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Abstract

We introduce the novel concept of a Sparse Layered

Graph (SLG) for s-t graph cut segmentation of image data.

The concept is based on the widely used Ishikawa lay-

ered technique for multi-object segmentation, which allows

explicit object interactions, such as containment and ex-

clusion with margins. However, the spatial complexity of

the Ishikawa technique limits its use for many segmenta-

tion problems. To solve this issue, we formulate a general

method for adding containment and exclusion interaction

constraints to layered graphs. Given some prior knowl-

edge, we can create a SLG, which is often orders of mag-

nitude smaller than traditional Ishikawa graphs, with iden-

tical segmentation results. This allows us to solve many

problems that could previously not be solved using general

graph cut algorithms. We then propose three algorithms

for further reducing the spatial complexity of SLGs, by us-

ing ordered multi-column graphs. In our experiments, we

show that SLGs, and in particular ordered multi-column

SLGs, can produce high-quality segmentation results using

extremely simple data terms. We also show the scalabil-

ity of ordered multi-column SLGs, by segmenting a high-

resolution volume with several hundred interacting objects.

1. Introduction

Most image segmentation research using graph cuts is

demonstrated on problems with less than ten labels. This

is enough for high-level segmentation tasks like organ,

brain, and bone segmentation. However, many segmenta-

tion tasks, such as microscopy imaging in medicine and ma-

terials science, involve hundreds or more objects. Segmen-

tation tasks with this number of labels have previously been

difficult, or even impossible to solve using s-t graph cuts.

With our method for constructing graphs, well-known graph

cut algorithms can efficiently solve segmentation tasks with

hundreds of labels.

Computational speed is essential for the practical use of

segmentation. Much of the success of graph cuts is owed to

the Boykov-Kolmogorov (BK) implementation of the Ford-

Fulkerson maxflow/mincut algorithm, which performs well

for many image-related optimization problems and gives

a globally optimal solution for submodular problems [1].

More recently, the Incremental Breadth-First Search (IBFS)

algorithm by Goldberg et al. [6] has shown even better per-

formance and run-time guarantees. Another way to speed

up the computations is to use a parallel algorithm [4, 18].

However, to our knowledge, these algorithms only work on

regular grid-based graphs.

By definition, s-t graph cuts provide a binary labeling.

For multi-label segmentation with graph cuts, one option is

to use the iterative α-expansion method [2]. However, it

often gets stuck in weak local minima. Another common

approach is to use the Ishikawa layered graph construction

[10], where each layer corresponds to one label. Using this

technique, it is possible to solve multi-label problems, while

enforcing label interaction constraints, such as containment

and two-label exclusion [5]. These interaction constraints

are often necessary to ensure that an object is inside another

object or that objects do not overlap. However, because the

exclusion term is non-submodular, the approach of [5] does

not work for more than two exclusive objects.

To enable multi-object exclusion, one approach is to use

the QPBO algorithm [11, 16], which can incorporate non-

submodular terms, at the cost of completeness. The algo-

rithm guarantees partial optimality, but may not find a com-

plete solution, i.e. there may be unlabelled nodes. A higher-

level alternative is the Path-Moves algorithm (HINTS) [8],

which is also able to incorporate non-submodular terms.

Unlike QPBO, it is an iterative algorithm that always pro-

vides a complete labeling and has been shown to find good

solutions, although they are not guaranteed to be optimal.

The number of objects that can be segmented using the

Ishikawa technique is in practice limited by the size of the

layered graph. If Ω is a set of nodes, usually corresponding

to the pixels of an image, and L is the set of labels/objects,

then the spatial complexity of the nodes in the layered graph

is O(|Ω||L|). However, the number of objects is not the
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Figure 1. Time spent solving three differently sized problems using

s-t graph cut with different graph constructions.

only important factor. When applying interactions between

the objects, it is possible, and often useful, to specify a min-

imum margin. For a N -neighborhood regular grid structure

[5], the spatial complexity of the interaction terms, and cor-

responding graph edges, depends polynomially on the size

of the interaction margins. In practice, this means that the

standard N -neighborhood graph structure is only useful for

segmenting a very limited number of objects, with small in-

teraction margins.

An alternative to the N -neighborhood structure is the or-

dered multi-column graph [19]. This approach is very use-

ful for surface detection, but may also be used for object

segmentation, when combined with resampling [13]. The

ordered multi-column structure makes it possible to impose

a certain geometry to the solution. Which geometry is im-

posed, depends on how the data is resampled.

While [13] describes how to handle containment inter-

actions for ordered multi-column graphs, object exclusion

is not described. Also, they assume contained objects are

sampled identically, which means that objects cannot be

sampled at different resolutions or have imposed different

geometries. Unlike the approach used by [5], the spatial

complexity of the ordered multi-column structure by [13]

does not depend on the size of the interaction margins. As

a result, appropriate margins can be chosen freely, without

worrying about the size of the layered graph.

To overcome the complexity issue of layered Ishikawa

graph structure, we introduce the concept of a Sparse Lay-

ered Graph (SLG), along with a general method for adding

object interactions to layered graphs. Using this method, we

construct a N -neighborhood SLG (N-SLG), which is sig-

nificantly smaller than the corresponding dense Ishiskawa

graph. Then, to further reduce the size of the graph, we

construct an ordered multi-column SLG (C-SLG), based on

the method by Li et al. [13]. Like the approach by [13], we

need some prior knowledge in the form of approximate size

and position of the objects. We propose three algorithms for

incorporating interaction constraints in C-SLGs, with very

few terms. Experimentally, we show that SLGs can be used

to reduce segmentation time and accurately solve segmen-

tation problems with hundreds of objects (see Fig. 1). Such

tasks cannot be solved with the traditional dense Ishikawa

layered graphs, used by [5, 8], due to the size of the graph.

We compare the segmentation accuracy, time and graph

size of different configurations of an N-SLG, C-SLG, and

the method by Li et al. [13], on an instance segmentation

task. Our experiments show the advantages of using SLGs,

and in particular C-SLG, over the traditional layered graph.

They also show that ordered multi-column graphs can pro-

vide accurate segmentations, even with extremely simple

models. We then demonstrate the scalability of C-SLGs by

segmenting a large volume with several hundred interacting

objects using a single graph cut.

Our method uses the QPBO algorithm. This means that

we cannot guarantee completeness, but only partial opti-

mality [16]. Thus, we may not be able to label all nodes

if the model contains non-submodular terms. Many unla-

belled nodes will result in a poor segmentation, so it is crit-

ical for the accuracy of our method that unlabelled nodes

are rare. To investigate the frequency of unlabelled nodes,

we segment a large set of images using SLGs. The results

show that accurate segmentation is possible with a simple

model, even on a varied data set. Furthermore, unlabelled

nodes are rare and have little impact on the segmentation.

Along with this paper, we release an open-source Python

package for constructing and solving SLGs (see Section 3).

2. Multi-object segmentation

We consider an image segmentation problem, with sev-

eral objects, which may be interacting. We use the term

object, label and layer interchangeably, depending on the

context – whether we refer to the content of an image, out-

come of a segmentation, or construction of a graph.

A common way to solve image segmentation problems

is by minimizing an energy function of the form

E(x) =
∑

p∈V

θp(xp) +
∑

p,q∈V

θpq(xp, xq) . (1)

For images, the node-set V usually corresponds to image

pixels, where the segmentation can be obtained as a pixel

labeling with labels xp ∈ {0, 1}. Unary energy terms, θp,

usually encode a data term, while pairwise energies, θpq ,
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encode interactions between pixels, as well as interactions

between labels.

If the energy function E is submodular, meaning that all

pairwise terms, θpq , between nodes p and q satisfy

θpq(0, 0) + θpq(1, 1) ≤ θpq(0, 1) + θpq(1, 0) (2)

then it is possible to use the s-t graph cut to find the global

energy minimum in polynomial time [12].

In many segmentation models, pairwise interactions are

symmetric (θpq(0, 1) = θpq(1, 0)), finite (θpq(0, 1) < ∞),

and submodular. Such interaction will encourage smooth-

ness and will be balanced by the unary terms. On the other

hand, asymmetric and infinite terms are useful to impose a

certain geometry or object interaction.

2.1. Sparse layered graphs

In the dense Ishikawa layered structure, used by [5, 8,

13], identical graph layers are created for each object, as

shown in Fig. 2b. This often results in a large number of

irrelevant nodes, as only a fraction of the nodes of a given

layer is usually inside or near the object. In an SLG, we

remove irrelevant nodes from the layers to reduce the size

of the graph. This creates what we call sparse layers, which

are layers where not all pixels are represented by nodes. To

determine which nodes are relevant for each layer, we use

information, which is often available or can be computed in

some way, such as approximate position and size of objects.

We can create a simple N-SLG, similar to the one in

Fig. 2c, by first constructing a dense Ishikawa graph. Then,

we crop each layer to remove nodes that are known to be

outside the layer object. This way, all nodes still correspond

to a single pixel, but not all pixels are represented by nodes.

This approach preserves the pixel neighborhood structure

between nodes in different layers used by previous methods

[5, 8].

A common way to reduce the number of nodes in graph

segmentation problems is to downsample data before cre-

ating the graph. However, this approach will also reduce

the resolution of the segmentation. If we are segmenting

interacting objects of varying sizes, it could be favorable to

downsample large objects, while keeping small objects at a

higher resolution. We could choose to only downsample the

data for layers with large objects, but this breaks the inter-

layer neighborhood structure.

It turns out that resampling can be used, not just for vary-

ing layer resolution, but also to enforce shape priors [13].

However, we need a way of adding object interactions be-

tween differently sampled layers.

2.2. Geometric interactions

We focus on two important geometric interactions:
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Figure 2. Five interacting objects, with different minimum con-

tainment margins, dl, and exclusion margins, de, are shown in (a).

Interactions are defined independently between pairs of objects.

With the Ishikawa technique, a layer is created for each object

as shown in (b). The gray dots at the bottom indicate nodes that

would correspond to pixels in the image. The colored dots are

the layer nodes. In a 4N-SLG, shown in (c), we keep the neigh-

borhood graph structure, but sample only a subset of the original

pixels. Alternatively, we can sample radially and create a column

graph (RC-SLG), as shown in (d).

• Containment. One object must be inside another ob-

ject, with the possibility of specifying a minimum mar-

gin between the objects (dlIJ in Fig. 2a).

• Exclusion. Two objects cannot overlap at any point,

with the possibility of specifying a minimum distance

(deIJ in Fig. 2a).

We propose a general way of applying containment and

exclusion terms between non-identical graph layers, such

as the ones shown in Fig. 2d. All we require, is that we can

calculate a distance between nodes in interacting layers.

In the following, we will consider objects I, J ⊂ R
2 and

a set of graph nodes V = VI ∪ VJ , where VI and VJ are

graph layers for objects I and J . We will write i when we

refer to nodes from VI , and similarly j for VJ . The spatial

position of a node is given by a mapping p : V → R
2, such

that p(i) denotes the position of node i.

Containment, e.g. object I contains object J , is simple

to enforce by adding an energy term for all pairs of nodes

i ∈ VI and j ∈ VJ

θij(0, 1) = ∞ , ‖p(i)− p(j)‖ ≤ dlIJ . (3)

Here, dlIJ is the minimum margin between the outer object,

I , and inner object, J . The energy term θij(0, 1) = ∞ is
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submodular and can therefore be translated to a single edge

in a graph. Thus, we can solve problems with containment

constraints using a standard maxflow solver, such as [1].

Exclusion, e.g. objects I and J are exclusive, can be en-

forced by adding energy terms

θij(1, 1) = ∞ , ‖p(i)− p(j)‖ ≤ deIJ , (4)

for all pairs of nodes i ∈ VI and j ∈ VJ , where deIJ is the

minimum margin between I and J . Because θij(1, 1) = ∞
is a non-submodular energy term, it cannot be expressed

as a single edge in a graph. To overcome this, we use the

QPBO algorithm.

Since Eq. (3) and (4) can be applied as long as we can

calculate a distance between nodes in interacting layers, we

can now apply object interactions between objects sampled

in any way. It is possible to sample different object us-

ing entirely different sampling schemes and have different

graph structures in different layers. However, doing so will

of course impact the segmentation results and may intro-

duce a bias. Another important point is that the method is

not limited to images in 2D. Interactions can be applied be-

tween nodes sampled in any dimension, although increased

dimensionality will usually also increase the number of in-

teraction terms significantly. To overcome this issue, we

will now look closer at using SLGs with one particular intra-

layer structure.

2.3. Ordered multicolumn graphs

Li et al. [13] describe how to use an ordered multi-

column graph to segment multiple interacting surfaces with

a star-shaped prior. When an approximate position of

an object is known, it has several advantages over a N -

neighborhood structure. For instance, the surface smooth-

ness parameter, ∆, makes it very robust, even with noisy

data. Also, the number of containment terms remains al-

most constant for any minimum margin, δl. This overcomes

a major problem of Eq. (3), namely that the number of terms

depends polynomially on the margin size. Furthermore, the

column graph allows for the specification of a maximum

margin, δu, which can be very helpful for many segmen-

tation problems. Such a margin cannot be specified us-

ing a N -neighborhood structure. The δ parameters, used

by [13], specifically refers to the neighborhood distance on

identically sampled layers. Our distance measure, d, used

in Eq. (3) and (4), is an arbitrary distance measure. For

simplicity, we use Euclidean distance in this paper.

C-SLGs can be seen as a generalization of the

resampling-based method used by [13] for object segmen-

tation. Because their method relies on the neighborhood

distance, δ, for containment interactions, all layers must be

sampled at the same positions. If instead, we use Eq. (3)

to add containment terms, based on the Euclidean distance

between the sample locations, layers no longer have to be

(a) Many redundant terms (b) Few redundant terms

Figure 3. Layered containment terms enforcing a minimum margin

between object 1 and 4 in Fig. 2a. (a) No removal of redundant

terms. (b) Most redundant terms removed.

sampled identically. Because of the difference in size and

center position of objects, sampling them differently pro-

vides a much better basis for our segmentation.

Exclusion interactions are not used by [13]. As they

use the BK [1] implementation to cut the graph, non-

submodular terms cannot be used in their model. Also, δ

cannot be used for exclusion margins on radially sampled

ordered multi-column graphs, as non-overlapping objects

would always be sampled differently.

Inspired by the approach of [13], we propose two algo-

rithms for reducing the number of interaction terms in C-

SLGs. We also describe an algorithm for enforcing a maxi-

mum containment margin in C-SLGs.

To reduce the number of terms, without changing the so-

lution, we rely on the fact that the ordered multi-column

graph has infinite cost terms inside each column. As the

interaction terms are also infinite cost, many of the terms

added by Eq. (3) and (4) are redundant. By not adding the

redundant terms to the graph, we can reduce the size of the

graph significantly. Because the nodes are ordered, calcu-

lating which interaction terms are required and which are

redundant, can be done quickly, before constructing the ac-

tual graph.

It should be noted that if the sampling resolution is low,

meaning that the nodes are far apart, compared to the spec-

ified minimum margin, d, margins may not be enforced

properly. This is a result of Eq. (3) and (4) only adding

terms between nodes within the given margin. It is possible

to extend both algorithm 1 and 2 to accommodate for this

issue, but for now we will focus on reducing the number of

terms and assume that the sampling resolution is sufficiently

high compared to the margins.

2.3.1 Algorithm 1: Reducing containment terms

Fig. 3a shows the containment interaction terms for min-

imum margin, dl
14

, created using Eq. (3). Fig. 3b shows

the same constraint, but with fewer terms. Our algorithm
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(a) Exclusion interaction terms (b) Maximum margin containment

interaction terms

Figure 4. (a) Layered exclusion terms with minimum margin be-

tween object 1 and 2 in Fig. 2a. (b) Layered containment edges

for maximum margin between object 1 and 4 in Fig. 2a

for adding minimum margin interaction with few redundant

terms is as follows:

1. For each inner object node (purple in Fig. 3), find all

outer object nodes (red in Fig. 3) within a distance, dl.

Add all these pairs of nodes to the set of candidates, C.

This is the approach from Eq. (3).

2. Remove pairs from C, so that only one pair remains

for each outer object node, inner object column com-

bination. The pair kept should be the pair with the in-

nermost inner object node.

3. Remove pairs from C, so that only one pair remains

for each inner object node, outer object column com-

bination. The pair kept should be the pair with the out-

ermost outer object node.

4. For each pair in C, add a pairwise term θoi(0, 1) = ∞
to E, where o is the outer object node and i is the inner

object node.

As we will show experimentally, this algorithm can re-

duce the number of interaction terms by orders of magni-

tude. Theoretically, if NI is the number of nodes in the in-

ner object layer, NO is the number of nodes in the outer ob-

ject layer, and NIC and NOC are the number of columns in

the inner and outer layers respectively, the worst-case num-

ber of containment terms is reduced from NI ·NO to approx.

NIC · NO + NOC · NI . In the case of radial resampling,

NIC and NOC are the number of sample angles.

2.3.2 Algorithm 2: Reducing exclusion terms

As with containment, when we create a C-SLG, we can re-

duce the number of exclusion interaction terms compared

to the general approach from Eq. (4). The algorithm is as

follows:

1. For each object 1 node (red in Fig. 4a), find all nodes

in object 2 (blue in Fig. 4a) within a distance, de. Add

all these pairs of nodes to the set candidates, C. This

is the general approach from Eq. (4).

2. Remove pairs from C, so that only one pair remains for

each object 1 node, object 2 column combination. The

pair kept should be the pair with the innermost object

2 node.

3. Remove pairs from C, so that only one pair remains for

each object 2 node, object 1 column combination. The

pair kept should be the pair with the innermost object

1 node.

4. For each pair in C, add a pairwise term θo1o2(1, 1) =
∞ to E, where o1 is the object 1 node and o2 is the

object 2 node.

The result of adding exclusion between object 1 and 2 in

Fig. 2a can be seen in Fig. 4a.

2.3.3 Algorithm 3: Maximum containment margin

Because maximum containment margins cannot be en-

forced on N -neighborhood structured graphs, we have no

general method for adding this type of interaction. Never-

theless, as shown by [13], it is possible to add this type of

interaction when using an ordered multi-column graph with

identical layers. However, for non-identical layers, there is

no simple way of determining which columns and nodes in

the two objects should interact.

We propose an algorithm for adding maximum contain-

ment interactions to C-SLGs with non-identical layers. It is

designed to add intuitive maximum margin constraints us-

ing very few terms. The algorithm is as follows:

1. Calculate the node position gradient for both the outer

object (red in Fig. 4b) and inner object (purple in

Fig. 4b) along the columns. This indicates the direc-

tion of the column in the sample space. For columns

where node positions form a straight line, such as radi-

ally sampled columns, the gradient is the same for all

nodes in a column.

2. Move the inner object nodes in the direction of their

gradient with the distance du.

3. For each node in the inner object, find the four nearest

nodes in the outer object and add these pairs to the set

of candidates, C.

4. For each pair in C, calculate the original distance be-

tween the two nodes, as it was before the inner object

nodes were moved. Remove any pairs from C, where

this distance is less than du.

5. For each pair in C, calculate the angle between the two

nodes using the gradient from before. If the angle be-

tween the gradient vectors is more than 90 degrees, re-

move the pair from C.

6. Remove pairs from C, so that only one pair remains

for each outer object node, inner object column com-

bination. The pair kept should be the pair with the out-

ermost inner object node.

7. Remove pairs from C so that only one pair remains for
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each inner object node. The pair kept should be the

pair with the smallest angle between the node gradi-

ents.

8. For each pair in C, add a pairwise term θio(0, 1) = ∞
to E, where i is the inner object node and o is the outer

object node.

The result of using this algorithm is shown in Fig. 4b.

We see that the algorithm effectively applies the interaction

terms between nodes in columns pointing in the same direc-

tion, which is what we want.

2.4. Solving the graph

To handle non-submodular terms we use QPBO, because

it is a general algorithm for solving problems of the form

shown in Eq. (1). In general, unlabelled nodes may oc-

cur when using the QPBO algorithm to solve problems with

non-submodular energy terms, such as exclusion. However,

when using QPBO with SLGs, our experience shows that

the number of unlabelled nodes is negligible.

3. Experiments

We have tested our method on two different datasets. A

high-resolution 3D image of nerves, collected using µCT,

and the nuclei image set BBBC038v1, available from the

Broad Bioimage Benchmark Collection [14]. The primary

goal of the experiments is to show the scalability of SLGs

for both 2D and 3D multi-object segmentation. Secondly,

we want to highlight the benefits of using C-SLGs, com-

pared to neighborhood-based graph structures.

All experiments were run on an Azure H8m virtual ma-

chine running an Intel Xeon E5-2667 v3 CPU with 8 virtual

processors and 112 GB memory.

Data, code and Jupyter notebooks for all experiments can

be found at DOI 10.11583/DTU.12016941. A Python pack-

age for building and cutting sparse layered graphs has also

been published to GitHub1.

3.1. Nerve segmentation

The µCT volume is 2048×2048×2048 voxels and con-

tains several hundred nerves. Each nerve consists of a dark

outer ring (myelin) and a bright core (axon). Because the

axon and background have the same intensity, and because

the intensities vary a lot between the nerves, accurately seg-

menting all nerves using the same parameters is difficult.

Before we start our experiments, center lines have been

created for 216 of the nerves. Also, a single slice has been

taken out of the volume and cropped to 512 × 512 pixels.

The slice contains 17 nerves and has been segmented manu-

ally to obtain a ground truth segmentation shown in Fig. 5a.

1https://github.com/Skielex/slgbuilder

(a) Ground truth (b) Li et al.

(c) 4N-SLG (d) RC-SLG

Figure 5. The most accurate nerve slice segmentation for each

method and ground truth. The corresponding accuracy for each

method is shown in Table 1.

4N-SLG RC-SLG Li et al.

Nodes (mil.) 2.46 0.58 0.28

Min Max Min Max Min Max

Edges (mil.) 6.8 1425 3.6 6.1 1.1 1.1

Time (s) 1.95 545 0.48 2.70 0.19 0.74

F1 0.91 0.94 0.92

Precision 0.95 0.93 0.90

Recall 0.90 0.96 0.95

Table 1. Results for nerve slice segmentation using a 250 differ-

ent configurations. The number of configurations was 25, 180 and

45 for the 4N-SLG, RC-SLG, and Li et al., respectively. The pa-

rameters varied were the three interaction margins and the surface

smoothness. For each method, the number of nodes is the same

for all configurations, while the number of edges and solve time

change. The accuracy is calculated as the mean score of all masks

for a given configuration.

3.1.1 Single volume slice

We use the 512 × 512 image to compare the accuracy

and graph size of the original method by Li et al. to a 4-

neighborhood SLG (4N-SLG) and a radially resampled col-

umn SLG (RC-SLG). For each method, we evaluate sev-

eral different configurations for margin sizes and surface

smoothness.

Fig. 5 shows the most accurate segmentation for each

method. As shown in Table 1, the RC-SLG provides the

most accurate segmentation. The 4N-SLG struggles when

the contrast between the myelin and the axon are low, while

the method by [13] does not support exclusion and thus in-
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Figure 6. The two plots show the increase in the number of graph

edges as the minimum interaction margins are increased for the

2D nerve segmentation problem shown in Fig. 5. The numbers

for the Dense Ishikawa graph are theoretical, while the numbers

for the other three methods are based on our experiments. In (a)

we see how the graph size increase for the different methods as

the minimum containment margin is increased. Other parameters

are kept constant and as similar as possible. Li et al. does not have

exclusion terms, which is is the main reason it has fewer edges than

the RC-SLG. In (b) we similarly increase the exclusion margin.

Here Li et al. is omitted since it does not have exclusion.

correctly overlap some segments. We also see that the num-

ber of edges and solve time vary significantly for the 4N-

SLG, depending on the configuration. Fig. 6 shows how

the number of edges changes depending on the margins.

It is clear that the N -neighborhood-based methods do not

scale well, as we increase the interaction margin. In fact,

the Ishikawa graph quickly grows so big we cannot create

the graph due to lack of memory. The two ordered multi-

column-based methods do not have this problem, allowing

us to set appropriate margins with little to no cost.

3.1.2 Full volume

To show the scalability of C-SLGs we segment all 216

nerves (432 objects) in the 2048-cubed volume with a single

graph cut. For this, we used the same radial approach as for

the slice, just in 3D and with a lower resolution. Along the

annotated centerline, we sample points radially on planes

orthogonal to the centerline. In total, we sample 182 mil-

lion different positions in the volume, with which we con-

struct the RC-SLG. It takes 44 minutes to solve the problem

using the QPBO algorithm. The complete graph contains a

total of 363 million nodes and 2.1 billion edges. The result

contains no unlabelled nodes, which means we found the

globally optimal solution to the problem. Solving this prob-

lem with a dense Ishikawa structured graph is not possible

due to hardware limitations.

3.2. Nuclei segmentation

The purpose of this experiment is to compare the 4N-

and RC-SLG on a large number of different images with

Figure 7. Nerve volume segmentation of the myelin and axon of

216 nerves created using a RC-SLG.

ground truth segmentation masks. We compare both com-

plexity and accuracy and investigate the frequency of unla-

belled nodes.

The BBBC038v1 strage1 train image dataset con-

tains 670 images with a total of 29,461 segmented nuclei.

The images were acquired using different imaging modali-

ties and vary in size. The type of cells and their size vary

between images and the number of nuclei per image ranges

from a few to several hundred.

As a part of the experiment, we use the exact same con-

figuration for all images. This allows us to test how sensi-

tive/robust the methods are. Ideally, it should not be nec-

essary to configure parameters for each individual image.

For this reason, we also use the same simple gradient-based

data terms for all images. One of the segmentation results

is shown in Fig. 8.

In Table 2 we see that the RC-SLG significantly outper-

forms the 4N-SLG, both in terms of accuracy and speed.

The low recall and high precision score of the 4N-SLG, in-

dicate that it tends to underestimate the size of the nuclei.

The RC-SLG does not have this issue and accurately seg-

ments nuclei of all sizes, even though they vary from a few

to over a hundred pixels in diameter. Furthermore, segmen-

tations by the RC-SLG have fewer unlabelled nodes than

those by the 4N-SLG, although they hardly impact accuracy

in either case. In fact, for RC-SLG, 99.8% of the masks and

97% of the images are completely labeled.

Fig. 9a further highlights the scalability of SLGs, and

12783



4N-SLG RC-SLG

Per image Mean Max Mean Max

Nodes (mil.) 2.25 19.2 0.71 6.08

Edges (mil.) 14.6 442 3.12 60.3

Time (s) 2.55 69.5 1.02 26.1

Per mask Mean Max Mean Max

Unlabelled 3.2 428 0.48 876

Per mask Mean Std. Mean Std.

F1 0.48 0.32 0.85 0.12

Precision 0.97 0.09 0.85 0.13

Recall 0.40 0.34 0.89 0.16

Table 2. Results for nuclei segmentation on 670 image with 29,461

segmented nuclei. The RC-SLGs are generally smaller than the

4N-SLGs, which also makes them faster to solve. In terms of

accuracy, the RC-SLGs perform significantly better than the 4N-

SLGs. In terms of unlabelled nodes, the RC-SLGs also perform

best, leaving only 0.006% of nodes unlabelled, compared to 0.04%

by the 4N-SLGs.

Figure 8. Largest nuclei image segmented using the RC-SLG. The

image is 1272×603 pixels and has 375 segmented nuclei. The RC-

SLG had approx. six million nodes and 60 million edges. A dense

Ishikawa graph would have had over one billion nodes and need

over 100 billion edges to enforce exclusion between all nuclei.

With an exclusion margin of five, this number increases to over 10

trillion edges.

in particular C-SLGs. Fig. 9b is interesting as it shows a

linear correlation between the number of graph edges and

the solve time for both methods in our experiment. This

means that as long as we can keep the number of edges low,

we should be able to find a solution fast.

4. Discussion and conclusion

A limitation of our method is that it requires some prior

knowledge about the number of objects, and where they

are. However, most graph cut-based segmentation meth-

ods require this kind of prior knowledge. Another chal-

lenge is that segmentations may be incomplete, as we rely

on the QPBO algorithm for solving non-submodular prob-

lems. Nevertheless, our experiments show unlabelled nodes

are rare, and thus not a problem for the accuracy of the

segmentation. One reason for this could be that we only
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Figure 9. Two plots based on our results from segmenting 670 im-

ages of nuclei. In (a), we see how the number of objects (nuclei) in

the images affect the number of edges. We assume that the reason

the points for the 4N-SLG and RC-SLG are not on a smooth line

is that the number of interaction terms also depends on the rela-

tive positions and sizes of the objects. The numbers for the dense

Ishikawa graph are theoretical. The area indicates the number of

edges for the smallest and largest image in the image set. Plot (b)

shows the correlation between the time it took to solve the graph

cut and the number of graph edges for each image. For both meth-

ods, the Pearson correlation coefficient is over 0.99, which indicate

a linear correlation between the number of edges and solve time.

use non-submodular terms for exclusion. It also appears

that the RC-SLG is better for avoiding unlabelled nodes

than the 4N-SLG. This is interesting, as using QPBO with

N -neighborhood-based geometric priors [9] has previously

been shown to result in many unlabelled nodes [8]. To la-

bel unlabelled nodes, extensions to QPBO, such as QPBO-I

and QPBO-P have been proposed [16]. Although we do not

use these extensions in our experiments, they could be used

to further reduce the small number of unlabelled nodes in

our segmentations.

Overall, our experiments show that SLGs, and in partic-

ular C-SLGs, can be used to segment very large images (2D

and 3D) accurately, even with simple gradient-based data

terms. These tasks are unsolvable using traditional dense

graph structures. Although we have focused on images,

SLGs, as well as Eq. (3) and Eq. (4) are general and can

be used for 4D or point cloud data as well.

It is clear that the C-SLGs, created using our three algo-

rithms, provide a particularly effective way of solving large

segmentation tasks. In this paper, we enforced a star-like

prior for the C-SLGs by using radial resampling. However,

we believe there is a large potential in using C-SLGs with

sampling schemes based on other priors [7, 9, 17], or by

sampling based on surfaces in 3D [3, 15].
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