
Steering Self-Supervised Feature Learning Beyond Local Pixel Statistics

Simon Jenni1 Hailin Jin2 Paolo Favaro1

University of Bern1 Adobe Research2

{simon.jenni,paolo.favaro}@inf.unibe.ch hljin@adobe.com

Abstract

We introduce a novel principle for self-supervised fea-

ture learning based on the discrimination of specific trans-

formations of an image. We argue that the generaliza-

tion capability of learned features depends on what image

neighborhood size is sufficient to discriminate different im-

age transformations: The larger the required neighborhood

size and the more global the image statistics that the fea-

ture can describe. An accurate description of global image

statistics allows to better represent the shape and configu-

ration of objects and their context, which ultimately gener-

alizes better to new tasks such as object classification and

detection. This suggests a criterion to choose and design

image transformations. Based on this criterion, we intro-

duce a novel image transformation that we call limited con-

text inpainting (LCI). This transformation inpaints an image

patch conditioned only on a small rectangular pixel bound-

ary (the limited context). Because of the limited boundary

information, the inpainter can learn to match local pixel

statistics, but is unlikely to match the global statistics of the

image. We claim that the same principle can be used to jus-

tify the performance of transformations such as image rota-

tions and warping. Indeed, we demonstrate experimentally

that learning to discriminate transformations such as LCI,

image warping and rotations, yields features with state of

the art generalization capabilities on several datasets such

as Pascal VOC, STL-10, CelebA, and ImageNet. Remark-

ably, our trained features achieve a performance on Places

on par with features trained through supervised learning

with ImageNet labels.

1. Introduction

The top-performance approaches to solve vision-based

tasks, such as object classification, detection and segmen-

tation, are currently based on supervised learning. Unfor-

tunately, these methods achieve a high-performance only

through a large amount of labeled data, whose collection

is costly and error-prone. Learning through labels may also

encounter another fundamental limitation, depending on the

Figure 1: The importance of global image statistics. Top

row: Natural images. Bottom row: Images transformed

such that local statistics are preserved while global statistics

are significantly altered.1An accurate image representation

should be able to distinguish these two categories. A linear

binary classifier trained to distinguish original versus trans-

formed images on top of conv5 features pre-trained on

ImageNet labels yields an accuracy of 78%. If instead we

use features pre-trained with our proposed self-supervised

learning task the classifier achieves an accuracy of 85%.

Notice that this transformation was not used in the training

of our features and that the transformed images were built

independently of either feature.

training procedure and dataset: It might yield features that

describe mostly local statistics, and thus have limited gener-

alization capabilities. An illustration of this issue is shown

in Fig. 1. On the bottom row we show images that have been

transformed such that local statistics of the corresponding

image on the top row are preserved, but global statistics are

not. We find experimentally that features pre-trained with

ImageNet labels [6] have difficulties in telling real images

apart from the transformed ones. This simple test shows that

the classification task in ImageNet could be mostly solved

by focusing on local image statistics. Such problem might

not be noticed when evaluating these features on other tasks

and datasets that can be solved based on similar local statis-

tics. However, more general classification settings would

certainly expose such a limitation. [16] also pointed out this

problem and showed that training supervised models to fo-

cus on the global statistics (which they refer to as shape) can

improve the generalization and the robustness of the learned

1The transformed images are obtained by partitioning an image into a

4 × 4 grid, by randomly permuting the tiles, and by training a network to

inpaint a band of pixels across the tiles through adversarial training [19].
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Figure 2: Selected image transformations. Examples of

local patches from images that were (a) warped, (b) locally

inpainted, (c) rotated or (d) not transformed. The bottom

row shows the original images, the middle row shows the

corresponding transformed images and the top row shows a

detail of the transformed image. By only observing a local

patch (top row), is it possible in all of the above cases to tell

if and how an image has been transformed or is it instead

necessary to observe the whole image (middle row), i.e.,

the global pixel statistics?

image representation.

Thus, to address this fundamental shortcoming and to

limit the need for human annotation, we propose a novel

self-supervised learning (SSL) method. SSL methods learn

features without manual labeling and thus they have the

potential to better scale their training and leverage large

amounts of existing unlabeled data. The training task in our

method is to discriminate global image statistics. To this

end, we transform images in such a way that local statistics

are largely unchanged, while global statistics are clearly al-

tered. By doing so, we make sure that the discrimination

of such transformations is not possible by working on just

local patches, but instead it requires using the whole image.

We illustrate this principle in Fig. 2. Incidentally, several

existing SSL tasks can be seen as learning from such trans-

formations, e.g., spotting artifacts [25], context prediction

[44], rotation prediction [17], and solving jigsaw puzzles

[38].

We cast our self-supervised learning approach as the task

of discriminating changes in the global image statistics by

classifying several image transformations (see Fig. 3). As

a novel image transformation we introduce limited context

inpainting (LCI). LCI selects a random patch from a natural

image, substitutes the center with noise (thus, it preserves a

small outer boundary of pixels), and trains a network to in-

paint a realistic center through adversarial training. While
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Figure 3: Learning global statistics. We propose to learn

image representations by training a convolutional neural

network to classify image transformations. The transfor-

mations are chosen such that local image statistics are pre-

served while global statistics are distinctly altered.

LCI can inpaint a realistic center of the patch so that it seam-

lessly blends with the preserved boundaries, it is unlikely to

provide a meaningful match with the rest of the original im-

age. Hence, this mismatch can only be detected by learning

global statistics of the image. Our formulation is also highly

scalable and allows to easily incorporate more transforma-

tions as additional categories. In fact, we also include the

classification of image warping and image rotations (see ex-

amples of such transformations in Fig. 2). An illustration of

the proposed training scheme is shown in Fig. 3.

Contributions. Our proposed method has the follow-

ing original contributions: 1) We introduce a novel self-

supervised learning principle based on image transforma-

tions that can be detected only through global observations;

2) We introduce a novel transformation according to this

principle and demonstrate experimentally its impact on fea-

ture learning; 3) We formulate the method so that it can

easily scale with additional transformations; 4) Our pro-

posed method achieves state of the art performance in trans-

fer learning on several data sets; in particular, for the first

time, we show that our trained features when transferred to

Places achieve a performance on par with features trained

through supervised learning with ImageNet labels. Code is

available at https://sjenni.github.io/LCI.
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2. Prior Work

Self-supervised Learning. Self-supervised learning is a

feature learning method that avoids the use of data labels

by introducing an artificial task. Examples of tasks defined

on images are to find: the spatial configuration of parts

[8, 38, 37], the color of a grayscale image [55, 56, 29],

the image patch given its context [44], the image orienta-

tion [17], the artifacts introduced by a corruption process

[25], the image instance up to data jittering [12, 51, 52],

contrastive predictive coding [41, 20] or pseudo-labels ob-

tained from a clustering process [40, 4, 60]. Self-supervised

learning has also been applied to other data domains such as

video [50, 43, 48, 36] and audio [42, 57, 15].

Several self-supervised tasks can be seen as the predic-

tion of some form of image transformation applied to an

image. Gidaris et al. [17] for example predict the number

of 90◦ rotations applied to an image. Jenni and Favaro [25]

predict the presence and position of artifacts introduced by

a corruption process. Doersch et al. [8] predict transforma-

tions concerning image patches by predicting their relative

location. Noroozi and Favaro [38] extend this idea to mul-

tiple patches by solving jigsaw puzzles. Recently Zhang et

al. [54] proposed to predict the parameters of a relative pro-

jective transformation between two images using a Siamese

architecture. In our work, we show that by predicting a

combination of novel and previously explored image trans-

formations we can form new and more challenging learning

tasks that learn better features.

Some works have explored the combination of different

self-supervised tasks via multi-task learning [46, 9]. Re-

cently, Feng et al. [14] showed that a combination of the ro-

tation prediction task by Gidaris et al. [17] with the instance

recognition task by Wu et al. [51] achieve state-of-the-art

results in transfer experiments. They do so by splitting

the penultimate feature vector into two parts: One to pre-

dict the transformation and a second transformation agnos-

tic part, used to discriminate between different training im-

ages. Note that our work is orthogonal to these approaches

and thus it could be integrated in such multi-task formula-

tions and would likely lead to further improvements.

Because in our LCI transformation we build an inpaint-

ing network through adversarial training, we briefly discuss

works that exploit similar techniques.

Adversarial Feature Learning. Generative Adversarial

Networks (GANs) [19] have been used for the purpose of

representation learning in several works. Radford et al. [45]

first showed that a convolutional discriminator can learn

reasonably good features. Donahue et al. [10, 11] learn fea-

tures by training an encoder to produce the inverse mapping

of the generator. Pathak et al. [44] use an adversarial loss

to train an autoencoder for inpainting. They use the trained

encoder as a feature extractor. Denton et al. [7] also per-

form inpainting, but instead transfer the discriminator fea-

tures. The work by Jenni and Favaro [25] has some simi-

larity to our LCI transformation. They generate image arti-

facts by erasing and locally repairing features of an autoen-

coder. Our limited context inpainting is different from these

methods in two important ways. First, we more strongly

limit the context of the inpainter and put the inpainted patch

back into a larger context to produce unrealistic global im-

age statistics. Second, a separate patch discriminator allows

stable adversarial training independent of the feature learn-

ing component.

Recognizing Image Manipulations. Many works have

considered the detection of image manipulations in the con-

text of image forensics [22, 49, 59, 2]. For example, Wang

et al. [49] predict subtle face image manipulations based

on local warping. Zhou et al. [59] detect image tampering

generated using semantic masks. Transformations in these

cases are usually subtle and do not change the global image

statistics in a predictable way (images are manipulated to

appear realistic). The aim is therefore antithetical to ours.

3. Learning Features by Discriminating Global

Image Transformations

Our aim is to learn image representations without human

annotation by recognizing variations in global image statis-

tics. We do so by distinguishing between natural images

and images that underwent several different image trans-

formations. Our principle is to choose image transforma-

tions that: 1) Preserve local pixel statistics (e.g., texture),

but alter the global image statistics of an image and 2) Can

be recognized from a single transformed example in most

cases. In this paper we choose the following transforma-

tions: limited context inpainting, warping, rotations and the

identity. These transformations will be introduced in detail

in the next sections.

Formally, given a set of unlabelled training im-

ages {xi}i=1,...,N and a set of image transformations

{Tj}j=0,...,K , we train a classifier C to predict the

transformation-label j given a transformed example Tj ◦xi.

In our case we set K = 5. We include the identity (no-

transformation) case by letting T0 ◦ x
.
= x. We train the

network C by minimizing the following self-supervised ob-

jective

LSSL(T0, . . . , T5)
.
= min

C

1

6N

N
∑

i=1

5
∑

y=0

ℓcls

(

C
(

Ty ◦ xi

)

, y
)

,

(1)

where ℓcls is the standard cross-entropy loss for a multi-class

classification problem.

3.1. Limited Context Inpainting

The first transformation that we propose to use in eq. (1)

is based on the Limited Context Inpainting (LCI). The aim
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Figure 4: Training of the Limited Context Inpainting (LCI) network. A random patch is extracted from a training image

x and all but a thin border of pixels is replaced by random noise. The inpainter network F fills the patch with realistic textures

conditioned on the remaining border pixels. The resulting patch is replaced back into the original image, thus generating an

image with natural local statistics, but unnatural global statistics.

of LCI is to modify images only locally, i.e., at the scale

of image patches. We train an inpainter network F con-

ditioned only on a thin border of pixels of the patch (see

Fig. 4). The inpainted patch should be realistic on its own

and blend in at the boundary with the surrounding image,

but should not meaningfully match the content of the whole

image (see an example in Fig. 2 (b)). The inpainter F is

trained using adversarial training against a patch discrimi-

nator D (which ensures that we match the local statistics)

as well as the transformation classifier C. The patch to be

inpainted is randomly selected at a uniformly sampled loca-

tion ∆ ∈ Ω, where Ω is the image domain. Then, W∆ ⊂ Ω
is a square region of pixels around ∆. We define ei as the

original patch of pixels at W∆ and ri as the corresponding

inpainted patch

ei(p−∆)
.
= xi(p), ∀p ∈ W∆ (2)

ri
.
= F (ei ⊙ (1−m) + z ⊙m) (3)

with m a mask that is 1 in the center of the patch and 0 at

the boundary (2 to 4 pixels in our baseline), z ∼ N (0, I) is

a zero-mean Gaussian noise and ⊙ denotes the Hadamard

(pixel-to-pixel) product. The LCI transformation T5 is then

defined as

(T5 ◦ xi)(p)
.
=

{

xi(p) if p /∈ W∆

ri(p−∆) if p ∈ W∆.
(4)

Finally, to train the inpainter F we minimize the cost

Linp =
1

N

N
∑

i=1

ℓGAN(ri, ei) + λborder |(ri − ei) ◦ (1−m)|2

− LSSL(T0, . . . , T5), (5)

where λborder = 50 is a tuning parameter to regulate the im-

portance of autoencoding the input boundary, and ℓGAN(·, ·)
is the hinge loss for adversarial training [30], which also

includes the maximization in the discriminator D.

Remark. In contrast to prior SSL methods [25, 44, 7] , here

we do not take the features from the networks that we used

to learn the transformation (e.g., D or F ). Instead, here we

take features from a separate classifier C that has only a

partial role in the training of F . This separation has several

advantages: 1) A separate tuning of training parameters is

possible, 2) GAN tricks can be applied without affecting the

classifier C, (3) GAN training can be stable even when the

classifier wins (LSSL saturates w.r.t. F ).

3.2. Random Warping

In addition to the LCI, which is a local image trans-

formation, we consider random global warping as our

T4 transformation. A warping is a smooth deformation

of the image coordinates defined by n pixel coordinates

{(ui, vi)}i=1,...,n, which act as control points. We place

the control points on an uniform grid of the image domain

and then randomly offset each control point by sampling the

shifts from a rectangular range [−d, d]× [−d, d], where d is

typically 1/10-th of the image size. The dense flow field for

warping is then computed by interpolating between the off-

sets at the control points using a polyharmonic spline [13].

Warping affects the local image statistics only minimally:

In general, it is difficult to distinguish a warped patch from

a patch undergoing a change in perspective. Therefore, the

classifier needs to learn global image statistics to detect im-

age warping.

3.3. Image Rotations

Finally, we consider as T1, T2, and T3 image rotations of

90◦, 180◦, and 270◦respectively. This choice is inspired by

Gidaris et al. [17] who proposed RotNet, a network to pre-

dict image rotations by multiples of 90◦. This was shown to

be a simple yet effective SSL pretext task. These transfor-

mations are predictable because the photographer bias in-

troduces a canonical reference orientation for many natural

images. They also require global statistics as local patches
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(a) (b)

Figure 5: Image statistics on CelebA. (a) The mean image

obtained from 8000 samples from CelebA. (b) Four local

patches extracted from the mean image. Because these pat-

terns appear always with the same orientation in the dataset,

it is possible to distinguish rotated images by using only

these local statistics.

of rotated images often do not indicate the orientation of the

image, because similar patches can be found in the untrans-

formed dataset.

Remark. There exist, however, several settings in which

the prediction of image rotations does not result in good

features. Many natural images for example do not have

a canonical image orientation. Thus, in these cases the

prediction of image rotations is an ill-posed task. There

also exist entire data domains of interest, where the image

orientation is ambiguous, such as satellite and cell imag-

ing datasets. Even when a clear upright image orientation

exists, this method alone can lead to non-optimal feature

learning. As an example, we show that the prediction of im-

age rotations on CelebA [31], a dataset of face images, leads

to significantly worse features than can be learned through

the prediction of other transformations (see Table 3). The

main reason behind this limitation is that local patches can

be found in the dataset always with the same orientation (see

Fig. 5). For instance, the classifier can easily distinguish ro-

tated faces by simply detecting one eye or the mouth.

3.4. Preventing Degenerate Learning

As was observed by Doersch et al. [8], networks trained

to solve a self-supervised task might do so by using very lo-

cal statistics (e.g., localization by detecting the chromatic

aberration). Such solutions are called shortcuts and are

a form of degenerate learning as they yield features with

poor generalization capabilities. When introducing artifi-

cial tasks, such as the discrimination of several image trans-

formations, it is important to make sure that the trained net-

work cannot exploit (local) artifacts introduced by the trans-

formations to solve the task. For example, the classifier

could learn to recognize processing artifacts of the inpainter

F in order to recognize LCI transformed images. Although

adversarial training should help to prevent this behavior, we

find experimentally that it is not sufficient on its own. To

further prevent such failure cases, we also train the network

F to autoencode image patches by modifying the loss Linp

in eq. (5) as Linp,AE = Linp + λAE
1

N

∑N

i=1
|F (ei) − ei|

2,
where λAE = 50 is a tuning parameter to regulate the im-

portance of autoencoding image patches. We create also

artificial untransformed images by substituting a random

patch with its autoencoded version. In each mini-batch to

the classifier we replace half of the untransformed images

with these patch-autoencoded images. In this manner the

classifier will not focus on the small artifacts (which could

even be not visible to the naked eye) as a way to discrim-

inate the transformations. During training we also replace

half of the original images in a minibatch with these patch-

autoencoded images before applying the rotation.

4. On the Choice of Transformations

Our goal is to learn features by discriminating images

undergoing different transformations. We pointed out that

this approach should use transformations that can be dis-

tinguished only by observing large regions of pixels, and is

scalable, i.e., it can be further refined by including more

transformations. In this section, we would like to make

these two aspects clearer.

Determining suitable transformations. We find that the

choice of what transformations to use depends on the data

distribution. An example of such dependency in the case of

RotNet on CelebA is shown in Fig. 5. Intuitively, an ideal

transformation is such that any transformed local patch

should be found in the original dataset, but any transformed

global patch should not be found in the dataset. This is also

the key idea behind the design of LCI.

Introducing additional transformations. As we will show

in the Experiments section, adding more transformations (as

specified above) can improve the performance. An impor-

tant aspect is that the classifier must be able to distinguish

the different transformations. Otherwise, its task is am-

biguous and can lead to degenerate learning. Put in simple

terms, a transformed global patch should be different from

any other global patch (including itself) transformed with a

different transformation. We verify that our chosen trans-

formations satisfy this principle, as LCI and image warping

cannot produce rotated images and warping is a global de-

formation, while LCI is a local one.

5. Experiments

We perform an extensive experimental evaluation of

our formulation on several established unsupervised fea-

ture learning benchmarks. For a fair comparison with prior

work we implement the transformation classifier C with a

standard AlexNet architecture [28]. Following prior work,

we remove the local response normalization layers and add

batch normalization [23] to all layers except for the fi-
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Table 1: Ablation experiments for different design choices

of Limited Context Inpainting (LCI) on STL-10 [5]. We

pre-train an AlexNet to predict if an image has been trans-

formed with LCI or not and transfer the frozen conv5 fea-

tures for linear classification.

Ablation Accuracy

(a) 32× 32 patches 61.2%

(b) 40× 40 patches 70.6%

(c) 56× 56 patches 75.1%

(d) Pre-trained and frozen F 63.7%

(e) No adversarial loss w.r.t. C 68.0%

(f) No patch autoencoding 69.5%

Baseline (48× 48 patches ) 76.2%

nal one. No other modifications to the original architec-

ture were made (we preserve the two-stream architecture).

For experiments on lower resolution images we remove the

max-pooling layer after conv5 and use SAME padding

throughout the network. The standard data-augmentation

strategies (random cropping and horizontal flipping) were

used. Self-supervised pre-training of the classifier was per-

formed using the AdamW optimizer [34] with parameters

β1 = 0.5, β2 = 0.99 and a weight decay of 10−4. We de-

cayed the learning rate from 3 · 10−4 to 3 · 10−7 over the

course of training using cosine annealing [33]. The training

of the inpainter network F and patch-discriminator D was

done using the Adam optimizer [26] with a fixed learning

rate of 2 · 10−4 and β1 = 0.5. The size of the patch bound-

ary is set to 2 pixels in experiments on STL-10 and CelebA.

On ImageNet we use a 4 pixel boundary. Details for the

network architectures and additional results are provided in

the supplementary material.

5.1. Ablation Experiments

Limited Context Inpainting. We perform ablation experi-

ments on STL-10 [5] to validate several design choices for

the joint inpainter and classifier training. We also illus-

trate the effect of the patch-size on the performance of the

learned features. We pre-train the transformation classifier

for 200 epochs on 64 × 64 crops of the unlabelled training

set. The mini-batch size was set to 64. We then transfer the

frozen conv5 features by training a linear classifier for 500

epochs on randomly cropped 96 × 96 images of the small

labelled training set. Only LCI was used as transformation

in these experiments. The results of the following ablations

are reported in Table 1:

(a)-(c) Varying Patch-Size: We vary the size of the in-

painted patches. We observe that small patches lead

to a significant drop in feature performance. Smaller

patches are easy to inpaint and the results often do not

alter the global image statistics;

Table 2: We report the test set accuracy of linear classifiers

trained on frozen features for models trained to predict dif-

ferent combinations of image transformations on STL-10.

Initialization conv1 conv2 conv3 conv4 conv5

Random 48.4% 53.3% 51.1% 48.7% 47.9%

Warp 57.2% 64.2% 62.8% 58.8% 55.3%

LCI 58.8% 67.2% 67.4% 68.1% 68.0%

Rot 58.2% 67.3% 69.3% 69.9% 70.1%

Warp + LCI 59.3% 68.1% 69.5% 68.5% 67.2%

Rot + Warp 57.4% 69.2% 70.7% 70.5% 70.6%

Rot + LCI 58.5% 69.2% 71.3% 72.8% 72.3%

Rot + Warp + LCI 59.2% 69.7% 71.9% 73.1% 73.7%

Table 3: We report the average precision of linear classi-

fiers trained to predict facial attributes on frozen features of

models trained to predict different combinations of image

transformations on CelebA.

Initialization conv1 conv2 conv3 conv4 conv5

Random 68.9% 70.1% 66.7% 65.3% 63.2%

Warp 71.7% 73.4% 71.2% 68.8% 64.3%

LCI 71.3% 73.0% 72.0% 71.1% 68.0%

Rot 70.3% 70.9% 67.8% 65.6% 62.1%

Warp + LCI 72.0% 73.9% 73.3% 72.1% 69.0%

Rot + Warp 71.6% 73.6% 72.0% 70.1% 66.4%

Rot + LCI 71.3% 72.7% 71.9% 70.8% 66.7%

Rot + Warp + LCI 71.8% 74.0% 73.5% 72.5% 69.2%

(d)-(f) Preventing Shortcuts: Following sec. 3.4, we

show how adversarial training of F is necessary to

achieve a good performance by removing the feedback

of both D and C in (d) and only C in (e). We also

demonstrate the importance of adding autoencoded

patches to the non-transformed images in (f);

Combination of Image Transformations. We perform ad-

ditional ablation experiments on STL-10 and CelebA [31]

where C is trained to predict different combinations of im-

age transformations. These experiments illustrate how our

formulation can scale with the number of considered im-

age transformations and how the effectiveness of transfor-

mations can depend on the data domain.

We pre-train the AlexNet to predict image transforma-

tions for 200 epochs on 64 × 64 crops on STL-10 and for

100 epochs on 96× 96 crops on CelebA using the standard

data augmentations. For transfer we train linear classifiers

on top of the frozen convolutional features (without resiz-

ing of the feature-maps) to predict the 10 object categories

in the case of STL-10 and to predict the 40 face attributes in

the case of CelebA. Transfer learning is performed for 700

epochs on 64× 64 crops in the case of STL-10 and for 100
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Table 4: Transfer learning results for classification, detec-

tion and segmentation on PASCAL compared to state-of-

the-art feature learning methods (* use a bigger AlexNet).

Classification Detection Segmentation

Model [Ref] (mAP) (mAP) (mIoU)

Krizhevsky et al. [28] [55] 79.9% 59.1% 48.0%

Random [44] 53.3% 43.4% 19.8%

Agrawal et al. [1] [10] 54.2% 43.9% -

Bojanowski et al. [3] [3] 65.3% 49.4% -

Donahue et al. [10] [10] 60.1% 46.9% 35.2%

Feng et al. [14] [14] 74.3% 57.5% 45.3%

Gidaris et al. [17] [17] 73.0% 54.4% 39.1%

Jayaraman & Grauman [24] [24] - 41.7% -

Jenni & Favaro [25] [25] 69.8% 52.5% 38.1%

Krähenbühl et al. [27] [27] 56.6% 45.6% 32.6%

Larsson et al. [29] [29] 65.9% - 38.0%

Noroozi & Favaro [38] [38] 67.6% 53.2% 37.6%

Noroozi et al. [39] [39] 67.7% 51.4% 36.6%

Noroozi et al. [40] [40] 72.5% 56.5% 42.6%

Mahendran et al. [35] [35] 64.4% 50.3% 41.4%

Mundhenk et al. [37] [37] 69.6% 55.8% 41.4%

Owens et al. [42] [42] 61.3% 44.0% -

Pathak et al. [44] [44] 56.5% 44.5% 29.7%

Pathak et al. [43] [43] 61.0% 52.2% -

Wang & Gupta [50] [27] 63.1% 47.4% -

Zhan et al. [53] [53] - - 44.5%

Zhang et al. [55] [55] 65.9% 46.9% 35.6%

Zhang et al. [56] [56] 67.1% 46.7% 36.0%

Doersch et al. [8]* [10] 65.3% 51.1% -

Caron et al. [4]* [4] 73.7% 55.4% 45.1

Ours - 74.5% 56.8% 44.4

epochs on 96 × 96 crops in the case of CelebA. We report

results for STL-10 in Table 2 and for CelebA in Table 3.

We can observe that the discrimination of a larger num-

ber of image transformations generally leads to better fea-

ture performance on both datasets. When considering each

of the transformations in isolation we see that not all of

them generalize equally well to different data domains. Ro-

tation prediction especially performs significantly worse on

CelebA than on STL-10. The performance of LCI on the

other hand is good on both datasets.

5.2. Unsupervised Feature Learning Benchmarks

We compare our proposed model to state-of-the-art

methods on the established feature learning benchmarks.

We pre-train the transformation classifier for 200 epochs on

the ImageNet training set. Images were randomly cropped

to 128 × 128 and the last max-pooling layer was removed

during pre-training to preserve the size of the feature map

before the fully-connected layers. We used a batch-size of

96 and trained on 4 GPUs.

Pascal VOC. We finetune our transformation classifier fea-

tures for multi-label classification, object detection and se-

mantic segmentation on the Pascal VOC dataset. We follow

the established experimental setup and use the framework

Table 5: Validation set accuracy on ImageNet with linear

classifiers trained on frozen convolutional layers. † indi-

cates multi-crop evaluation and * use a bigger AlexNet.

Model\Layer conv1 conv2 conv3 conv4 conv5

ImageNet Labels 19.3% 36.3% 44.2% 48.3% 50.5%

Random 11.6% 17.1% 16.9% 16.3% 14.1%

Donahue et al. [10] 17.7% 24.5% 31.0% 29.9% 28.0%

Feng et al. [14] 19.3% 33.3% 40.8% 41.8% 44.3%

Gidaris et al. [17] 18.8% 31.7% 38.7% 38.2% 36.5%

Huang et al. [21] 15.6% 27.0% 35.9% 39.7% 37.9%

Jenni & Favaro [25] 19.5% 33.3% 37.9% 38.9% 34.9%

Noroozi & Favaro [38] 18.2% 28.8% 34.0% 33.9% 27.1%

Noroozi et al. [39] 18.0% 30.6% 34.3% 32.5% 25.7%

Noroozi et al. [40] 19.2% 32.0% 37.3% 37.1% 34.6%

Tian et al. [47] 18.4% 33.5% 38.1% 40.4% 42.6%

Wu et al. [51] 16.8% 26.5% 31.8% 34.1% 35.6%

Zhang et al. [55] 13.1% 24.8% 31.0% 32.6% 31.8%

Zhang et al. [56] 17.7% 29.3% 35.4% 35.2% 32.8%

Zhang et al. [54] 19.2% 32.8% 40.6% 39.7% 37.7%

Doersch et al. [8]* 16.2% 23.3% 30.2% 31.7% 29.6%

Caron et al. [4]* 12.9% 29.2% 38.2% 39.8% 36.1%

Zhuang et al. [60]*† 18.7% 32.7% 38.1% 42.3% 42.4%

Ours 20.8% 34.5% 40.2% 43.1% 41.4%

Ours† 22.0% 36.4% 42.4% 45.4% 44.4%

Table 6: Validation set accuracy on Places with linear clas-

sifiers trained on frozen convolutional layers. † indicates

multi-crop evaluation and * the use of a bigger AlexNet.

Model\Layer conv1 conv2 conv3 conv4 conv5

Places Labels 22.1% 35.1% 40.2% 43.3% 44.6%

ImageNet Labels 22.7% 34.8% 38.4% 39.4% 38.7%

Random 15.7% 20.3% 19.8% 19.1% 17.5%

Donahue et al. [10] 22.0% 28.7% 31.8% 31.3% 29.7%

Feng et al. [14] 22.9% 32.4% 36.6% 37.3% 38.6%

Gidaris et al. [17] 21.5% 31.0% 35.1% 34.6% 33.7%

Jenni & Favaro [25] 23.3% 34.3% 36.9% 37.3% 34.4%

Noroozi & Favaro [38] 23.0% 31.9% 35.0% 34.2% 29.3%

Noroozi et al. [39] 23.3% 33.9% 36.3% 34.7% 29.6%

Noroozi et al. [40] 22.9% 34.2% 37.5% 37.1% 34.4%

Owens et al. [42] 19.9% 29.3% 32.1% 28.8% 29.8%

Pathak et al. [44] 18.2% 23.2% 23.4% 21.9% 18.4%

Wu et al. [51] 18.8% 24.3% 31.9% 34.5% 33.6%

Zhang et al. [55] 16.0% 25.7% 29.6% 30.3% 29.7%

Zhang et al. [56] 21.3% 30.7% 34.0% 34.1% 32.5%

Zhang et al. [54] 22.1% 32.9% 37.1% 36.2% 34.7%

Doersch et al. [8]* 19.7% 26.7% 31.9% 32.7% 30.9%

Caron et al. [4]* 18.6% 30.8% 37.0% 37.5% 33.1%

Zhuang et al. [60]*† 18.7% 32.7% 38.2% 40.3% 39.5%

Ours 24.1% 33.3% 37.9% 39.5% 37.7%

Ours† 25.0% 34.8% 39.7% 41.1% 39.4%

provided by Krähenbühl et al. [27] for multilabel classifi-

cation, the Fast-RCNN [18] framework for detection and

the FCN [32] framework for semantic segmentation. We

absorb the batch-normalization parameters into the param-
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Figure 6: We report leave-one-out cross validation

(LOOCV) accuracy for k-nearest neighbor classifiers on the

Places validation set. We compare the performance of our

self-supervised transformation classifier against features of

a supervised network for different values of k. Both net-

works were pre-trained on ImageNet.

eters of the associated layers in the AlexNet and apply the

data-dependent rescaling by Krähenbühl et al. [27], as is

common practice. The results of these transfer learning ex-

periments are reported in Table 4. We achieve state-of-the-

art performance in classification and competitive results for

detection and segmentation.

Linear Classifier Experiments on ImageNet and Places.

To measure the quality of our self-supervised learning task

we use the transformation classifier as a fixed feature ex-

tractor and train linear classifiers on top of each convolu-

tional layer. These experiments are performed both on Ima-

geNet (the dataset used for pre-training) and Places [58] (to

measure how well the features generalize to new data). We

follow the same setup as the state-of-the-art methods and

report the accuracy achieved on a single crop. Results for

ImageNet are shown in Table 5 and for Places in Table 6.

Our learned features achieve state-of-the-art performance

for conv1, conv2 and conv4 on ImageNet. On Places

we achieve the best results on conv1, conv3 and conv4.

Our results on conv4 in particular are the best overall and

even slightly surpass the performance of an AlexNet trained

on ImageNet using supervision.

Nearest Neighbor Evaluation. Features learned in deep

CNNs through supervised learning tend to distribute so that

their Euclidean distance relates closely to the semantic vi-

sual similarity of the images they correspond to. We want

to see if also our SSL features enjoy the same property.

Thus, we compute the nearest neighbors of our SSL and

of SL features in conv5 features space on the validation

set of ImageNet. Results are shown in Fig. 7. We also show

a quantitative comparison of k-nearest neighbor classifica-

tion on the Places validation set in Figure 6. We report the

leave-one-out cross validation (LOOCV) accuracy for dif-

ferent values of k. This can be done efficiently by comput-

Figure 7: Comparison of nearest neighbor retrieval. The

left-most column shows the query image. Odd rows: Re-

trievals with our features. Even rows: Retrievals with

features learned using ImageNet labels. Nearest neigh-

bors were computed on the validation set of ImageNet with

conv5 features using cosine similarity.

ing (k+1)-nearest neighbors using the complete dataset and

by excluding the closest neighbor for each query. The con-

catenation of features from five 128× 128 crops (extracted

at the resolution the networks were trained on) is used for

nearest neighbors. The features are standardized and cosine

similarity is used for nearest neighbor computation.

6. Conclusions

We introduced the self-supervised feature learning task

of discriminating natural images from images transformed

through local inpainting (LCI), image warping and rota-

tions, based on the principle that trained features generalize

better when their task requires detecting global natural im-

age statistics. This principle is supported by substantial ex-

perimental evaluation: Trained features achieve SotA per-

formance on several transfer learning benchmarks (Pascal

VOC, STL-10, CelebA, and ImageNet) and even slightly

outperform supervised training on Places.
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