domain gap as its passive

sensing suffers from lack of light sources, leading to dras-

tic changes in object appearance. The second scenario is

country-to-country adaptation, where the domain gap can

be larger for LiDAR or camera: for some classes the 3D

shape might change more than the visual appearance or vice

versa. The third scenario, dataset-to-dataset, comprises

changes in the sensor setup, such as camera optics, but most

importantly a higher LiDAR resolution on target. 3D net-

works are sensitive to varying point cloud density and the

image could help to guide and stabilize adaptation.

We leverage recently published autonomous driving

datasets nuScenes [2], A2D2 [6] and SemanticKITTI [1] in

which LiDAR and camera are synchronized and calibrated

allowing to compute the projection between a 3D point and

its corresponding 2D image pixel. The chosen datasets con-

tain 3D annotations. For simplicity and consistency across

datasets, we only use the front camera image and the Li-

DAR points that project into it.

For nuScenes, the annotations are 3D bounding boxes

and we obtain the point-wise labels for 3D semantic seg-

mentation by assigning the corresponding object label if a

point lies inside a 3D box; otherwise the point is labeled as

background. We use the meta data to generate the splits for

two UDA scenarios: Day/Night and USA/Singapore.

A2D2 and SemanticKITTI provide segmentation labels.

For UDA, we define 10 shared classes between the two

datasets. The LiDAR setup is the main difference: in A2D2,

there are 3 LiDARs with 16 layers which generate a rather

sparse point cloud and in SemanticKITTI, there is one high-

resolution LiDAR with 64 layers.

We provide the data split details in the supplementary.

4.2. Implementation Details

2D Network. We use a modified version of U-Net [23]

with a ResNet34 [9] encoder where we add dropout after the

3rd and 4th layer and initialize with ImageNet pretrained

weights provided by PyTorch. In the decoder, each layer

consists of a transposed convolution, concatenation with en-

coder features of same resolution (skip connection) and an-

other convolution to mix the features. The network takes
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USA/Singapore Day/Night A2D2/SemanticKITTI

Method 2D 3D softmax avg 2D 3D softmax avg 2D 3D softmax avg

Baseline (source only) 53.4 46.5 61.3 42.2 41.2 47.8 36.0 36.6 41.8

Deep logCORAL [20] 52.6 47.1 59.1 41.4 42.8 51.8 35.8* 39.3 40.3

MinEnt [28] 53.4 47.0 59.7 44.9 43.5 51.3 38.8 38.0 42.7

PL [16] 55.5 51.8 61.5 43.7 45.1 48.6 37.4 44.8 47.7

xMUDA 59.3 52.0 62.7 46.2 44.2 50.0 36.8 43.3 42.9

xMUDAPL 61.1 54.1 63.2 47.1 46.7 50.8 43.7 48.5 49.1

Oracle 66.4 63.8 71.6 48.6 47.1 55.2 58.3 71.0 73.7

* Trained with batch size 6 instead of 8 to fit into GPU memory.

Table 1: mIoU on the respective target sets for 3D semantic segmentation in different cross-modal UDA scenarios. We report

the result for each network stream (2D and 3D) as well as the ensembling result (‘softmax avg’).

an image x2D as input and produces an output feature map

with equal spatial dimensions (H,W,F2D), where F2D is

the number of feature channels. In order to lift the 2D fea-

tures to 3D, we sample them at sparse pixel locations where

the 3D points project into the feature map, and obtain the

final two-dimensional feature matrix (N,F2D).

3D Network. For SparseConvNet [7] we leverage the of-

ficial PyTorch implementation and a U-Net architecture

with 6 times downsampling. We use a voxel size of 5cm

which is small enough to only have one 3D point per voxel.

Training. For data augmentation we employ horizontal

flipping and color jitter in 2D, and x-axis flipping, scaling

and rotation in 3D. Due to the wide angle image in Se-

manticKITTI, we crop a fixed size rectangle randomly on

the horizontal image axis to reduce memory during train-

ing. Log-smoothed class weights are used in all experi-

ments to address class imbalance. For the KL divergence

for the cross-modal loss in PyTorch, we detach the target

variable to only backpropagate in either the 2D or the 3D

network. We use a batch size of 8, the Adam optimizer

with β1 = 0.9, β2 = 0.999, and an iteration based learn-

ing schedule where the learning rate of 0.001 is divided by

10 at 80k and 90k iterations; the training finishes at 100k.

We jointly train the 2D and 3D stream and at each iteration,

accumulate gradients computed on source and target batch.

All trainings fit into a single GPU with 11GB RAM.

For xMUDA, we train with Eq. 4, where we apply the

segmentation loss using ground truth labels on source and

cross-modal loss on source and target. For xMUDAPL , we

generate pseudo-labels offline as in [16] with the previously

trained xMUDA model and train again from scratch, now

with additional segmentation loss on target with pseudo-

labels (Eq. 5). Note, that we do not select the best weights

on the validation set, but rather use the last checkpoint to

generate the pseudo-labels in order to prevent any super-

vised learning signal. The 2D and 3D network are trained

jointly and optimized on source and target at each iteration.

4.3. Main Experiments

We evaluate our method on the 3 proposed cross-modal

UDA scenarios and compare against uni-modal UDA meth-

ods: Deep logCORAL [20], entropy minimization (Mi-

nEnt) [28] and pseudo-labeling (PL) [16]. Regarding PL,

we apply [16] as follows: we generate pseudo-labels offline

with a first training without UDA, and discard unconfident

labels through class-wise thresholding. Then, we run a sec-

ond training from scratch adding PL loss on target. The

image-2-image translation part was excluded due to its in-

stability, high training complexity and incompatibility with

LiDAR data, thus limiting reproducibility. Regarding the

two other uni-modal techniques, we adapt the published im-

plementations to our settings. For all, we searched for the

best respective hyperparameters.

We report mean Intersection over Union (mIoU) results

for 3D segmentation in Tab. 1 on the target test set for the 3

UDA scenarios. We evaluate on the test set using the check-

point that achieved the best score on the validation set. In

addition to the scores of the 2D and 3D model, we show

the ensembling result (‘softmax avg’) which is obtained by

taking the mean of the predicted 2D and 3D probabilities af-

ter softmax. The baseline is trained on source only and the

oracle on target only, except the Day/Night oracle, where

we used batches of 50%/50% Day/Night to prevent overfit-

ting. The uni-modal UDA baselines [16, 20, 28] are applied

separately on each modality.

xMUDA – using the cross-modal loss but not PL – brings

a significant adaptation effect on all 3 UDA scenarios com-

pared to ‘Baseline (source only)’ and often outperforms

the uni-modal UDA baselines. We observe, that xMUDA

consistently improves both modalities (2D and 3D), i.e.

even the strong modality can learn from the weaker one.

xMUDAPL achieves the best score everywhere with the only

exception of Day/Night softmax avg. Further, cross-modal

learning and self-training with pseudo-labels (PL) are com-

plementary as their combination in xMUDAPL consistently
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Figure 4: Architectures for fusion. (a) In Vanilla Fusion

the 2D and 3D features are concatenated, fed into a linear

layer with ReLU to mix the features and followed by an-

other linear layer and softmax to obtain a fused prediction

Pfuse. (b) In xMUDA Fusion, we add two uni-modal out-

puts P2D→fuse and P3D→fuse that are used to mimic the fu-

sion output Pfuse.

yields a higher score than each separate technique.

Qualitative results are presented in Fig. 6 and show the

versatility of xMUDA across all proposed UDA scenarios.

We provide additional qualitative results in the supplemen-

tary and a video of the A2D2 to SemanticKITTI scenario at

http://tiny.cc/xmuda.

4.4. Extension to Fusion

In Sec. 4.3 we show how each 2D and 3D modality can

be improved with xMUDA. However, can we obtain even

better results with fusion?

A common fusion architecture is late fusion where

the features from different sources are concatenated (see

Fig. 4a). However, when merging the main 2D/3D branches

into a unique fused head, we can no longer apply cross-

modal learning (as in Fig. 5a). To address this problem, we

propose ‘xMUDA Fusion’ where we add an additional seg-

mentation head to both 2D and 3D network streams prior to

the fusion layer, with the purpose of mimicking the central

fusion head (see Fig. 4b). Note that this idea could also be

applied on top of other fusion architectures.

In Tab. 2 we show results for different fusion approaches

where we specify which architecture was used (Vanilla

late fusion from Fig. 4a or xMUDA Fusion from Fig. 4b).

While ‘xMUDAPL Fusion’ outperforms all other uni-modal

baselines, ‘xMUDA Fusion’ already achieves better perfor-

mances than ‘Deep logCORAL’ and ‘MinEnt’.

5. Ablation Studies

5.1. Segmentation Heads

In the following we justify our design choice of two seg-

mentation heads per modality stream as opposed to a single

Architecture mIoU

Baseline (source only) Vanilla 59.9

Deep logCORAL [20] Vanilla 58.2

MinEnt [28] Vanilla 60.8

PL [16] Vanilla 65.2

Distillation Vanilla 65.8

xMUDA Fusion xMUDA 61.9

xMUDAPL Fusion xMUDA 66.6

Oracle xMUDA 72.2

Table 2: mIoU for fusion methods, USA/Singapore sce-

nario. In ‘Distillation’ we use the xMUDAPL model of

the main experiments reported in Tab. 1 to generate pseudo-

labels from the softmax average and use those to train the

Vanilla Fusion network.
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Figure 5: Single vs. Dual segmentation head. (a) Main

and mimicry prediction are not uncoupled as in xMUDA of

Fig. 2. (b) Curves of mIoU w.r.t. λt of single- vs. dual-head

architectures. USA/Singapore scenario.

one in a naive approach (see Fig. 5a). In the single head

architecture the mimicking objective is directly applied be-

tween the 2 main predictions. There is shared information

between 2D/3D, but also private information in each modal-

ity. An unwanted solution to reduce the cross-modal loss

LxM is that the networks discard private information, so that

they both only use shared information, making it easier to

align their outputs. However, we conjecture that best perfor-

mance can be achieved if private information is also used.

By separating the main from the mimicking prediction with

dual segmentation heads, we can effectively decouple the

two optimization objectives: The main head outputs the best

possible prediction to optimize the segmentation loss, while

the mimicking head can align with the other modality.

To benchmark single vs. dual segmentation head archi-

tectures, we apply cross-modal loss LxM only, excluding

PL as it does not depend on the dual head approach. We

fix LxM loss weight on source to λs = 1.0 and vary tar-

get λt. The hyperparameter λt is at the focus of this anal-

ysis because it controls modality alignment on the target

set, the main driver for UDA. In Fig. 5b, we show that best

performance is achieved with the dual head architecture of

xMUDA, while the single head architecture drops drasti-

cally in performance for high λt. We hypothesize that dual
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Figure 6: Qualitative results on the 3 proposed splits. We show the ensembling result obtained from averaging the softmax

output of 2D and 3D on the UDA Baseline (PL) and xMUDAPL.

A2D2/SemanticKITTI: xMUDAPL helps to stabilize and refine segmentation performance when there are sensor changes

(3x16 layer LiDAR with different angles to 64 layer LiDAR).

USA/Singapore: Delivery motorcycles with a storage box on the back are common in Singapore, but not in USA. The 3D

shape might resemble a vehicle. However, 2D appearance information is leveraged in xMUDAPL to improve the recognition.

Day/Night: The visual appearance of a car at night with headlights turned on is very different than during day. The uni-modal

UDA baseline is not able to learn this new appearance. However, if information between camera and robust-at-night LiDAR

is exchanged in xMUDAPL, it is possible to detect the car correctly at night.

head is more robust because it disentangles the segmenta-

tion from the mimicking objective.

5.2. CrossModal Learning on Source

In (4), cross-modal loss LxM is applied on source and tar-

get, although we already have supervised segmentation loss

Lseg on source. We observe a gain of 4.8 mIoU on 2D and

4.4 on 3D when adding LxM on source as opposed to apply-

ing it on target only. This shows that it is important to train

the mimicking head on source, stabilizing the predictions,

which can be exploited during adaptation on target.

5.3. CrossModal Learning for Oracle Training

We have shown that cross-modal learning is very effec-

tive for UDA. However, it can also be used in a purely su-

pervised setting. When training the oracle with cross-modal

loss LxM, we can improve over the baseline, see Tab. 3. We

conjecture that LxM is a beneficial auxiliary loss and can

help to regularize training and prevent overfitting.

6. Conclusion

We propose xMUDA, Cross-Modal Unsupervised Do-

main Adaptation, where modalities learn from each other

Method 2D 3D softmax avg Method fusion

w/o LxM 65.8 63.2 71.1 Vanilla Fusion 71.0

with LxM 66.4 63.8 71.6 Fusion + LxM 72.2

Table 3: Cross-modal loss in supervised setting for oracle

training. mIoU on USA/Singapore.

to improve performance on the target domain. For cross-

modal learning we introduce mutual mimicking between

the modalities, achieved through KL divergence. We design

an architecture with separate main and mimicking head to

disentangle the segmentation from the cross-modal learn-

ing objective. Experiments on 3D semantic segmentation

on new UDA scenarios using 2D/3D datasets, show that

xMUDA largely outperforms uni-modal UDA and is com-

plementary to the pseudo-label strategy. An analog perfor-

mance boost is observed on fusion.

We think that cross-modal learning could be useful in

a wide variety of settings and tasks, not limited to UDA.

Particularly, it should be beneficial for supervised learning

and other modalities than image and point cloud.
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