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Abstract

Convolutional Neural Network (CNN) based methods

generally take crowd counting as a regression task by out-

putting crowd densities. They learn the mapping between

image contents and crowd density distributions. Though

having achieved promising results, these data-driven count-

ing networks are prone to overestimate or underestimate

people counts of regions with different density patterns,

which degrades the whole count accuracy. To overcome this

problem, we propose an approach to alleviate the counting

performance differences in different regions. Specifically,

our approach consists of two networks named Density At-

tention Network (DANet) and Attention Scaling Network

(ASNet). DANet provides ASNet with attention masks re-

lated to regions of different density levels. ASNet first gen-

erates density maps and scaling factors and then multiplies

them by attention masks to output separate attention-based

density maps. These density maps are summed to give the

final density map. The attention scaling factors help at-

tenuate the estimation errors in different regions. Further-

more, we present a novel Adaptive Pyramid Loss (APLoss)

to hierarchically calculate the estimation losses of sub-

regions, which alleviates the training bias. Extensive ex-

periments on four challenging datasets (ShanghaiTech Part

A, UCF CC 50, UCF-QNRF, and WorldExpo’10) demon-

strate the superiority of the proposed approach.

1. Introduction

The computer vision based crowd counting task is to in-

fer the number of people presented in images or videos.

It recently has drawn much attention from researchers be-

cause of its great value in a wide range of real-world ap-

∗The corresponding author is Mingliang Xu.

plications such as video surveillance, public safety, traffic

control, agriculture monitoring, and cell counting.

The solution to this problem has progressively advanced

from detecting individuals to presenting crowd density dis-

tributions. The integration of density maps gives the to-

tal count. Though previous methods have achieved some

success, they fail to handle highly congested crowd scenes.

These scenes usually exhibit the properties of heavy oc-

clusions, large scale variation, perspective changes, and so

on. Inspired by the great success that the convolutional

neural networks have made in computer vision tasks like

object detection [28, 3, 27], image segmentation [4, 8],

and object tracking [48, 47], it recently springs dozens of

CNN based crowd counting methods [37, 22, 18, 41, 10].

These methods have tried to exploit multi-scale feature fu-

sion [49, 29, 35], multi-task learning [34, 30, 21], and the

attention mechanism [45, 44, 19] to solve the above ques-

tions. Even so, there is still much room for improvement

in counting performance, especially in several challenging

crowd datasets [49, 10, 11].

People in images or across scenes usually exhibit vari-

ous distributions, with some regions overcrowded and other

regions sparsely filled. Two main factors lead to this phe-

nomenon. On the one hand, people scatter or gather to-

gether spontaneously in different regions of the scenes. On

the other hand, people’s scale varies due to the change of

camera perspective. Accordingly, the people distributions

in density maps present different patterns. Since CNNs de-

pend heavily on the dataset during the training procedure,

the learned data-driven counting networks are prone to be

affected by different people distributions. As a result, they

perform inconsistently in regions with different people dis-

tributions. It is observed that the predictions in high-density

areas are likely to be higher than the ground truth, while the

predictions in low-density areas are likely to be lower than
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Figure 1. One example of the crowd density estimation results

on the ShanghaiTech Part A dataset. The red, green, blue colors

in the density mask map represent the high-density, low-density,

and background regions, respectively. Compared with the ground

truth, the counting network predicts a higher count in the high-

density region and a lower count in the low-density region.

the ground truth, as demonstrated in Figure 1 and Figure 2.

In this paper, we aim to present an approach that can han-

dle the congested scenes with various density distributions.

To this end, we construct an attention scaling convolutional

neural network named ASNet. ASNet first generates scal-

ing factors to adjust the corresponding intermediate density

maps. Then ASNet outputs several attention based density

maps with each only focusing on the region of one certain

density level. Finally, ASNet sums these attention based

density maps to give the final density map. To provide

attention masks for ASNet, we present a density attention

network named DANet that performs the task of pixel-wise

density segmentation.

Furthermore, we present a novel loss function named

Adaptive Pyramid Loss (APLoss). APLoss first divides the

density map into non-uniform pyramidal sub-regions adap-

tively based on local people counts and then calculates each

local normalized loss. Finally, APLoss accumulates all lo-

cal losses to give the final estimation loss. APLoss allevi-

ates the training bias and improves the generalization ability

of the counting network. The contributions of this paper are

summarized as follows:

(1) We propose a novel attention scaling convolutional

neural network (ASNet) that learns scaling factors to auto-

matically adjust the density estimation of each correspond-

ing sub-region, which reduces the local estimation error.

(2) We propose a density attention network (DANet) that

provides ASNet with attention masks concerning regions of

different density levels.

(3) We propose a novel adaptive pyramid loss (APLoss)

that can ease the training bias and strengthen the general-

ization ability of the counting network.

Figure 2. The comparisons between the average ground truth and

the average estimations in low-density and high-density regions on

the test set of the ShanghaiTech Part A dataset. The CNN based

baseline counting network is prone to overestimate people count

in the high-density region and underestimate people count in the

low-density region.

(4) Compared with other sixteen newly reported state-

of-the-art results, our proposed approach demonstrates its

superiority on four challenging crowd datasets.

The rest of the paper is organized as follows. First, we

review the previous crowd counting methods in Section 2.

Then, we present the proposed approach in Section 3. After

that, we demonstrate the experimental results and analysis

in Section 4. Finally, we conclude this paper in Section 5.

2. Related Work

Recent years have witnessed progressive improvement

in crowd counting from traditional methods [7, 10, 26, 39,

2] to CNN based methods [1, 24, 13, 14, 23, 29, 25]. In

this section, we mainly review three kinds of common CNN

based counting strategies.

2.1. Multi­scale Information Fusion Approaches

This kind of approach aims at exploiting multi-scale fea-

tures or multi-context information to deal with the people

scale variation problem. Multi-column convolutional neu-

ral network (MCNN), proposed by Zhang et al. [49], uti-

lizes multi-size filters to extract features that have receptive

fields of different sizes. Similarly, Sam et al. [29] proposed

Switch-CNN that utilizes a switch classifier to choose the

optimal one from the density generator pool. Sindagi et

al. [35] proposed Contextual Pyramid CNN (CP-CNN) to

capture multi-scale information by combining global and

local context priors. Further, Sindagi and Patel [37] pre-

sented a multi-level bottom-top and top-bottom fusion net-

work (MBTTBF) that is elaborately designed to combine

multiple shallow and deep features. Chen et al. [5] proposed

a Scale Pyramid Network (SPN) that parallelly utilizes di-

lated convolutions of different rates in a shared single-
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Figure 3. The architecture of the proposed approach. Density Attention Network (DANet) provides attention masks for the Attention

Scaling Network (ASNet). ASNet has two branches. The Density Estimation branch generates intermediate density maps and the Attention

Scaling branch generates scaling factors. ASNet multiplies intermediate density maps and scaling factors by attention masks to generate

attention based density maps, which are then summed to give the final density map.

column CNN to extract multi-scale features.

2.2. Attention Guided Approaches

This kind of approach utilizes the visual attention mech-

anism to make the counting network intentionally focus

on useful information to improve counting performance.

Zhang et al. [45] proposed the Attentional Neural Field

(ANF) that incorporates conditional random fields and

non-local attention mechanisms to capture multi-scale fea-

tures and long-range dependencies, strengthening the net-

work’s ability to handle large scale variation. Further,

Zhang et al. [44] proposed a Relational Attention Network

(RANet) that utilizes both local self-attention and global

self-attention mechanisms to capture the interdependence

information of pixels, obtaining more informative feature

representations. The attention-injective deformable net-

work (ADCrowdNet), proposed by Liu et al. [19], utilizes

an attention map generator to provide regions and conges-

tion degrees for the latter density map estimator. Liu et

al. [17] proposed Recurrent Attentive Zooming Network

(RAZN) that iteratively locates regions with high ambiguity

and re-evaluates them in high-resolution space.

2.3. Multi­task Learning Approaches

This kind of approach leverages auxiliary tasks to im-

prove counting performance. Sindagi et al. [34] proposed to

utilize one extra crowd count task to provide high-level pri-

ors for the density estimation task. The two jointly learned

tasks enable the shared part of the network to learn more

discriminative features. Shen et al. [30] presented the Ad-

versarial Cross-Scale Consistency Pursuit (ACSCP) frame-

work by exploiting the collaboration between adversarial

learning and density estimation. Liu et al. [21] proposed to

incorporate self-supervised image ranking and density esti-

mation into a multi-task learning framework, which makes

it possible to learn from an abundant unlabeled crowd

dataset. Zhao et al. [50] proposed to formulate several het-

erogeneous attributes including geometric, semantic, and

numeric information as auxiliary tasks to assist the count-

ing task, which helps generate more robust features to han-

dle scale variation and cluttered background.

3. Our Approach

The architecture of the proposed method is illustrated in

Figure 3. It consists of two convolutional networks: Density

Attention Network (DANet) and Attention Scaling Network

(ASNet). DANet provides ASNet with attention masks con-

cerning regions of different density levels. ASNet has two

branches with Density Estimation generating intermediate

density maps and Attention Scaling generating scaling fac-

tors. ASNet multiples them by attention masks to output

density maps that are summed to give the final density map.

In this section, we first present DANet and ASNet and then

introduce the novel Adaptive Pyramid Loss (APLoss).

3.1. Density Attention Network

DANet aims to generate attention masks that represent

regions of different density levels. It achieves this goal by

performing a pixel-wise density segmentation task. That

is, DANet classifies each pixel to one certain density level.

The pixels of the same density level form the region of one

attention mask.

It generally generates the ground-truth density map by

utilizing a Gaussian kernel to blur each head annotation.

The sum of the Gaussian kernel equals to one. Therefore,
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Figure 4. The configurations of the density attention network

(DANet) and the attention scaling network (ASNet).

the actual value of each pixel in the density map does

not represent the density level of one region. Similar

to [9], we use the local count centered at one pixel to

denote its density level, which makes the density level

of pixels consistent with that of the local region. Specif-

ically, we generate the pixel-wise ground-truth density

level labels as follows. Firstly, we obtain all the local

counts by scanning the ground-truth density maps in the

training set pixel by pixel with a 64 × 64 sliding window.

Secondly, we calculate the average value AvgCnt11 of

all non-zero local counts and find the minimum count

MinCnt and maximal count MaxCnt. Thirdly, we use

{MinCnt,AvgCnt11,MaxCnt} as the threshold set to

divide the density into two levels : low density and high

density. Iteratively, we can calculate the average values

AvgCnt21 of all low-density counts and AvgCnt22 of all

high-density counts. And we use the new threshold set

{MinCnt,AvgCnt21, AvgCnt11, AvgCnt22,MaxCnt}
to divide the density into four levels, and so on. Fourthly,

we use the obtained threshold set to label each pixel in the

ground-truth density map automatically according to its

corresponding local count. Given N density levels, there

are N + 1 density labels including one extra background

label.

Figure 5. From the left column to the right column, they are back-

ground masks, low-density attention masks, high-level density

masks, and the density level segmentation results, respectively.

Once we get the ground-truth density level labels, we

train the proposed DANet to learn to classify each pixel of

the input crowd image to different density levels. That is,

DANet can segment the crowd image to regions of differ-

ent density levels, with each region corresponding to one

binary attention mask. Figure 5 shows two examples of at-

tention masks. After obtaining the N foreground attention

masks, we use one dilation operation to expand each mask.

As a result, there are overlaps between adjacent attention

masks. When summing the attention mask based density

maps, the density values corresponding to the overlapped

mask regions are averaged.

The DANet architecture is presented in the left column

of Figure 4. We utilize the first 13 convolutional layers of

the trained VGG-16 [33] model as the backbone. We add

four new convolutional layers on top of the backbone. The

first one has convolutional kernels with a size of 1 × 1 and

has 256 output channels. The second one is a deconvolu-

tional layer that has 2 × 2 kernels with a stride of 2 pixels.

The third one has 3 × 3 kernels and 128 output channels.

The fourth one has 1 × 1 kernels and N + 1 output maps.

We train DANet with the two-dimensional softmax cross-

entropy loss.

3.2. Attention Scaling Network

As stated in Section 1, CNN based counting networks are

prone to overestimate or underestimate local counts in re-

gions of different density levels. To correct the local density

estimation, we propose the Attention Scaling Network (AS-

Net). As demonstrated in Figure 3, ASNet has one Atten-

tion Scaling branch (AS-branch) and one Density Estima-

tion branch (DE-branch). DE-branch generates intermedi-

ate density maps that are to be corrected. AS-branch learns

to generate scaling factors that aims at adjusting the inter-

mediate density maps in conjunction with attention masks

provided by DANet. These scaling factors help fine-tune

the overall crowd count of the corresponding local regions.

This can be considered as a rough estimation strategy used

by human beings, which adjusts the predicted count by

multiplying a factor without pixel-wise re-calculation. It

is noted that we only use the foreground attention masks
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Figure 6. The demonstration of the two-level adaptive pyramid

loss (APLoss).

that correspond to crowd regions. ASNet outputs N ad-

justed density maps by multiplying the intermediate density

maps, scaling factors, and the attention masks. As a result,

the adjusted density maps concentrate only on regions with

the corresponding density masks. They are then summed to

generate the final density map.

The configuration of the ASNet is presented in the right

column of Figure 4. Similar to DANet, ASNet also uses

the first 13 convolutional layers of the trained VGG-16 [33]

model as the backbone. ASNet first adds one new convo-

lutional layer and one new deconvolutional layer. On top

of these layers, ASNet then splits into the AS-branch and

the DE-branch. DE-branch has two new convolutional lay-

ers and outputs N intermediate density maps. AS-branch

adds two new convolutional layers and the second one out-

puts N channels with the values un-activated. And then

AS-branch utilizes the global average pooling (GAP) oper-

ation to transform the obtained N channels into N scalars

that are then activated by the HardTanh function. We first

set the output range of the HardTanh function to (−1, 1)
and then add one to make the output scaling factors be in

the range of (0, 2).

3.3. Adaptive Pyramid Loss

During the training stage, previous CNN based density

estimation networks usually use the Euclidean distance be-

tween the whole estimated and ground-truth density maps

as the loss function:

L(Θ) =
1

M

M
∑

k=1

||D(Xk; Θ)−Dk||22, (1)

where Xk is the k-th input image, Dk is its ground-truth

density map, Θ is the parameters of the counting network,

D(Xk; Θ) is the estimated density map, and M is the size

of the training set. This loss ignores the impact of densities

of different levels on the network training procedure. Since

the low-density and high-density distributions are usually

quite unbalanced, the corresponding estimation errors can

make the trained counting network biased. This weakens

the generalization ability of the counting network. Further,

even in the region of the same density level (as described in

Section 3.1), there are density differences in its subregions.

To deal with the above problem, we propose a novel

loss named Adaptive Pyramid Loss (APLoss). APLoss is

able to adaptively divide the density map into non-uniform

pyramidal subregions based on the ground-truth local crowd

counts. And then APLoss first calculates each local relative

estimation loss and then sums them to give the final loss.

Figure 6 shows a two-level APLoss calculation.

Specifically, we calculate APLoss as follows. Firstly,

we divide the ground-truth density map Dk into a first-

level grid of 2 × 2 and denote the subregion by Ri1 with

i1 ∈ {1, 2, 3, 4}. If the local crowd count of the subre-

gion Ri1 is higher than a given threshold T , we divide it

into a second-level sub-grid of 2 × 2 and denote them by

Ri1,i2 with i2 ∈ {1, 2, 3, 4}. We iteratively divide one re-

gion into an n-th level sub-grid of 2×2 until its local crowd

count is lower than T . We denote the n-th level subregion by

Ri1,··· ,in with in ∈ {1, 2, 3, 4}. After the division is com-

pleted, we can get one non-uniform pyramid grid. Secondly,

we apply the obtained adaptive pyramid grid on the esti-

mated density map D(Xk; Θ) and calculate the local loss

for each sub-region:

lkRi1,··· ,in−1

=



























||DRi1,··· ,in−1

(Xk;Θ)−Dk
Ri1,··· ,in−1

||2
2

sum(Dk
Ri1,··· ,in−1

)+1
,

sum(Dk
Ri1,··· ,in−1

) < T

∑4
in=1 l

k
Ri1,··· ,in

, otherwise

(2)

Finally, we aggregate all the local losses to give the final

APLoss:

LAPLoss =
1

M

M
∑

k=1

4
∑

i1=1

lkRi1
. (3)

4. Experiments

We validate the effectiveness of the proposed method on

four challenging crowd datasets. The performance of the

current counting networks still has a lot of room for im-

provement on three of the datasets including the Shang-

haiTech Part A dataset [49], UCF CC 50 dataset [10], and

UCF-QNRF dataset [11]. And the WorldExpo’10 [46]

dataset provides cross-scene test sets that can test the adap-

tive capacity of the network for different scenes.

4.1. Datasets

ShanghaiTech Part A dataset [49]. This crowd dataset

contains 482 images that are randomly crawled from the

Internet and are divided into the training and test sets. There
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are 300 images and 182 images in the training and test sets,

respectively.

UCF CCF 50 dataset [10]. This dataset shows a lot

of challenges. It randomly collects only 50 images from

the Internet. The number of people in these images varies

largely with a wide range from 94 to 4,543. There are a

total of 63,974 head annotations and the average number

per image is 1280. Besides, this dataset has diverse scenes

with varying perspective distortions.

UCF-QNRF dataset [11]. This dataset contains 1,535

images with a total of 1,251,642 head annotations. The im-

ages are divided into the training set with 1,201 images and

the test set with 334 images, respectively. This dataset has

much more annotated heads than currently available crowd

datasets and is suitable for deep CNN based methods.

WorldExpo’10 dataset [46]. This dataset contains

1,132 annotated video sequences that are captured by

108 surveillance cameras from Shanghai 2010 WorldExpo

event. There are a total of 199,923 annotated pedestrians

from 3,980 frames. The dataset is divided into the training

set with frames from 103 scenes and the test set with 600

frames from another 5 scenes.

4.2. Settings

Data. For the DANet, we augment the training data by

cropping nine image patches at random locations in one im-

age. Each image patch is one-fourth of the size of the origi-

nal image. For the ASNet, we crop fixed-size image patches

of 128×128 pixels at random locations in one image. Also,

we flip each image patch horizontally to double the training

set. Further, random color jitter is used in each epoch dur-

ing the training. In particular, because the image resolution

of the UCF-QNRF dataset [11] is too large, we resized its

longer side to 1024 pixels and kept the aspect ratio constant.

Ground Truth Generation. We generate the ground-

truth density maps by using a normalized Gaussian kernel

to blur each head annotation, thus summing the density map

equals the crowd count. In our experiments, we use a fixed

spread Gaussian to generate density maps.

Training. For both the DANet and the ASNet, the first

13 convolutional layers are initialized from a pre-trained

VGG-16 [33] model and the rest layers are randomly ini-

tialized by a Gaussian distribution with the mean of 0 and

the standard deviation of 0.01. The Adam algorithm [15] is

used to optimize the model. Both the DANet and the AS-

Net are trained in an end-to-end manner. The cross-entropy

is adopted as the loss function for the DANet. We firstly

train the DANet to generate attention masks and set the size

of the training batch to 1. Then we train the ASNet and set

the size of the training batch to 8.

4.3. Evaluation Metrics

We adopt the Mean Absolute Error (MAE) and the Mean

Squared Error (MSE) to evaluate our method. The MAE

and MSE are defined as follows:

MAE =
1

N

N
∑

i=1

|Ci − Ĉi|, (4)

MSE =

√

√

√

√

1

N

N
∑

i=1

||Ci − Ĉi||2, (5)

where N is the number of the test images, Ci and Ĉi are the

ground-truth and estimated counts of the i-th image, respec-

tively.

4.4. Evaluation and Analysis

In this section, we carry out experiments on the four

datasets. We first conduct an ablation study to analyze the

attention scaling and APLoss on the ShanghaiTech Part A

dataset. And then we present the experimental results on

the four datasets in detail. Finally, we present a qualitative

analysis on the ShanghaiTech Part A dataset [49].

4.4.1 Ablation Study

Attention scaling. Our goal is to find out the impact of the

attention scaling on crowd counting performance. Since the

density can be divided into different levels, we aim to find

the relatively optimal density levels. As described in Sec-

tion 3.2, we can divide the density via the threshold set. In

our experiments, we test two, four, and eight density levels.

Accordingly, DANet provides two, four, and eight attention

masks, without the background mask. The ablation results

are presented in Table 1. We first train a baseline counting

network by just utilizing the backbone and the DE-branch

w/ scale w/o scaling

Masks MAE MSE MAE MSE

0 - - 68.31 109.74

2 60.16 98.61 62.70 104.41

4 61.44 106.70 63.37 106.92

8 61.78 102.94 63.64 107.74

Table 1. Attention scaling ablation of our ASNet on ShanghaiTech

Part A dataset, with 0, 2, 4, and 8 attention masks.

MSE Loss 2-level APLoss 3-level APLoss

MAE MSE MAE MSE MAE MSE

60.16 98.61 57.78 90.13 58.99 95.97

Table 2. APLoss ablation of our ASNet on ShanghaiTech Part A

dataset.
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SHTech Part A UCF CC 50 UCF-QNRF WorldExpo10

Method MAE MSE R. MAE MSE R. MAE MSE R. S1 S2 S3 S4 S5 avg. R. avg. R.

HA-CCN [36] 62.9 94.9 9 256.2 348.4 14 118.1 180.4 11 - - - - - - - 11.3

SPN [5] 61.7 99.5 7 259.2 335.9 15 - - - - - - - - - - 11

TEDnet [12] 64.2 109.1 13 249.4 354.5 13 113 188 10 2.3 10.1 11.3 13.8 2.6 8.0 6 10.5

ADCrowdNet [19] 63.2 98.9 12 266.4 358.0 16 - - - 1.6 13.2 8.7 10.6 2.6 7.3 3 10.3

ASD [40] 65.6 98.0 17 196.2 270.9 3 - - - - - - - - - - 10

CFF [32] 65.2 109.4 16 - - - 93.8 146.5 3 - - - - - - - 9.5

SFCN [38] 64.8 107.5 15 214.2 318.2 6 102.0 171.4 6 - - - - - - - 9

PACNN [31]+ [16] 62.4 102.0 11 241.7 320.7 11 - - - 2.3 12.5 9.1 11.2 3.8 7.8 5 9

SPN+L2SM [42] 64.2 98.4 14 188.4 315.3 2 104.7 173.6 8 - - - - - - - 8

CAN [20] 62.3 100.0 10 212.2 243.7 5 107 183 9 2.9 12.0 10.0 7.9 4.3 7.4 4 7

PGCNet [43] 57.0 86.0 1 244.6 361.2 12 - - - 2.5 12.7 8.4 13.7 3.2 8.1 7 6.7

SPANet+SANet [6] 59.4 92.5 4 232.6 311.7 9 - - - - - - - - - - 6.5

MBTTB-SCFB [37] 60.2 94.1 5 233.1 300.9 10 97.5 165.2 4 - - - - - - - 6.3

BL [22] 62.8 101.8 8 229.3 308.2 8 88.7 154.8 1 - - - - - - - 5.7

DSSINet [18] 60.63 96.04 6 216.9 302.4 7 99.1 159.2 5 1.57 9.51 9.46 10.35 2.49 6.67 2 5

S-DCNet [41] 58.3 95.0 3 204.2 301.3 4 104.4 176.1 7 - - - - - - - 4.7

Ours 57.78 90.13 2 174.84 251.63 1 91.59 159.71 2 2.22 10.11 8.89 7.14 4.84 6.64 1 1.5

Table 3. Comparisons of our ASNet with sixteen state-of-the-art methods on four datasets. The average ranking (denoted by avg. R.) is

obtained by using the sum of all rankings that one method gains to divide the number of datasets it utilizes.

Figure 7. Comparison of ASNet with the baseline on Shang-

haiTech Part A dataset. ASNet evidently reduces the estimation

errors in both low-density and high-density regions.

of the proposed ASNet. It achieves an MAE of 68.31 and

an MSE of 109.74. ASNet achieves the MAEs of 60.16,

61.44, and 61.78 when it uses 2, 4, and 8 attention masks,

respectively. It means that the attention scaling mechanism

does improve counting performance. Further, we carry out

extra experiments by removing the scaling factors but still

using the attention masks provided by DANet. The results

are presented in the right column of Table 1. It achieves the

MAEs of 62.70, 63.37, and 63.64 when it only uses 2, 4,

and 8 attention masks without scaling factors, respectively.

It is seen that ASNet with 2 attention masks achieves the

best result. More masks can bring more detailed density

distribution information for the density prediction. How-

ever, the increase in attention masks may make it harder to

fuse the whole density distribution.

APLoss. Since the training images for ASNet are of the

same size of 128× 128 pixels, we use the AvgCnt11 as the

threshold T . We test 2-level and 3-level APLoss, respec-

tively. The experimental results are presented in Table 2. It

is seen that the APLoss further improves the counting per-

formance of ASNet. ASNet with 2-level APLoss achieves

an MAE of 57.78, outperforming ASNet with MSE loss and

ASNet with 3-level APLoss. The 2-level APLoss has a bet-

ter generalization ability than the 3-level APLoss.

Besides, we carry out one statistical analysis to show that

our method indeed reduces the estimation errors in regions

of different density levels. The results are presented in Fig-

ure 7. Compared with the baseline network, our ASNet re-

duces the MAEs of low-density and high-density regions

from 27.19 to 21.58 and from 55.66 to 45.94, respectively.

4.4.2 Results on Four Datasets

In this section, we evaluate our approach against sixteen

currently reported methods [36, 5, 12, 19, 40, 32, 38, 31,

42, 20, 43, 6, 37, 22, 18, 41, 10] on ShanghaiTech Part

A dataset [49], UCF CCF 50 dataset [10], UCF-QNRF

Dataset [11] and WorldExpo’10 dataset [46]. For simplic-

ity, we denote ShanghaiTech Part A Dataset by SHTech Part

A in our experiments. During the test, each whole image in

the test sets of the four datasets is sent directly into our AS-

Net model. There are a few things that need to be made

clear first. We perform a 5-fold cross-validation on the

UCF CCF 50 Dataset [10] by following the standard pro-

tocol adopted in [10]. On the WorldExpo’10 dataset [46],
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we prune the last convolutional layer by setting the features

out of ROI regions to zero, which is consistent with the pre-

vious work [46]. In addition, we only use the MAE metric

to evaluate our approach. We first calculate the MAE for

each test scene and then averages all the MAEs to evaluate

the performance of ASNet across different test scenes.

Experimental results are presented in Tabel 3. All our

results are achieved by using the ASNet model trained

with the 2-level APLoss. (1) On the ShanghaiTech Part A

dataset, our method achieves the second-best result with an

MAE of 57.78, which is only 1.3% higher than that of the

best method PGCNet [43]. However, on the UCF CC 50

dataset, our method achieves the lowest MAE of 174.84

that is 28.5% lower than that of PGCNet. On the World-

Expo’10 dataset, our method also achieves the lowest MAE

of 6.64 that is 9.1% lower than that of PGCNet. It should be

noted that PGCNet uses additional perspective information

to boost the accuracy of the prediction on the ShanghaiTech

Part A dataset. (2) On the UCF CC 50 dataset, our method

reduces the MAE by 7.2% compared with the second-best

method SPN+L2SM [42]. (3) On the UCF-QNRF dataset,

our method achieves the second-best result with an MAE

of 91.59, which is only 3.3% higher than that of the best

BL [43] method. However, the MAE of our method is 8.0%

and 23.8% lower than the BL method on the ShanghaiTech

Part A dataset and the UCF CC 50 dataset, respectively.

The BL method uses the VGG-19 [33] model as the back-

bone which has deeper convolutional than our VGG-16 [33]

backbone. (4) On the WorldExpo’10 dataset, our method

surpasses all the other methods.

It noted that in Tabel 3 that some methods only achieve

good performance on one dataset and relatively poor per-

formance on the rest of these datasets. To make a compre-

hensive evaluation of the performance of all these methods

on the four datasets, we introduce a simple evaluation met-

ric named average ranking (denoted by avg. R. in Tabel 3).

We obtain the average ranking value by using the sum of all

ranks that one method gains to divide the number of datasets

it utilizes. It is demonstrated that our method achieves the

first average ranking which means it is able to excel in deal-

ing with various complex crowd scenes.

4.4.3 Qualitative Analysis

We further carry out a qualitative analysis to investigate the

performance of our ASNet. We present some qualitative

comparisons between the baseline network and our ASNet

in Figure 8. The main difference between them is that AS-

Net introduces attention mechanisms. It is observed from

the visualization that our ASNet is much more robust on

scenes with cluttered backgrounds like trees. We use red

rectangles to mark the regions with cluttered backgrounds.

There is obvious evidence from red rectangles of the first

Figure 8. Visually qualitative analysis on the ShanghaiTech Part A

dataset. ASNet is more robust to cluttered backgrounds than the

baseline network.

and third rows where trees are close to the high-density re-

gions. The baseline network causes much more estimation

errors than the ASNet. Further, the second and the fourth

rows show evidence in red rectangles where there are people

in cluttered background. Our ASNet has a much more ac-

curate density estimation. This demonstrates that the atten-

tion scaling mechanism not only attenuates the estimation

error in regions of different density levels but also plays an

important role in reducing the estimation error in cluttered

background.

5. Conclusion

In this paper, we have presented a novel attention scal-

ing based counting network that exploits attention masks

and scaling factors to correct density estimations in regions

of different density levels. To this end, We present one den-

sity attention network (DANet) to provide attention masks

for the attention scaling network (ASNet). ASNet is re-

sponsible for generating scaling factors and outputting at-

tention based density maps that only focus on their corre-

sponding attention regions. These local density estimations

together form the final density map. Besides, we introduce

a novel adaptive pyramid loss (APLoss) that hierarchically

calculates local estimation loss, strengthening the general-

ization ability of the counting network. Extensive experi-

ments on four challenging datasets demonstrate the superi-

ority of the proposed approach over current sixteen state-of-

the-art methods.
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