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Abstract

In this paper, we propose a new metric to address the

long-standing problem of center bias in saliency evalua-

tion. We first show that distribution-based metrics can-

not measure saliency performance across datasets due to

ambiguity in the choice of standard deviation, especially

for Convolutional Neural Networks. Therefore, our pro-

posed metric is AUC-based because ROC curves are rel-

atively robust to the standard deviation problem. How-

ever, this requires sufficient unique values in the saliency

prediction to compute AUC scores. Secondly, we propose

a global smoothing function for the problem of few value

degrees in predicted saliency output. Compared with ran-

dom noise, our smoothing function can create unique val-

ues without losing the existing relative saliency relation-

ship. Finally, we show our proposed AUC-based metric

can generate a more directional negative set for evalua-

tion, denoted as Farthest-Neighbor AUC (FN-AUC). Our

experiments show FN-AUC can measure spatial biases,

central and peripheral, more effectively than S-AUC with-

out penalizing the fixation locations. The generated neg-

ative samples are available at:https://github.com/

SenJia/Farthest-Neighbor-AUC.

1. Introduction

Extensive studies have been proposed to predict the most

salient region within an image. Saliency methods can be

roughly grouped into two categories, bottom-up and top-

down. The former considers the visual stimuli of an im-

age to determine the Regions Of Interest(ROIs); while the

latter one assumes the ROI is task-dependent, prior knowl-

edge plays a significant part in saliency prediction. With

the recent development of Convolutional Neural Networks

(CNNs), saliency prediction heavily relies on model-based

algorithms which can be trained in an end-to-end fashion. A

new question has emerged regarding what type of saliency

features are the best design for applications, top-down or

bottom-up? Hand-crafted or CNN-learned?

The measurement of saliency is still challenging because

the definition of “saliency” varies depending on the vi-

Image Fixation Distribution

Figure 1. A saliency sample from the SALICON dataset.

sion task [2], so saliency algorithms can also be grouped

by different taxonomies for different purposes [10, 16, 6].

In this paper, we follow the common problem setting in

[29, 45], computational models are trained to predict the

most salient region to the Human Visual System(HVS).

Not only is this a common assumption to all the CNN-

based methods [27, 9, 28, 34, 13, 12, 31, 24, 25], but it

also can be used in an extremely wide range of applica-

tions [48, 1, 47, 44, 26, 22, 35]. However, it is still dif-

ficult to comprehensively evaluate saliency models due to

the bias of each metric. For instance, the challenge of

Large-Scale Scene Understanding [27] uses seven saliency

metrics, Shuffled Area Under Curve (S-AUC), Informa-

tion Gain (IG) [32], Normalized Scanpath Saliency (NSS)

[38], Pearson’s Correlation Coefficient (CC), AUC-Judd,

SIMilarity (SIM) and Kullback–Leibler Divergence (KLD)

[30]. Another public saliency benchmark, MIT300 [28],

applies eight saliency metrics, AUC-Judd, AUC-Borji, S-

AUC, NSS, CC, KLD, SIM and Earth Mover’s Distance

(EMD) [40]. The use of multiple measures indicates that

it is difficult to evaluate a model from only one angle. Pre-

vious studies intended to categorize and compare those met-

rics, e.g., [39, 11] grouped the metrics into location-based

and distribution-based. As shown in Figure 1, the location-

based measure consists of a set of fixation locations cap-

tured by an eye tracker or mouse click. While the distribu-

tion of saliency is normally considered as a post-process on

the raw data by applying a Gaussian filter.

To evaluate a saliency model, one solution is to over-

come the “disagreement” among the metrics. Kummerer

et al. [32] proposed to optimize the saliency scale, center

bias and spatial blurring jointly. But their post-process can

hardly satisfy all the metrics simultaneously, the process re-

quires all the compared models and optimization only uses

the loss of IG. Later this idea was extended to a metric-
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tailored design [33], saliency models and saliency maps are

decoupled so that one model can output different metric

specific maps. However, their solutions are based on the

assumption that all the metrics are able to evaluate saliency

reasonably, the output should be optimized separately and

specifically for each metric. In this work, we are more in-

terested in investigating the differences among those met-

rics in theory. We believe some of the metrics may contain

inherent drawbacks so that not necessarily all the metrics

should be considered. The first contribution of this work

is that we revisit the widely used saliency metrics based on

[11], showing that the “balanced” metrics, NSS and CC,

still have limitations in evaluating modern CNN-based sys-

tems. Saliency datasets have been created using their own

choices of Gaussian standard deviation and a CNN model

learns to fit this biased distribution, see Section 2.

Center bias is a long-standing problem in saliency eval-

uation, simply placing a Gaussian distribution at the cen-

ter could outperform a well-designed system on most of

the metrics [46]. S-AUC is a common solution used by

the SALICON and the MIT benchmarks, a negative set is

sampled based on the positive from other images within

the same dataset. The study [11] shows a centered Gaus-

sian distribution can only achieve an S-AUC score of 0.5.

However, S-AUC has a strong bias that it only considers

negatives near the center, peripherally-favored systems can

achieve higher scores [8]. In this paper, we propose a new

saliency metric which introduces one more constraint on the

spatial relationship between the positive and negative. We

show that the distribution of all fixations can be interpreted

as a 2D probability density distribution. Our method builds

the negative set for each image by searching its farthest

neighbors according to the distribution similarity, denoted

as FN-AUC. We also propose a fast version of our FN-AUC

in case the size of the dataset is too large. To compare with

S-AUC, we propose a strategy to measure the quality of the

sampled negative set, which takes the spatial relationship of

both the center bias and the positive into account, see Sec-

tion 3.2. Our experiment shows FN-AUC can draw a more

reasonable negative set in order to penalize the center bias

only without undermining the true positives, Section 4.3.

Another contribution of this work is that we propose

a global smoothing strategy in computing AUC metrics.

Based on the MIT benchmark, it is problematic to compute

the receiver operating characteristic (ROC) property when

many locations share the same value magnitude, which

could result in a lower performance as well. This is a sce-

nario that is common for CNN based models which can pro-

duce near binary outputs. One solution could be jittering a

map by adding small random noise, but this may break the

relative saliency rank. We propose to apply a Gaussian fil-

ter using a relatively large standard deviation, the output is

expected to cover all regions within a map. In this way, our

Dataset Size (Width by Height) σ CC

Toronto [9] 681× 511 20 .998

MIT1003 [29] (Min - Max)405− 1024 24 .998

CAT2000 [3] 1920× 1080 41 .998

SALICON [27] 640× 480 19 .999

Table 1. The attributes of the four saliency datasets. Gaussian pro-

cesses with different standard deviations are used to generate the

distribution ground-truth.

method can generate a map with unique values for an AUC

metric, meanwhile retaining the relative saliency relation-

ship, see Section 2.3.

2. Revisiting Saliency Metrics

In this section, we first revisit the widely used saliency

metrics based on previous studies [39, 8, 11]. We further in-

vestigate the impact of applying the balanced saliency met-

rics across datasets, NSS and CC.

2.1. Distributionbased Metrics

The distribution-based saliency metrics, SIM, CC, EMD

and KLD, consider each saliency map as a distribution then

the similarity between two maps can be measured based on

a probabilistic view. The drawbacks of IG, SIM and KLD

have already been studied in that they focus more on FNs

than FPs1 which leads to a biased evaluation. While the

EMD metric is sensitive to the sparsity of the map, a lower

score can be obtained due to fewer bins requiring moving.

The CC measure is recommended for penalizing FPs and

FNs equally [11]. However, when comparing two distribu-

tions, the “shape” of each distribution also plays an impor-

tant role (the choice of the Gaussian sigma σ). Especially

for CNN-based saliency systems, a CNN model is designed

to learn the distribution information from the training set, a

lower performance may be achieved only because the test

set is drawn from a different distribution. This is a common

problem in practice because there is no standard on how to

build the ground-truth, each dataset was built using a differ-

ent σ value. The Gaussian filter can be written as:

g(m,n) =
1

2πσ2
· e−

m2+n2

2σ2 (1)

where m and n represent the distance from the current lo-

cation and σ denotes the standard deviation. We search

the σ value used by the four saliency datasets, Toronto[9],

MIT1003[29], CAT2000[3] and SALICON [27], based on

the highest CC score achieved. As we can see in Table 1,

the σ value used varies across those datasets. A high per-

formance can be achieved simply because the distributions

of the training and test sets are similar and vice versa. We

believe the location of ROI should be considered more for

saliency instead of the distribution, a good model should

1False Postive(FP), False Negative(FN), True Positive(TP), True Neg-

ative(TN).
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capture the correct region but the shape (or contrast) is less

important. One can imagine that all the distribution-based

metrics suffer from the inherent drawback of shape sensi-

tivity and it is difficult to avoid the center bias problem, see

Section 4.

2.2. Locationbased Metrics

Location-based metrics do not rely on the distribution

built by the Gaussian process(Equation 1). Similar to CC,

NSS is the recommended metric due to its equal penalty on

FPs and FNs [11]. However, NSS essentially considers all

the fixation locations as positive and the others as negative,

more FPs will be introduced when a larger σ is applied on

the training set. Our experiment validates this hypothesis by

showing the highest NSS score is achieved when training on

the setting of the smallest σ, see Section 4.1. This bias of

NSS also makes it challenging to evaluate models across

datasets.

The family of AUC metrics was criticized for ignoring

FPs with small values [11]. But the FPs will be ignored

only when its value is smaller than the smallest threshold

(value at fixations). That is, in practice, the ignored FPs

would be relatively small and this relative saliency is con-

sidered to be more important than absolute magnitudes [8].

One study [11] has shown that AUC metrics are robust to

σ, but this happens only when the highest value of predic-

tion is a TP. Our experiment shows the AUC metric is also

slightly affected by the choice of σ, Section 4.1, but they

are relatively more robust than CC and NSS. Nevertheless,

the AUC metric is still the most promising way to overcome

the center bias issue because we can directly sample nega-

tives rather than considering distribution properties. Before

discussing the center bias and demonstrating our method,

we first show a potential problem in computing AUC met-

rics and our proposed global smoothing function in the next

section.

2.3. Global Smoothing Strategy

As shown in Figure 1, there are different ways to rep-

resent the fixation ground-truth. Both of the maps can be

considered as matrices, the distribution map can also be in-

terpreted as a 2D probability function and the fixation map

can be converted into a set of positive locations. In this

work, we demonstrate our method using all interpretations

of saliency. For clarity, we denote a matrix as X or Y (an

image or the fixation map, the first and second graphs in

Figure 1), a set of coordinates as P or N and the probabil-

ity function as fX (density or distribution maps, third graph

in Figure 1) and they can be converted to each other, see

Section 3.2.

All the AUC-based metrics are computed by applying

various thresholds on the map to draw an ROC curve. This

can be problematic when different positive locations share

(a) Quantized (b) Random Noise (c) Global Gaussian

Figure 2. (a) A quantized example map to show the problem of limited

value degrees. (b) A random noise map, O, to jitter the output. (c)

Our proposed global Gaussian map, G.

Figure 3. ROC curves of the three maps, the AUC scores are: Quan-

tized(black): 0.573, Jittered with Random Noise(blue): 0.774, Jit-

tered with Global Gaussian(red): 0.790

the same magnitude value. Let’s denote an output map as Ŷ

and we quantize the map into three value degrees to demon-

strate this problem, {0, 0.5, 1}. It is worth noting that this

problem is not artificial since the output image format only

contains 255 value degrees in most cases. One naive so-

lution2 is to add a noise matrix O to the prediction map,

Ŷ + εO, Oi ∼ U(0, 1),O ∈ Rh×w, where Oi is ith ele-

ment of the noise matrix and ε is a small number. But this

operation may break the relative saliency relationship due

to the randomness.

In this work, we propose a global smoothing process to

solve this problem. Instead of introducing random noise, we

build a global Gaussian map, G, by applying Equation 1

using a relatively large standard deviation to diversify the

value range, e.g., σ = min(h/4, w/4). As shown in Fig-

ure 2, the noise matrix O used by [28] is similar to white

Gaussian noise. Our global Gaussian map, G, covers most

areas of the image for tie-breaking. From Figure 3, we can

see that our proposed map G achieves a larger AUC com-

pared with the random noise O. Note that this improvement

is model-agnostic in evaluation, but we are hoping it results

in a more meaningful prediction for a fair model compari-

son. This operation can be also combined with the widely

used Gaussian post-process, which utilizes a small value of

σ to achieve “local” smoothness. Given the small perfor-

mance differences between models, this operation may ar-

guable help to disambiguate which are in fact the best per-

forming.

2According to the MIT benchmark https://github.com/

cvzoya/saliency/tree/master/code_forMetrics
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3. Center Bias and Spatial Metrics

3.1. Center Bias

The measurement of saliency has suffered from the cen-

ter bias problem for a long time. There exist various causes

for center bias, e.g., viewing strategy, initial orbital posi-

tions or motor bias. The main reason behind this may also

be the photographer bias, humans tend to place the most

interesting object or region near the center of an image

[43, 36, 37, 42]. Therefore this tendency makes it difficult

to show how good a saliency model is, a “faked” high per-

formance may result from centrally biased methods. An

early saliency study [36] has shown the stimuli in an im-

age, e.g., color, intensity and orientation, are important in

guiding attention. They also showed a discrepancy that the

predictions are uniformly distributed within an image while

the fixations are more likely to be near the center. This leads

to a hypothesis that the low-level visual features have an in-

direct effect on attention, while the resulting ‘objectness’

is more significant [15]. Later an alternative explanation

to their work was proposed by [4], the good performance

achieved is because the objectness corresponds more with

the center bias.

We show the distribution maps by applying Equation 1

on all the fixation locations within each dataset in Figure 4.

The center bias is intrinsic to HVS across the datasets such

that a synthetic center bias map, fourth map in Figure 4 de-

noted as CB, can achieve a decent performance by covering

most of the fixation locations. We believe the objective of

saliency prediction is to model the mechanism of HVS re-

gardless of what types of features should be used or what the

bias could be. The metric applied is expected to differenti-

ate a good system from a synthetic map. Most of the metrics

suffer from this problem because they are not designed for

spatial biases, especially for the distribution-based case. In

contrast, the location-based metric seems more promising

on this issue.

The standard AUC metric was originally used for statis-

tical analysis, and later was introduced to measure saliency

performance by [7], also known as AUC-Judd [29], which

considers all the non-fixated locations as negative. AUC-

Borji [5] proposed to randomly sample negatives from all

the non-fixated locations, which can be considered as a

subset of AUC-Judd. But these two variants of AUC are

not designed for the problem of center bias. S-AUC is a

widely used metric specifically for the center bias, which

samples negatives based on positive locations from other

images within the same dataset. The assumption behind

this is that the positives are also subject to a central Gaus-

sian distribution so that they can be used to penalize the

synthetic center map CB, see Figure 4. But this sampling

strategy ignores the spatial relationship between the positive

and negative, which may result in an “over-penalty” to TPs.

Toronto SALICON CAT2000 Center Bias

Figure 4. Distribution maps generated using all the fixations within

each dataset and the center bias map from the MIT benchmark.

Furthermore, S-AUC may favor an “anti-center” prediction,

saliency methods [21, 41] that are biased to peripheral re-

gions and can achieve a higher S-AUC score [8].

3.2. FarthestNeighbor AUC

Before we show our proposed FN-AUC, we first for-

malize AUC metrics in different representations and dis-

cuss their own focuses in evaluation. Let X ∈ Rh×w×3

and Y ∈ Rh×w denote the input image and its fixation

ground-truth (second image in Figure 1) respectively. The

fixation map Y can be converted into a set of fixation lo-

cations, denoted as F = {(m,n) : Y(m,n) = 1,m =
1 . . . w, n = 1 . . . h}. The set of all the possible locations S
can be formulated as S = {(m,n) : m = 1 . . . w, n =
1 . . . h}, F ⊆ S . When computing an AUC score, the

positive set is P = F , but the generation of the nega-

tive set varies depending on the AUC metric applied. For

AUC-Judd, it considers all the non-fixated locations as neg-

ative, N J = {∀l ∈ S : l /∈ P} ⇐⇒ S \ P . For

AUC-Borji, the negative set can be considered as applying

Bernoulli sampling on N J with a cardinality constraint,

NB = {s ∈ N J : |NB | = |P|},NB ⊆ N J (a bijective

function could be applied). It is obvious that both the AUC

metrics actually focus on the same statistical property, but

they can not overcome the center bias problem because no

spatial information is utilized.

For S-AUC, we build the positive set for the entire

dataset by Pall = {F1,F2, . . . ,FN}, assuming there are

N samples in the dataset. The positive set of S-AUC is the

same as AUC-Judd and AUC-Borji, P = F ,P ⊆ Pall.

For the negative set, S-AUC draws samples according to

N S = {s ∈ Pall : s /∈ P, |N S | = |P|}. It is interesting to

see that both S-AUC and AUC-Borji sample negatives from

other sets, Pall and N J respectively using the Bernoulli
sampling process. But S-AUC implicitly assumes that the

set Pall is spatially subject to a centered Gaussian distri-

bution (empirically validated by Figure 4) so that the sam-

pled negatives can be used to penalize the center bias. But

AUC-Judd and AUC-Borji do not make use of this spatial

information.

Given the size of the image (h,w), we can easily “vec-

torize” the total positive set Pall into a fixation map by

first initializing a zero matrix, Yall = 0 ∈ Rh×w, then

Yall(m,n) = 1 : ∀(m,n) ∈ Pall, let v(·) denote

this “vectorization” conversion. A Gaussian filter (Equa-

tion 1) is applied on the map Yall to build the distribu-

tion map fYall
for each dataset as shown in Figure 4. Al-
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Figure 5. Diagram of our proposed FN-AUC vs S-AUC, our

method aims at sampling a more directional negative set.

S-AUC FN-AUC(K=5) FN-AUC(K=20) FN-AUC(K=50) FN-AUC(K=70)

Figure 6. Distribution maps of the negative set sampled by S-AUC

and FN-AUC, with different numbers of neighbors on the Toronto

dataset.

though the distribution map is a matrix, it can be interpreted

as a 2D probability density function given the constraint
∑h

m=1

∑w

n=1 fYall
(m,n) = 1. In this way, the density

maps in Figure 4 can be viewed as the probability function

of the S-AUC sampling process. Although each element in

the negative set N S ⊆ Pall is drawn by Bernoulli sam-

pling, spatially it can be interpreted as a Poisson sampling

process such that the sampled elements have a higher prob-

ability to be located near the center (equal probability for

sampling).

Given the synthetic center bias map CB (as shown in

Figure 4) and its probability function fCB, we can refor-

mulate the center bias problem in terms of the distribution

similarity between fCB and fYall
. The synthetic map is de-

signed to “mimic” the distribution of the total fixations as

a baseline such that the distance between the distributions

should be low or minimized, argmin(d(fCB, fYall
)). The

S-AUC metric can penalize the center bias because the

probability distribution of fv(NS) is similar to fCB, given

that N S is sampled from Pall.

The S-AUC metric only considers global position infor-

mation that the negative sample should be near the center,

but it ignores the relative spatial relationship between the

positive and negative. The positive set is also a subset of

the total P ⊆ Pall, which means spatially the probability

function of fv(NS) also overlaps with fv(P). This may lead

to an over-penalty on the TP rate and also explains why S-

AUC blindly favors peripherally-focused methods [8]. To

solve this problem, we propose to not only make use of the

global information, but also take the relative spatial rela-

tionship into account. The sampled negative set should be

able to penalize the center bias map CB meanwhile with-

out affecting the positive set. It is easy to formulate this

constraint in the representation of a probability function,

argmax(d(fv(P), fv(NFN ))), the sampled negative set by

FN-AUC should be far apart from the positive locations.

We visually show the relationship between the negative sets

drawn by S-AUC and our method in Figure 5. The negative

set of S-AUC is near the center, which overlaps with the

positive. While our method intends to avoid the positive lo-

cations but still sample within the area of the synthetic map

CB.

Algorithm 1 Farthest-Neighbor AUC

Input: (Xi,Yi), ith Data Sample in the dataset.

Pall = {F1,F2, . . . ,FN}, a set contains all the fixation

locations within the dataset.

Output:NFN
i the negative set for ith sample.

1: Initialize an empty list, denoted as L.

2: for j = 1 to N do

3: if i 6= j then

4: dj = d(fv(Fi), fv(Fj))
5: add (dj ,Fj) to L.

6: Sort L in descending order based on dj . ⊲ suppose

d(·, ·) is a similarity measure.

7: Add the associated fixation set to the NFN
i based on

the top K elements in L, NFN
i = {Fk : (dk,Fk) ∈

L, k = 1 . . .K}.
8: return NFN

We show how our FN-AUC samples the negative set

NFN in Algorithm 1. The negative set consists of fixa-

tions from the neighbors that are least similar to the posi-

tive set, i.e. the farthest neighbors. Then we can sample

from this negative set to have the same cardinality as the

positive, |NFN | = |P|. It is obvious that the FN-AUC

sampling process has a complexity of O(n). It is feasible

to apply FN-AUC on a small dataset, e.g., Toronto, but it

becomes problematic for large-scale datasets, e.g., SALI-

CON. We also propose a fast version of FN-AUC for better

scalability. Normally the number of fixations of each im-

age is similar within one dataset. We can select only one

farthest neighbor, K = 1 in Algorithm 1 and omitting the

cardinality constraint. More importantly, we can set an em-

pirical threshold to select the first matched element without

iterating over the entire dataset, e.g., a CC score below zero

(inversely related). One extreme case could be that there ex-

ists one sample whose positive set is near the corner, every

other sample may select it as the farthest neighbor such that

FP rate is always zero. In this case, increasing the number

of neighbors K can deliver a more robust sampling pro-

cess. However, we did not experience this problem on the

datasets even applying K = 5. When K equals to the total

number of the images within a dataset(K = N − 1), FN-
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Pos S(.769, .758, .987) S(.812, .772, .951) S(.779, .798, 1.025) FN(.614, .552, .899) FN(.648, .631, .974) FN(.780, .689, .884) Neg(.649, .494, .761)

Pos S(0.561, 0.687, 1.223) S(0.567, 0.624, 1.102) S(.578, .627, 1.085) FN(0.791, 0.561, 0.710) FN(0.751, 0.391, 0.520) FN(0.829, 0.579, 0.698) Neg(0.802, 0.529, 0.659)

Figure 7. The negative set sampled by S-AUC and FN-AUC. The first column is the distribution map of positive locations. Columns 2-4

are negative maps by S-AUC, column 5-7 are negative maps by FN-AUC. The last column is the final output map of FN-AUC, sampled

from columns 5-7. The top row is a sample from the Toronto dataset drawn using Algorithm 1, while the bottom is from the SALICON

dataset drawn using the fast version of FN-AUC(K = 3, CC < 0). The annotation represents (β, γ, γ/β).

AUC will reduce to S-AUC by sampling from Pall. That is

the larger value of K, the more we penalize the center bias

map, we can see the effect of this trade-off of K in Figure 6.

To compare with S-AUC, we propose to measure the

quality of the negative set in two terms: 1) considering the

negative set as positive locations and the center bias map

CB as a prediction to measure the performance, hoping that

a high score (e.g., CC or AUC) can be achieved so that the

negative set can penalize CB. 2) considering the negative

set as a prediction map (fv(N )) to measure its performance

on the ground-truth P , a low score is expected so that the

negative set has little impact on the positive. Let’s denote

these two measures as ↑ β (the higher the better) and ↓ γ
(the lower the better) respectively, we also show the ratio

↓ γ/β as an indicator of the quality.

We can visually check the negative sets of N S and NFN

in Figure 7 (presented in distribution for visualization). Un-

surprisingly, the random samples from S-AUC, columns

2-4, tend to locate near the center, which leads to a higher

β value. But S-AUC dose not take the relative spatial rela-

tionship into account, the sampled negative map also largely

overlaps with the positive, which results in a higher γ value

as well. While the three negative candidates drawn by

FN-AUC(columns 5-7) try to avoid penalizing the positive,

therefore a lower γ can be achieved. Moreover, the neg-

ative set still intersects with the center bias map, because

the samples are drawn from Pall whose 2D distribution is

similar to fCB. The final output negative set (the last col-

umn) sampled from the neighbors also achieves low scores

of γ and γ/β. It is interesting to see that our proposed FN-

AUC has a more significant effect when evaluating on the

SALICON dataset. The maps of S-AUC(bottom row) have

ratio values of γ/β > 1, which indicates the negative set is

penalized more on the positive over the center bias. The rea-

son behind this is that the fixations of this dataset are more

spread-out covering almost the whole image, see Figure 4.

While our method can still generate more directional neg-

ative sets achieving low γ/β values. (More examples are

shown in Figure 1 in the supplementary material.)

4. Experiment

Implementation Details: SALICON is the largest

saliency dataset. Its training set SALICON-train contains

10, 000 images with a resolution of 480× 640 for training.

We train CNN models on SALICON-train and report

result on SALICON-val and the other datasets as shown in

Table 1. The Toronto dataset has a similar image size to

SALICON, so we simply resize the Toronto dataset during

evaluation. But for MIT1003 and CAT2000, the ratio of

the image size is completely different from SALICON. We

apply the padding strategy used in [13, 12], each image has

been resized and padded to keep the same ratio (3/4) as the

input.

The network used is the ResNet-50 model [20], which

has been pretrained on the ImageNet dataset. We sim-

ply apply the multi-level strategy used in [12, 31, 25] on

the model, the side outputs from {conv1, conv10, conv22,

conv40, conv49} are combined to generate the final predic-

tion. The initial learning rate was set to 0.1 with a weight

decay of 1e−4. The total number of training epochs was 10
and we reduced the learning rate every three epochs by mul-

tiplying by a factor of 0.1. The batch size was set to 8 and

stochastic gradient descent was used to update the model

after computing the mean squared error as the loss.

Negative Set of FN-AUC: To compute FN-AUC scores,

we first build the negative set NFN for each dataset. The

metric of CC was used to compare the two distributions

however other similarity measures can also be applied. To

compare with S-AUC, we build a more directional nega-

tive set for FN-AUC in this experiment, K = 5, and the fi-

nal negative set is randomly drawn from the neighbors such

that the number of elements is the same as the positive set.

For Toronto, MIT1003 and CAT2000, we used the standard

procedure as shown in Algorithm 1. For SALICON, we ap-

plied the fast version of FN-AUC due to its large size with

selected candidates chosen according to the first K = 5
neighbors satisfying the requirement of CC < 0. An opti-

mal way to choose K could be based on the average ratio of

γ/β across the entire dataset.
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Dataset Metric σ = 10 σ = 20 σ = 30 σ = 40 σ = 50 Deviation

T
o
ro

n
to

σ
=

20

CC 0.684 0.694 0.684 0.669 0.647 0.016

NSS 2.016 1.938 1.839 1.754 1.665 0.125

AUC-J 0.852 0.856 0.855 0.853 0.854 0.001

AUC-B 0.810 0.828 0.837 0.840 0.842 0.011

S-AUC 0.713 0.717 0.713 0.705 0.694 0.008

FN-AUC 0.805 0.817 0.824 0.824 0.820 0.006

C
A

T
2
0
0
0

σ
=

41

CC 0.539 0.556 0.556 0.558 0.559 0.007

NSS 1.688 1.697 1.668 1.655 1.641 0.020

AUC-J 0.846 0.853 0.854 0.859 0.864 0.005

AUC-B 0.814 0.837 0.844 0.852 0.860 0.015

S-AUC 0.702 0.716 0.719 0.725 0.732 0.010

FN-AUC 0.704 0.716 0.716 0.719 0.717 0.005

M
IT

1
0
0
3

σ
=

24

CC 0.623 0.610 0.586 0.558 0.532 0.033

NSS 2.497 2.330 2.175 2.024 1.906 0.210

AUC-J 0.897 0.899 0.898 0.897 0.895 0.001

AUC-B 0.860 0.873 0.879 0.880 0.880 0.007

S-AUC 0.807 0.816 0.816 0.812 0.809 0.003

FN-AUC 0.758 0.778 0.788 0.788 0.783 0.011

S
A

L
IC

O
N

σ
=

19

CC 0.843 0.863 0.860 0.839 0.812 0.018

NSS 1.895 1.832 1.757 1.668 1.580 0.112

AUC-J 0.858 0.859 0.857 0.853 0.848 0.004

AUC-B 0.811 0.834 0.843 0.845 0.842 0.012

S-AUC 0.781 0.799 0.805 0.804 0.799 0.008

FN-AUC 0.833 0.857 0.868 0.867 0.861 0.012

Table 2. CNN models trained on ground-truth maps built using

different σ values. The σ value used by each test set is shown.

The highest score of each row is highlighted in bold. The stan-

dard deviation shows how robust each metric is to the change of

σ. (AUC-J for AUC-Judd and AUC-B for AUC-Borji.)

CC 0.018 NSS 0.116 AUC-J 0.002

AUC-B 0.011 S-AUC 0.007 FN-AUC 0.008

Table 3. The average deviation for each metric across datasets.

4.1. The choice of σ

As discussed in Section 2, the distribution map of

ground-truth varies according to the choice of σ. In this

experiment, we show how this problem affects CNN-based

systems when evaluating across datasets. Five different σ
values {10, 20, 30, 40, 50} are applied on SALICON-train

to build ground-truth for training using Equation 1. Then

five CNN models with the same architecture are trained on

each of the created ground-truth distributions. We evaluate

the five models on different test sets using different metrics

to show how sensitive those metrics are to the choice of σ.

A metric can be considered biased if a score for one model

clearly outperforms or underperforms compared to the other

models for the same metric since that the model architecture

is the same.

We report the results of the five models in Table 2. We

can see that a high score of CC tends to be achieved by

the matched distribution when similar σ values are applied.

The NSS metric favors a small σ value and thus, less FPs

are produced (a more sparse prediction). This experiment

validates our discussion in Section 2. NSS is sensitive to

the σ value applied on the training set while CC relies more

on the σ difference between the training and test set. A

potential risk that may further limit the practical use of

distribution-based metrics is that interpolation operations

(e.g., bi-linear) can also affect distribution properties. As

shown in Table 2, the AUC metrics are also sensitive to the

Method CC NSS AUC-J AUC-B S-AUC FN-AUC

CB 0.397 0.969 0.802 0.786 0.515 0.607

Itti [23] 0.270 0.820 0.693 0.677 0.638 0.701

AIM [9] 0.312 0.896 0.725 0.720 0.659 0.725

GBVS [19] 0.569 1.519 0.829 0.819 0.636 0.747

SUN [46] 0.215 0.650 0.665 0.652 0.610 0.654

SDSR [41] 0.403 1.096 0.763 0.756 0.697 0.786

CAS [18] 0.449 1.271 0.781 0.768 0.688 0.781

AWS [17] 0.466 1.341 0.787 0.775 0.707 0.789

SWD [14] 0.575 1.523 0.836 0.828 0.632 0.741

ImageSig [21] 0.396 1.085 0.762 0.749 0.679 0.753

CNN 0.694 1.938 0.856 0.828 0.717 0.817

Table 4. Comparison of different saliency methods on the Toronto

dataset.

choice of σ. For the AUC metrics, AUB-Borji, S-AUC and

FN-AUC, there exists a sampling process which may de-

liver slight randomness into evaluation. We report the de-

viation of each setting in the last column of Table 2 and its

average score across datasets in Table 3. We can see that

the sensitivity of AUC metric is relatively smaller than CC

and NSS. Even though AUC-Judd seems correlated with σ
from Table 2, a low deviation score denotes that it does not

show which setting has a clear advantage. Larger devia-

tions of CC and NSS may result from their value range or

the computation process and due to this, they may deliver

false intuitions with respect to the quality of the model.

4.2. Spatial Biases

The inner workings of NNs are still under exploration

but it is established that the features learned by NNs contain

high-level objectness, therefore CNN-based methods may

share the same spatial bias as discussed in [4]. Our proposed

metric aims at solving the spatial bias problem, so we com-

pare different types of “early” visual features(low-level) as

well as the center bias map (Figure 4) using our metric. The

center bias map, CB, is taken from the MIT benchmark.

The traditional saliency methods for comparison include:

Itti [23], AIM [9], GBVS [19], SUN [46], SDSR [41], CAS

[18], AWS [17], SWD [14] and ImageSig(RGB) [21]. It

has been shown that those traditional methods utilize vari-

ous low-level features [8, 4, 46], which leads to relatively

different predictions. Some of the hand-crafted methods

are considerably time consuming (e.g., CAS needs more

than 20 seconds to process each image due to its multi-

scale design). Therefore we only focus on the smallest

dataset, Toronto, for simplicity. We take the model (σ = 20)

from the last experiment as a CNN baseline because it is

the closest to the default settings of Toronto and SALI-

CON. The metrics can be roughly categorized into bias-

tolerant (CC, NSS, AUC-J, AUC-B) and bias-sensitive (S-

AUC, FN-AUC).

As shown in Table 4 and Figure 8, we can see that the

CNN model achieves the best performance on all the met-

rics, including FN-AUC. While it is trivial to compare high-

level vs low-level features in this experiment, we are more

interested in how the metrics measure the intrinsic spatial
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Figure 8. Bar graph of the compared methods using different

saliency metrics.

Image Prediction Fixation FN-Negative

Figure 9. Samples which have a large score difference between

S-AUC and FN-AUC. From top to bottom (S-AUC, FN-AUC),

1:(0.573, 0.762), 2:(0.665, 0.867), 3:(0.540, 0.379), 4:(0.445,

0.285). The third column is the ground-truth distribution (positive)

and the fourth column is the negative map drawn by FN-AUC.

bias each method has. The first row, CB, indicates a Gaus-

sian map can achieve decent scores on most of the metrics.

The CB map achieves higher FN-AUC (0.607) than S-AUC

(0.515) because S-AUC only penalizes center bias as dis-

cussed in Section 3.1 (all the methods can outperform ran-

dom guess 0.5 on S-AUC). Moreover, Itti, AIM and SUN,

all achieve lower performances on the bias-tolerant met-

rics, but our FN-AUC can still distinguish those methods

from CB. From the study [45], the methods GBVS and

AWS are the least and the most spatially consistent algo-

rithms respectively. Therefore GBVS outperforms AWS on

the bias-tolerant metrics, but AWS obtains higher scores on

both of the bias-sensitive metrics, S-AUC and FN-AUC.

We can also see this contrast between GBVS and other

relatively consistent methods, SDSR, CAS and ImageSig.

Moreover, our experiment shows the SWD method is even

more spatially inconsistent than GBVS. When comparing

with “early” vision, we are not surprised by the high perfor-

mance achieved by the CNN due to its ability to learn high-

level features. One thing that should be noted is although

CNNs may tend to output center-favored maps due to its

“objectness” knowledge, the CNN model still outperforms

GBVS and SWD by a large margin. Both S-AUC and FN-

AUC can penalize the spatial bias and we further investigate

the difference between the two metrics in the next section.

4.3. Case Discussion

Our FN-AUC differs from S-AUC in that we also con-

sider the relative relationship with the positive set. It is

important to visually check the samples on which the met-

rics disagree with each other the most. We show samples

which achieve a large score difference between S-AUC and

FN-AUC in Figure 9. We can see from the scores, the top

five rows achieve higher FN-AUC than S-AUC. From the

third column, we can see that the ground-truth is near the

center, but S-AUC will penalize the prediction regardless

of whether it is a reasonable output or not. In contrast, our

proposed FN-AUC achieves a higher score because the sam-

pled negative is a more directional, rather than blind penalty.

From the bottom four rows of Figure 9, we can see that

the S-AUC score is higher than FN-AUC. We can see that

the ground-truth is still near the center, but the predicted

saliency region is near the periphery. In this case, those pre-

dictions should be considered as low-scoring outputs. But

the negative set sampled by S-AUC will always be near the

center as shown in Figure 4 so that it cannot penalize the

FPs. FN-AUC has a higher probability to penalize this type

of prediction because it takes the spatial relationship into

account. (More examples are shown in Figure 2 in the sup-

plementary material.)

5. Conclusion

In this paper, we have shown that the NSS and CC met-

rics still suffer from sensitivity to the choice of the σ value.

This indicates that they can not fairly evaluate the CNN-

based system on commonly used saliency datasets. NSS has

been shown to be sensitive to the training set only, while CC

is affected by the difference of σ applied on the training and

the test sets. The AUC metrics are relatively more robust

to the change of σ. We delved into the AUC metrics based

on different mathematical representations to show the draw-

back of S-AUC. Our proposed FN-AUC metric considers

the relative position information so that a more directional

negative set can be built to penalize the center bias only. Fi-

nally, our proposed global smoothing strategy can deliver a

more stable AUC computation by retaining the saliency re-

lationship. By no means can our method completely solve

the problem of saliency evaluation, but our work sheds new

light on the drawbacks of existing metrics as well as intro-

duces a new sampling process.
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Einhäuser et al.’s data. Journal of Vision, 13(10):18–18, 08

2013. 4, 7

[5] A. Borji, D. N. Sihite, and L. Itti. Quantitative analysis

of human-model agreement in visual saliency modeling: A

comparative study. IEEE Transactions on Image Processing,

22(1):55–69, Jan 2013. 4

[6] A. Borji, H. R. Tavakoli, D. N. Sihite, and L. Itti. Analysis

of scores, datasets, and models in visual saliency prediction.

In 2013 IEEE International Conference on Computer Vision,

pages 921–928, Dec 2013. 1

[7] Neil D.B. Bruce and John K. Tsotsos. A statistical basis

for visual field anisotropies. Neurocomputing, 69(10):1301

– 1304, 2006. Computational Neuroscience: Trends in Re-

search 2006. 4

[8] Neil D.B. Bruce, Calden Wloka, Nick Frosst, Shafin Rah-

man, and John K. Tsotsos. On computational modeling of

visual saliency: Examining what’s right, and what’s left. Vi-

sion Research, 116:95 – 112, 2015. Computational Models

of Visual Attention. 2, 3, 4, 5, 7

[9] Neil D. B. Bruce and John K. Tsotsos. Saliency based on

information maximization. In Proceedings of the 18th In-

ternational Conference on Neural Information Processing

Systems, NIPS’05, pages 155–162, Cambridge, MA, USA,

2005. MIT Press. 1, 2, 7

[10] Z. Bylinskii, E.M. DeGennaro, R. Rajalingham, H. Ruda, J.

Zhang, and J.K. Tsotsos. Towards the quantitative evaluation

of visual attention models. Vision Research, 116:258 – 268,

2015. Computational Models of Visual Attention. 1

[11] Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, and F. Durand.

What do different evaluation metrics tell us about saliency

models? IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 41(3):740–757, March 2019. 1, 2, 3

[12] Marcella Cornia, Lorenzo Baraldi, Giuseppe Serra, and Rita

Cucchiara. A deep multi-level network for saliency predic-

tion. CoRR, abs/1609.01064, 2016. 1, 6

[13] M. Cornia, L. Baraldi, G. Serra, and R. Cucchiara. Pre-

dicting human eye fixations via an lstm-based saliency at-

tentive model. IEEE Transactions on Image Processing,

27(10):5142–5154, Oct 2018. 1, 6

[14] L. Duan, C. Wu, J. Miao, L. Qing, and Y. Fu. Visual saliency

detection by spatially weighted dissimilarity. In CVPR 2011,

pages 473–480, June 2011. 7
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